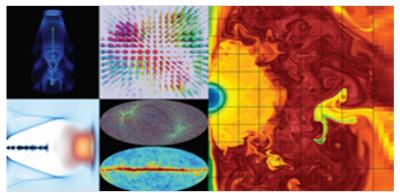


Overview of NSF's Office of Advanced Cyberinfrastructure and Future Directions

September 27, 2023


Katie Antypas

Office Director, NSF Office of Advanced Cyberinfrastructure

My background and experience engaging with and supporting the research community on advanced computational and data systems

NERSC Staff in front of Cori Supercomputer

- Scientific Parallel Programmer, University of Chicago, Flash Center, 2004-2006
- HPC Consultant, User Services Group, NERSC-6 Project Team, NERSC 2006-2010
- Group Lead, User Services Group, 2010-2013
- Scientific Computing and Data Services Department Head, 2013-2015
- NERSC-8 (Cori) Project Director, 2013-2017
- Data Department Head, 2015-2022
- Fellow, DOE Oppenheimer Science and Energy Leadership Program 2016-2017
- NERSC Division Deputy 2017- 2023
- NERSC-9 (Perlmutter) Project Director, 2018-2019
- Director of Hardware and Integration, Exascale Computing Project, 2020-2023
- NERSC-10 Project Director, 2021-2023

Office of Advanced Cyberinfrastructure

Carl AndersonStaff Associate for Operations

Amy Apon

Jalexus Ashley

Sharmistha Bagchi-Sen

Rob Beverly

Daniel Bullock

Bob Chadduck

Christine Christy

Varun Chandola

Sharon Geva

Sheikh Ghafoor

Tom Gulbransen

Bill Miller Senior Advisor

Andrey Kanaev

Juan (Jen) Li

Gabrielle Marshal

Marlon Pierce

Plato Smith

Ashok Srinivasan

Amy WaltonDeputy Office Director

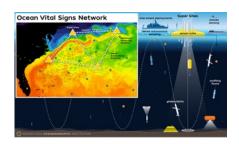
Alejandro Suarez

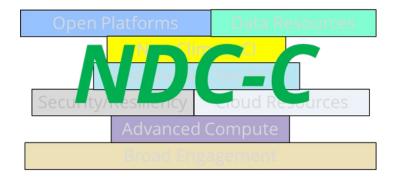
Kevin Thompson

Annabel Virella

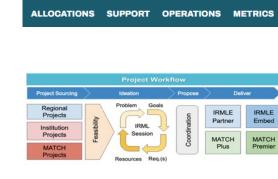
Ed Walker

Deborah White-Wilkins


Rediet Woldeslassie


FY23 was an exciting year for OAC

Expansion of MS-CC


Software and Data Infrastructure investments through CSSI

National Discovery Cloud - Climate

NAIRR pilot

*****ACCESS

New Pathway for CI professionals

Awards for DeltaAl and Stampede 3

Advancing

Innovation

OAC investment areas

Advanced Computing

Production and operational level advanced computing and data capabilities and services

Networking & Cybersecurity

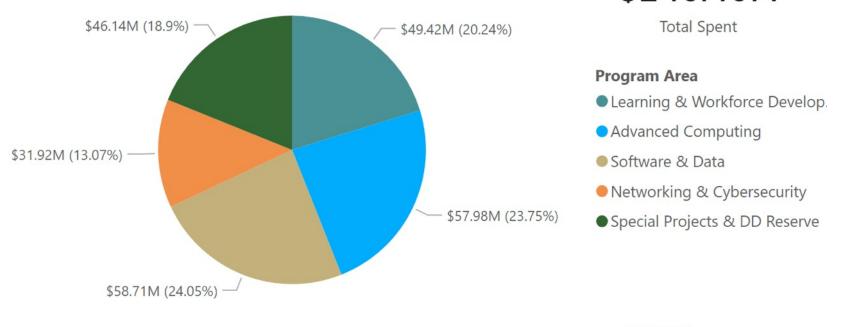
Advanced networking capabilities that preserve security and privacy

