
Debugging,
Profiling and Tuning

Prasad Maddumage
Sr. Research Scientist, HPC Consulting

Corning Inc.

2023 Virtual Residency, June 28

 I am NOT an expert, just someone who volunteered to
talk about this topic!

 This is NOT a lecture!
 Please interrupt me during the session when you have

questions / comments
 I assume you are somewhat familiar with programming

under Linux
− Parallel programming experience preferred

WARNING!

Overview
 Debugging

− Debugging using Compiler Flags
− Debugger Basics
− gdb
− Serial Debugging with gdb
− Parallel (MPI) Debugging

 Parallel Debugging with gdb
 Interactive Parallel Debugging with gdb
 Non-interactive Parallel Debugging with gdb
 Totalview and DDT

− CUDA Debugging with gdb
− Intel Inspector
− Language Specific Debuggers

 Profiling and Tuning
− Profiling

 GNU Profiler - gprof
 TAU
 Intel Tools
 Profiling Python and R

− Tuning Applications
 Use Compiler Flags
 MAQAO
 Try Different Compilers
 Use Performance Optimized Libraries

Debugging
 Detecting and removing of existing and potential errors (‘bugs’) in a

software that can cause it to behave unexpectedly or crash. To
prevent incorrect operation of a software
− Syntax errors, segmentation faults (invalid memory access), I/O errors, ...

 Debugger : A tool that helps you debug (it doesn’t debug for you)
− CLI (Command Line Interface) based

 write/printf, gdb, valgrind (memory issues), …
 Effectively pinpoint problems, works with serial/parallel codes
 Need to remember commands, not user friendly

− GUI (Graphical User Interface) debuggers
 TotalView, DDT, Intel Inspector, ...
 Powerful and user friendly

− ChatGPT

Design
20%

Coding
30%

Testing
35%

 Debugging
− Debugging using Compiler Flags
− Debugger Basics
− gdb
− Serial Debugging with gdb
− Parallel (MPI) Debugging

 Parallel Debugging with gdb
 Interactive Parallel Debugging with gdb
 Non-interactive Parallel Debugging with gdb
 Totalview and DDT

− CUDA Debugging with gdb
− Intel Inspector
− Language Specific Debuggers

 Profiling and Tuning
 Profiling

 GNU Profiler - gprof
 TAU
 Intel Tools
 Profiling Python and R

 Tuning Applications
 Use Compiler Flags
 MAQAO
 Try Different Compilers
 Use Performance Optimized Libraries

Using Compiler Flags
 Compilers can help debugging without a debugger
 Almost all debuggers require the code to be compiled with -g flag
 There are other compiler flags that can identify potential issues

− During compile time
− During runtime

 May not be as reliable as using a debugger
− Vendor dependent
− Version dependent

Using Compiler Flags – Compile time
 -Wall : (gnu, Intel - C/C++), -warn all (Intel - Fortran)

− Detect uninitialized variables
− Find unused parameters (variables, functions, labels, ...)
− Implicit function declaration in C /C++ (declare before use a function)

 -Wextra : (gnu) enables extra warning flags in addition to -Wall
− -Wall -Wextra : detects unused but set variables

 -Werror : (gnu) compilation stops at warnings
− Treat warnings as errors

 -Wuninitialized : (gnu) Warn at compiling time if a variable is used
without first being initialized
− -check-uninit , -check unint (Intel) Runtime checking of undefined variables

Using Compiler Flags – Runtime
 -g : embed debug information to the binary (parts of the source itself)
 -fcheck=bounds : (gfortran) check array indices are within the declared

range
− -check bounds / -CB (Intel)

 -fcheck=all : (gfortran) checks for invalid modification of loop iteration
variables, memory allocation, bounds, etc

 -ftrapv : (gnu C/C++)detects integer overflow and abort the program

 -ffpe-trap=invalid,zero,... : (gfortran, gcc by default) detects and aborts
the program
− invalid: invalid floating point operation √-1
− zero: division by zero
− overflow: overflow in a floating point operation
− underflow: underflow in a floating point operation etc