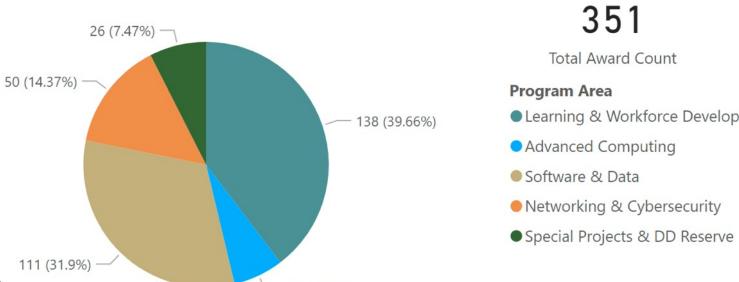
Learning & Workforce Development

Foster a national research workforce for creating, utilizing, and supporting advanced CI

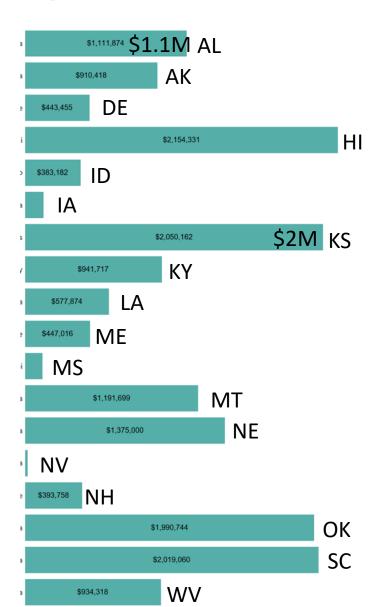
Software & Data Cl

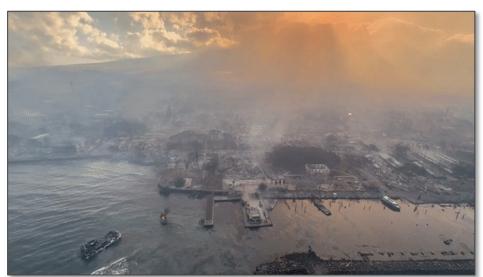
Develop a cohesive, federated, national-scale approach to research data infrastructure


Strategic Investments


Special opportunities, cross-cutting and national initiatives, CI for open science and public access

OAC FY23 by the numbers


\$246.46M


23 (6.61%)

OAC managed \$17M funding in EPSCOR states with significant matches from other directorates

RAPID – an Evaluation of an Artificial Intelligence-enhanced Edge Sensor System for Multi-Hazard Monitoring and Detection (Award #2346568)

- Estimated recovery will cost \$5.5B and years
- RAPID builds on 3 OAC activities Hawai'i Mesonet, Sage, and SAGE3
- Data gathering to aid recovery efforts, serve as proof-of-concept for future hazard monitoring scenarios