Using Compiler Flags – Runtime

Odometer analogy

Using Compiler Flags

$ gfortran -ffpe-trap=overflow -o oflow oflow.f90
$./oflow

Program received signal SIGABRT: Process abort signal.
...
Aborted (core dumped)

$ gcc -ftrapv -o oflow_c oflow.c
$./oflow_c
Aborted (core dumped)

$ gfortran -o oflow oflow.f90
$./oflow

2147483647 1.7976931348623157E+308 -2147483648 Infinity

$ gcc -o oflow_c oflow.c
$./oflow_c
-2147483648

Debug support from MPI Compilers
 Setting certain environment variables enable MPI to output

information helpful for debugging applications during runtime
 Open MPI

− mpi_param_check : If true, checks MPI function values for illegal values such as
NULL

− mpi_abort_delay : If nonzero, prints hostname and process ID of the process
invoked MPI_ABORT

 MVAPICH2
− MV2_DEBUG_SHOW_BACKTRACE : Show backtrace when a process fails on errors

like Segmentation fault, Bus error, Illegal Instruction, Abort etc
 -g flag is not needed for these to work

 Debugging
− Debugging using Compiler Flags
− Debugger Basics
− gdb
− Serial Debugging with gdb
− Parallel (MPI) Debugging

 Parallel Debugging with gdb
 Interactive Parallel Debugging with gdb
 Non-interactive Parallel Debugging with gdb
 Totalview and DDT

− CUDA Debugging with gdb
− Intel Inspector
− Language Specific Debuggers

 Profiling and Tuning
 Profiling

 GNU Profiler - gprof
 TAU
 Intel Tools
 Profiling Python and R

 Tuning Applications
 Use Compiler Flags
 MAQAO
 Try Different Compilers
 Use Performance Optimized Libraries

Debugger Basics
 Debugger: Program that helps you run a software in a controlled way

to help you find and fix bugs
 Breakpoint: Pauses execution of processes

− Unconditional: always pause
− Conditional: pauses only if a condition is satisfied
− Evaluation: pause and execute a code fragment when reached

 Watchpoint: monitors a variable and pauses execution when its value
changes

 Backtrace: List of function calls currently active in a process
 Frame: (stack frame) Contains arguments given to a function, its local

variables, and the address at which the function is executing
− There is always one or more frame(s) associated with a running

program

 Debugging
− Debugging using Compiler Flags
− Debugger Basics
− gdb
− Serial Debugging with gdb
− Parallel (MPI) Debugging

 Parallel Debugging with gdb
 Interactive Parallel Debugging with gdb
 Non-interactive Parallel Debugging with gdb
 Totalview and DDT

− CUDA Debugging with gdb
− Intel Inspector
− Language Specific Debuggers

 Profiling and Tuning
 Profiling

 GNU Profiler - gprof
 TAU
 Intel Tools
 Profiling Python and R

 Tuning Applications
 Use Compiler Flags
 MAQAO
 Try Different Compilers
 Use Performance Optimized Libraries

gdb
 gdb is the GNU project debugger
 Supports C, C++, Fortran, Assembly, Go, OpenCL, etc
 Capabilities

− Start a program
− Make a program stop on specified conditions
− Examine the program once its stopped
− Change variable values of a program while its running to examine the effect (on bugs)

 Terminal based (text only) debugger
− The GUI front end of gdb is DDD (Data Display Debugger)
− Latest version of DDD was released on 05/10/2023.

However, the previous release was in 2009!
 Not worked as intended in most new systems until last month

Serial debugging with gdb
$ gfortran trap.f90 -g -o trap
$ gdb trap

(gdb) break 13
Breakpoint 1 at 0x11de: file trap.f90, line 13.
(gdb) break 15
Breakpoint 2 at 0x1234: file trap.f90, line 15.
(gdb) run
13 area = 0.5 * (sin(a) + sin(b))
(gdb) print a
$1 = 0
(gdb) p area
$2 = -209808
(gdb) next
14 DO i = 1, n-1
(gdb) p area
$3 = -4.37113883e-08
(gdb) continue
Continuing.