OAC investments in OK in past 5 years

Award ID	Award Title		Institution	Start date	Award Amount
1925744	CC* Regional: Extended Vital Education Reach Multiple Organization I OneOklahoma Friction Free Network (EVER-MORe-OFFN)	Regional	Oral Roberts	07/15/2019	\$500,000.00
<u>2018453</u>	CC* Regional: Small Institution Multiple Organization Regional OneOk Network (SI-MORe-OFFN)	lahoma Friction Free	Osrhe	08/01/2020	\$232,275.00
<u>2118193</u>	CyberTraining: Pilot: A Professional Development and Certification Pr Cyberinfrastructure Facilitators	ogram for	U Of Oklahoma	09/01/2021	\$299,993.00
<u>2126285</u>	CC* Regional: Extended Small Institution - Multiple Organization Regi Friction Free Network (ESI MORe OFFN)	onal - OneOklahoma	Osrhe	09/15/2021	\$414,595.00
<u>2118180</u>	Collaborative Research: CyberTraining: Implementation: Medium: Est Ecosystem for Computational Molecular Science Training and Education		Oklahoma State	10/01/2021	\$104,997.00
<u>2201435</u>	CC* Compute: GPU HPC Cluster Partition for Research, Education, an	d Student Success	Oral Roberts	05/15/2022	\$431,382.00
<u>2201479</u>	CC* Compute: Collaboration in Computing Infrastructure for Research InResE)	n and Education (CO-	Langston	05/15/2022	\$399,262.00
<u>2201561</u>	CC* Compute: OneOklahoma Cyberinfrastructure Initiative Research A Machine Learning (OneOCII-RAML)	Accelerator for	U Of Oklahoma	06/01/2022	\$400,000.00
<u>2201442</u>	CC* Regional: Campus Research & Education Multiple Organization ReFriction Free Network (CaRE-MORe-OFFN)	egional OneOklahoma	Osrhe	07/01/2022	\$942,263.00
<u>2216084</u>	MRI: Acquisition of a High-Performance Computational System for OA Computing and Data Driven Discovery	K Region to Enable	Oklahoma State	08/15/2022	\$4,000,000.00
<u>2311442</u>	Elements: An Integrated Software Platform for Simulating Polariton Photophysical Processes	Photochemical and	U Of Oklahoma	7/1/23	\$599,597
<u>2319895</u>	Collaborative Research: CyberTraining: Pilot: PowerCyber: Computation Power Engineering Researchers	ional Training for	Oklahoma State	1/1/24	\$180,000
<u>2321401</u>	CC* Regional Networking: Setting Up Research Foundations for a Mult Regional and OneOklahoma Friction Free Network	ciple Organization	Osrhe	9/1/23	\$1,179,147