Breakpoint 2, trapz () at trap.f90:15
15 area = area + sin(a + i*h)
(gdb) p area
$4 = -4.37113883e-08
(gdb) continue
Continuing.

Breakpoint 2, trapz () at trap.f90:15
15 area = area + sin(a + i*h)
(gdb) p area
$5 = 0.0314107165
(gdb) clear
Deleted breakpoint 2
(gdb) c
Continuing.
Area = 1.99983561
[Inferior 1 (process 13270) exited normally]
(gdb) q

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Serial debugging with gdb

(gdb) run
Starting program:

Program received signal SIGSEGV, Segmentation fault.
0x00005555555552bc in test () at test.f90:10
10 x(i) = i
(gdb) backtrace
#0 0x00005555555552bc in test () at test.f90:10
(gdb) frame 0
#0 0x00005555555552bc in test () at test.f90:10
10 x(i) = i
(gdb) print i
$1 = 30141
(gdb) print x
$2 = (1, 2, 3, 4, 5)

Useful gdb Commands
 break location / thread thread# / if condition
 clear function/breakpoint … : Remove all or selected breakpoints
 step count : Pause the program after executing a count number of

source line(s). Stops at each line of any functions called within a
line

 next count : Same as step but does not stop when inside a
function

 skip function / file : Prevent gdb from running a function or source
file

Useful gdb Commands
 reverse-step : Run the program backward until it reaches the start of

a different source line
 list : Print lines (at line #, function, before/after last line, …)
 set var variable=value : Change a variable value during the

debugging session
 info locals : Display the local variable values in the current frame

 A core dump is a file containing part of the application’s memory
when the process terminates unexpectedly
− Core dumps may be produced on-demand (eg: by a debugger) or automatically

upon termination (crash)
 A core file can be opened and examined using gdb

− OR

− Use bt / frame / list / info locals / print etc to pin point the cause
 gcore can create a manual core dump of any process

Core Dump Analysis

$ gdb -e program_name -c core_dump_name
$ gdb program_name
(gdb) core core_dump_name

$ gcore -o core_file_name process_id

$ gdb oflow /var/lib/apport/coredump/core._oflow.1000.b92dc8f9-2041-46b6-a112-455c25153497.53671.5260506
GNU gdb (Ubuntu 13.1-2ubuntu2) 13.1
...
Enable debuginfod for this session? (y or [n]) n
Debuginfod has been disabled.
...
Core was generated by `./oflow'.
Program terminated with signal SIGABRT, Aborted.
#0 __pthread_kill_implementation (no_tid=0, signo=6, threadid=<optimized out>) at ./nptl/pthread_kill.c:44
…
(gdb) bt
#0 __pthread_kill_implementation (no_tid=0, signo=6, threadid=<optimized out>) at ./nptl/pthread_kill.c:44
#1 __pthread_kill_internal (signo=6, threadid=<optimized out>) at ./nptl/pthread_kill.c:78
...
#5 0x000055b66343c1e1 in __addvsi3 ()
#6 0x000055b66343c189 in main () at oflow.c:5
(gdb) frame 6
#6 0x000055b66343c189 in main () at oflow.c:5
5 return printf("%d\n",i + 1);
(gdb) q

 Debugging
− Debugging using Compiler Flags
− Debugger Basics
− gdb
− Serial Debugging with gdb
− Parallel (MPI) Debugging

 Parallel Debugging with gdb
 Interactive Parallel Debugging with gdb
 Non-interactive Parallel Debugging with gdb
 Totalview and DDT

− CUDA Debugging with gdb
− Intel Inspector
− Language Specific Debuggers

 Profiling and Tuning
 Profiling

 GNU Profiler - gprof
 TAU
 Intel Tools
 Profiling Python and R

 Tuning Applications
 Use Compiler Flags
 MAQAO
 Try Different Compilers
 Use Performance Optimized Libraries

Parallel (MPI) Debugging
 High Performance Computing (HPC) involves using more than a single

node to solve a problem
− A common way to do this is using MPI (Message Passing Interface)
− MPI programs often need to be debugged in a cluster environment

 Using gdb
− Attach gdb to each process of an already running job
− Interactive job with all or some ranks run under gdb (interactive debugging)
− Submit a batch job so that all or some ranks run under gdb (non-interactive)

 TotalView and DDT
− GUI debuggers are user friendly and offer convenience
− Expensive!