NSF-supported Advanced Cyberinfrastructure Resources

Innovative Production Systems

- Anvil
- Bridges 2
- Delta
- Delta Al

- Expanse
- Jetstream 2
- Stampede 2
- Stampede 3

Innovative Prototypes/Testbeds

- Neocortex
- NRP

Voyager

ACES

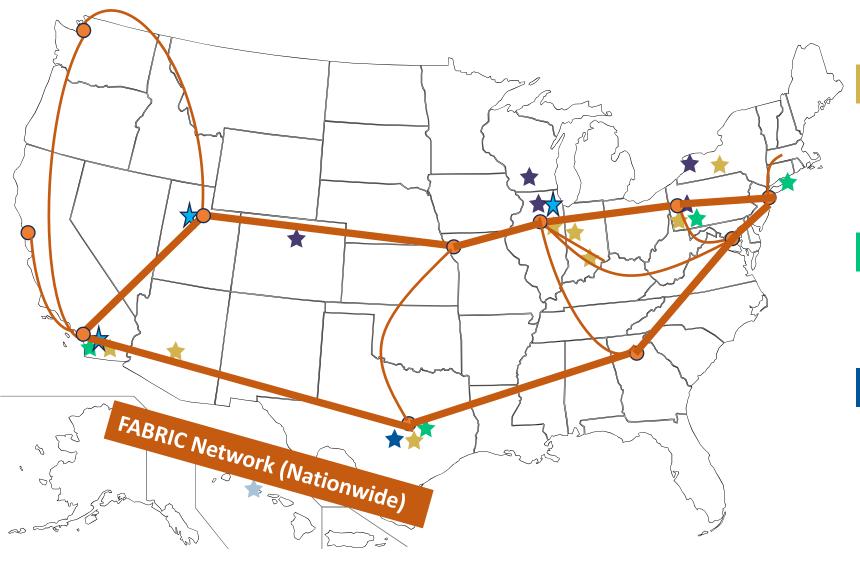
Ookami

Leadership-class

Frontera

Distributed Services

- PATh / Open Science Grid
- ACCESS


Cloud Technologies/Access

- Cloudbank
- Chameleon Lab

Cloudlab

9

NSF-supported Advanced Cyberinfrastructure Resources

Innovative Production Systems

- Anvil
- Bridges 2
- Delta
- Delta Al

- Expanse
- Jetstream 2
- Stampede 2
- Stampede 3

Innovative Prototypes/Testbeds

- Neocortex
- NRP
- Voyager

ACES

Ookami

Leadership-class

Frontera

Distributed Services

- PATh / Open Science Grid
- ACCESS

Cloud Technologies/Access

- Cloudbank
- Chameleon Lab

Cloudlab

10

NSF-supported Advanced Cyberinfrastructure Resources

Innovative Production Systems

- Anvil
- Bridges 2
- Delta
- Delta Al

- Expanse
- Jetstream 2
- Stampede 2
- Stampede 3

Innovative Prototypes/Testbeds

- Neocortex
- NRP

Voyager

ACES

Ookami

Leadership-class

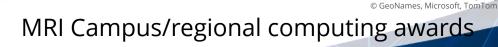
Frontera

Distributed Services

- PATh / Open Science Grid
- ACCESS


Cloud Technologies/Access

- Cloudbank
- Chameleon Lab


Cloudlab

11

Campus and region infrastructure supported by CC*, EPSCOR and NSF's Major Research Instrumentation (MRI) awards

CC* compute/storage sites in Open Science Grid's general science pool

Awards

Leadership-Class Computing Facility (LCCF)

- Total Project Cost \$520M (FY24 NSF budget request)
- Completed Final Design Review Early 2023
- Currently undergoing internal NSF review target to begin construction in FY24.

The LCCF led by the Texas Advanced Computing Center (TACC)

- **5** Distributed Sites
- **27** academic partners, including **10** MSI partners:
 - **5** HBCUs
 - 4 HSIs
 - 1 AANAPISI

Broadening Participation partners:

Distributed Science Centers:

Campus Cyberinfrastructure (CC*)

Must be SCIENCE DRIVEN

Must have a campus CI plan (except planning grants)
Seek to create partnerships – researchers, educators, IT organization

Network

- **1. Campus** up to \$650K
- **2. Regional** up to \$1.2M
- **3. Innovation** up to \$1M

Technical solution; network management plan and diagram

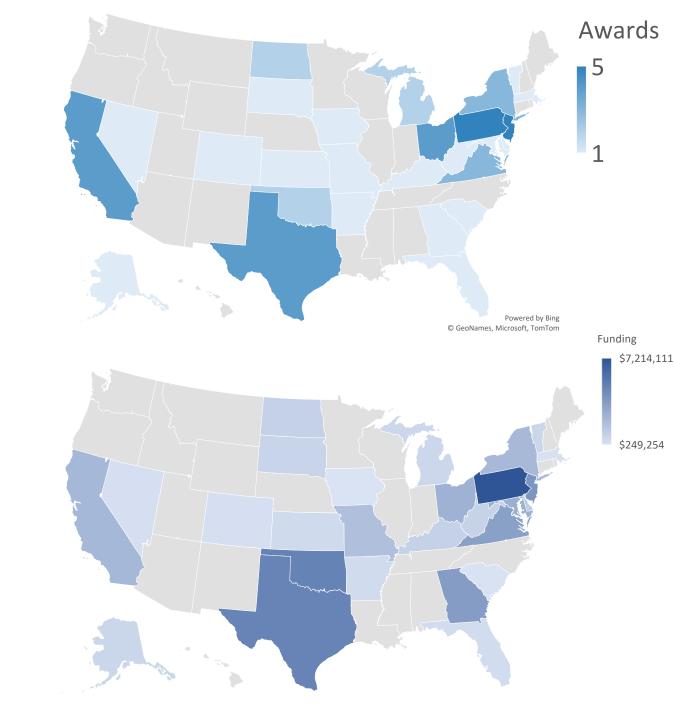
Compute

- **4. Campus** up to \$500K
- **5. Regional** up to \$1M

Summary table of science drivers and needs; architecture; how 20% is shared

Storage

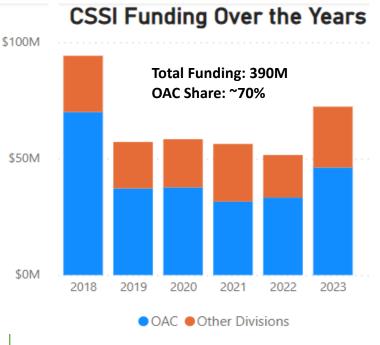
6. Awards up to \$500K


Resource for multiple science projects; table of science drivers and needs; architecture; how 20% is shared extramurally

NSF solicitation 23-526

OAC MRI Portfolio FY2018 – FY2023

- 51 awards over last 5 years
- Over \$52M in awarded funds
- Most awards support multi-user high-performance computing instruments
- \$14.1M (27%) of funds to EPSCoR states
- Larger proposals have 'regional impacts' beyond host institution/state



Cyberinfrastructure for Sustained Scientific Innovation

https://www.nsf.gov/pubs/2022/nsf22632/nsf22632.htm

- Supports the <u>development and deployment</u> of robust, reliable and sustainable <u>data and software cyberinfrastructure</u>
- Brings <u>innovative</u> capabilities towards sustained scientific innovation and discovery
- Provides a <u>cross-directorate</u> opportunity to advance common approaches to sustain and innovate research cyberinfrastructures

Project Class	Description
Elements	Small groups that will create and deploy robust capabilities (Awards <= \$600K, up to 3 years)
Framework Implementations	Larger, interdisciplinary teams developing common infrastructure aimed at solving common research resulting in a sustainable community framework. (Awards between \$600K - \$5 Million, between 3-5 years)
Transition to Sustainability	Groups executing a well-defined sustainability with demonstrated impact with focus on enabling new avenues of support for the long-term sustained impact. (Awards <= \$1 Million, up to 2 years)

Upcoming Dates					
Sept 26 – 27, 2023	PI Meeting, Houston TX				
Dec 01, 2023	Program Deadline for FY24				
Dec 02, 2024	Program Deadline for FY25				

Learning and Workforce Development

```
[Award Count, ~Impact Count]
     (Workforce Pipeline)
 CI Researchers [73, 100s] CORE+^ DESC^, MSI^C
                        CAREER*
                     CRII<sup>^</sup> [44, 100s
                CyberTraining+,SCIPE+
               ACCESS+[135, 10,000s]
         GRFP*, CSGrad4US^ [~,1,0005] & CSGrad4US^
        LWD+, CS4ALL*, REU* [38, 1,000s]
  Figure Legend: *NSF-Lead; ^CISE-Lead; +OAC-Lead.
```


Cybersecurity Innovation for Cyberinfrastructure (CICI)

Support applied research to secure science data, workflows, and infrastructure that benefit the broader scientific community. Operationalize emerging cybersecurity techniques and develop new cybersecurity approaches specific to science CI domains

Usable and Collaborative Security for Science (UCSS)

> Collaboration, workflows, resource sharing

Reference Scientific Security Datasets (RSSD)

Canonical science workflow datasets

Transition to Cyberinfrastructure Resilience (TCR)

Improve the robustness, resilience of scientific CI

NSF solicitation 23-517

A look forward

Changing user, technology, vendor and national landscape requires us to think deeply about our collective strategy for the future

New user communities requiring computing and data infrastructure

New technologies, hardware specialization, slowing of Moore's law, IAAS and SAAS

Rise of massive data and Al

New business models and entrants into the ecosystem

New and pending legislation and initiatives

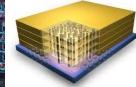


PHOTO CREDITS: KIYOSHI TAKAHASE SEGUNDO/ALAMY STOCK PHOTO, SHUTTERSTOCK, AMD GI

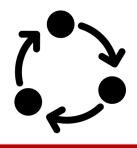
Transform science and engineering research through an integrated cyberinfrastructure ecosystem

Defining, advancing and interconnecting broad CI ecosystem

Infrastructure for Al

Growing and developing human infrastructure - expertise

Investing in and transitioning to new technologies



Enabling discovery through data & software infrastructure

Developing partnerships for long-term US leadership in research CI

Transform science and engineering research through an integrated cyberinfrastructure ecosystem

Defining, advancing and interconnecting broad CI ecosystem

Growing and developing human infrastructure - expertise

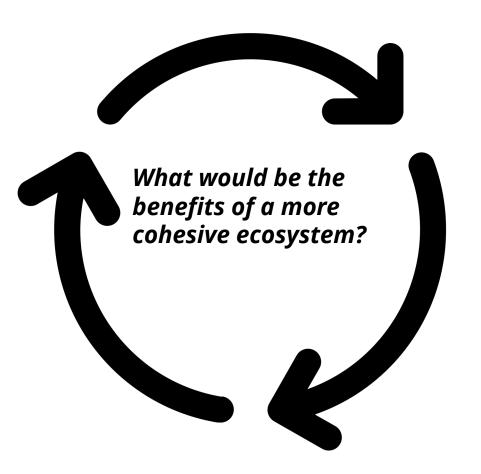
Enabling discovery through data & software infrastructure

Infrastructure for Al

Investing in and transitioning to new technologies

Developing partnerships for long-term US leadership in research CI

Defining, advancing, and interconnecting the broad CI ecosystem


OAC supports highly innovative, distributed systems, services and expertise

Challenges

- OAC portfolio of systems and services are hard for non-insider to understand
- While ACCESS has focused coordination of many resources, others are not included
- Difficult for OAC leadership to understand portfolio in aggregate, capabilities, users and workload that could inform future directions

OAC Retreat last week addressed this topic

Potential Benefits

- Easier on-ramp for new communities to understand and access the portfolio of systems, services and capabilities
- Clear pathways for communities to transition from local and regional systems to national, cloud or other agency resources based on science need
- A single currency that can be exchanged for multiple types of resources
- Deeper understanding of the portfolio of OAC investments and workload

Some key data challenges

- Democratizing access to datasets, decoupling data access from compute access
- Enabling AI ready community datasets
- Creating data pipeline tools and expertise
- Securing end-to-end complex workflows
- Enabling new modes of interacting with data and managing the data lifecycle

National Discovery Cloud for Climate (NDC-C)

In FY 2023, CISE will invest. . .in the development of a National Discovery Cloud (NDC) for Climate. This resource will federate advanced compute, data, software and networking resources, democratizing access to a cyberinfrastructure ecosystem that is increasingly necessary to further climate-related S&E. The NDC for Climate will serve as a pilot for future efforts to enable equitable access to an NDC across all fields of S&E. -- NSF FY 2023 Budget Request

Components of an NDC-C

Advanced Compute

Open Platforms

Data Resources

Broad Engagement

New Climate Cl

Sustainable Climate Cl

Security/Resiliency

Cloud Resources

NDC-C Prototype Investments

Advanced Compute

- DeltaAl
- Stampede3
- ACCESS/RAMPS

Cloud Resources

- CloudBank
- CloudLab
- Chameleon

Security/Resiliency

 Securing Hazard Workflows

Open Platforms

- Pelican/OSDF
- National Data Platform Pilot
- Edge Computing Sage

Data Resources

- NCAR/OSDF
- QGreenland-Net
- NOAA Sonar Data
- Campus Storage (EnviStor)

Broad Engagement

- MS-CC
- AIHEC

Sustainable Climate CI

- Atmospheric physics modeling
- Marine data access

New Climate Cl

- Glaciology, Ice Sheet Modeling
- Oceanographic Modeling
- Forest Ecosystems
- Permafrost Geomorphology

National AI Research Resource: a shared research infrastructure facilitating access to compute, software, datasets, models, training and user support for researchers and students

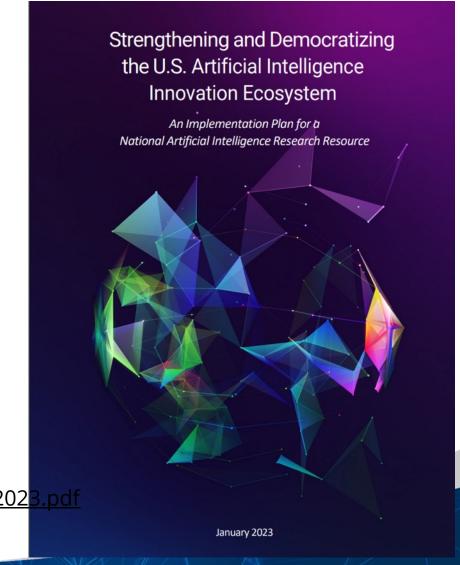
Objective: To strengthen and democratize the U.S. Al Innovation ecosystem in a way that protects privacy, civil rights, and civil liberties

Goals:

Spur **innovation**

Increase the **diversity** of talent in Al

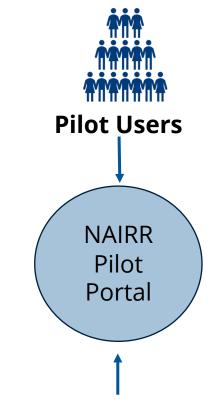
Improve U.S. capacity for AI R&D


Advance trustworthy AI

National Al Research Resource (NAIRR) Background

- The National Al Initiative Act of 2020 mandated the creation of the NAIRR Task Force
- NAIRR Task Force launched in June 2021 to investigate feasibility of a NAIRR.
- Final report submitted in January 2023 provided roadmap for NAIRR implementation including an optional pilot.
- **Now:** An interagency working group is working together to plan and launch a pilot.

https://www.ai.gov/wp-content/uploads/2023/01/NAIRR-TF-Final-Report-2023.pdf https://www.ai.gov/nairrtf/


Initial NAIRR Pilot Components

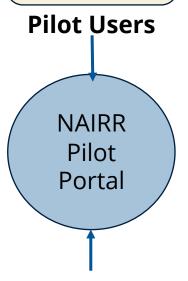
Pilot Governance

Pilot goals:

- build momentum for full NAIRR
- demonstrate capabilities
- reach broad communities
- expose technical issues early
- test drive governance structure

Resources, User Support, Training

Community Design Process


The pilot will demonstrate or investigate every major element envisioned in the NAIRR through:

Users identified by agencies

New researchers Educators and students

Pilot Governance

- Steering Committee
- Pilot Project Management Office
- Technical Committee
- Advisory committees

Community Design Process

- Workshops
- Feedback from early users
- Outreach to new and underserved communities

Resources, User Support, Training

Compute and Storage (agency and cloud)

Advanced Testbeds

Datasets and Models

NAIRR Secure Software, tools, services

Classroom Education User Support

Initial Allocations Model

- Similar, agile approach as the COVID-19 HPC Consortium
 - Bringing together government, industry, and academic resource providers
 - Industry contributors will have the option to provide input on allocations or to delegate that authority to the consortium
 - Single web portal through which users will submit requests for resources
- Over time evolve to:
 - Agency-driven track
 - Open Peer-review track with start-up and research categories

Growing the pilot users in every state and territory over time

- Targeted users supported by agencies that have an identified need for AI research resources
- Open call to research community
 - Focus areas:
 - Al researchers
 - Domain/applied researchers
- 'start-up' allocations to reach diverse communities across nation, smaller colleges and institutions and small businesses with federal grants
- Classroom educators/students from every state/territory

Lessons learned from early users will help guide the buildout, scaling and configuration of future resources and services

Enhanced Al capabilities for 50-100 research projects (~250-800 users)

Access and training for hundreds of new researchers

Classroom materials and hands-on access to Al resources for thousands of students

Outreach and Community Design Process

- We are beginning the community outreach and design process this fall. We are planning:
 - A convening for potential resource providers
 - A meeting with community leaders on ethical and trustworthy Al
 - A call for user interest
 - Community workshops
 - Al software stack
 - Science/user workshop

Initial NAIRR Pilot Timeline

- Expand pilot early users
- Integration of additional resources and capabilities
- Evolving towards tighter governance
- Continued community engagement

Timeline could change or be accelerated based congressional actions

Fall 2023 Spring 2024 Fall 2024 Spring 2025 Fall 2025

- Initiate industry partner outreach and agency early resource commitments
- Convening/Community workshops
- Call for user interest
- Consortium launch

- More formal allocations process in place
- Continued evolution of capabilities and expansion of user base

In closing and wrap-up

- There are many ways you can get involved in the community
- We have 2 new major initiatives, NDC-C and NAIRR that are launching this year
- I look forward to working with the community in the coming months and years