Parallel Debugging with gdb
 Attach to already running job

− OR

− Need to login (ssh) to the compute node and find the process id first
 Use top (-u to display processes for a given user)

− After attaching, any gdb command can be used
− Interactive debugging
− Can only debug one (misbehaving) process at a time

 gdbserver is used to remotely debug applications
− Command line interface (CLI) only, no GUI
− This is left as an advanced topic

$ gdb program_name

$ gdb> attach process_id
$ gdb program_name process_id

Interactive Parallel Debugging with gdb
 Requires X11 forwarding support from scheduler

− If set up, use --x11 flag with SLURM or -X with PBS when making a reservation
$ salloc -n 2 --x11
$ export MPIGDB="xterm -e gdb –args"
$ mpirun $MPIGDB mpi_trap

(on node076) (on node074)

Interactive parallel debugging with gdb

(on node074)(on node076)

Interactive parallel debugging with gdb

(on node074)(on node076)

Interactive parallel debugging with gdb

(on node074)(on node076)

Interactive parallel debugging with gdb

(on node074)(on node076)

Interactive parallel debugging with gdb

(on node074)(on node076)

 Debugging
− Debugging using Compiler Flags
− Debugger Basics
− gdb
− Serial Debugging with gdb
− Parallel (MPI) Debugging

 Parallel Debugging with gdb
 Interactive Parallel Debugging with gdb
 Non-interactive Parallel Debugging with gdb
 Totalview and DDT

− CUDA Debugging with gdb
− Intel Inspector
− Language Specific Debuggers

 Profiling and Tuning
 Profiling

 GNU Profiler - gprof
 TAU
 Intel Tools
 Profiling Python and R

 Tuning Applications
 Use Compiler Flags
 MAQAO
 Try Different Compilers
 Use Performance Optimized Libraries

Non-interactive Parallel Debugging with gdb
 No special scheduler setup is necessary
 Need to wait until end of the run to find results

mpirun -np 4 gdb --batch -q -x commands.txt mpi_trap

break Trap
run
print my_rank
info locals
continue

Non-interactive Parallel Debugging with gdb

Breakpoint 1 at 0x40116b: file mpi_trap.c, line 111.
Breakpoint 1 at 0x40116b: file mpi_trap.c, line 111.
Breakpoint 1 at 0x40116b: file mpi_trap.c, line 111.
Breakpoint 1 at 0x40116b: file mpi_trap.c, line 111.
…
Thread 1 "mpi_trap" hit Breakpoint 1, Trap (left_endpt=0.74999999999999989, right_endpt=1.4999999999999998, trap_count=25000000, base_len=2.9999999999999997e-08) at
mpi_trap.c:111
Thread 1 "mpi_trap" hit Breakpoint 1, Trap (left_endpt=2.25, right_endpt=3, trap_count=25000000, base_len=2.9999999999999997e-08) at mpi_trap.c:111
…
111 estimate = (f(left_endpt) + f(right_endpt))/2.0;
111 estimate = (f(left_endpt) + f(right_endpt))/2.0;
…
$1 = 2
estimate = 0
x = 2.0740954862918865e-317
i = 0
$1 = 3
estimate = 0
x = 2.0740954862918865e-317
i = 0
…

break Trap
run
print my_rank
info locals
continue

 Debugging
− Debugging using Compiler Flags
− Debugger Basics
− gdb
− Serial Debugging with gdb
− Parallel (MPI) Debugging

 Parallel Debugging with gdb
 Interactive Parallel Debugging with gdb
 Non-interactive Parallel Debugging with gdb
 Totalview and DDT

− CUDA Debugging with gdb
− Intel Inspector
− Language Specific Debuggers

 Profiling and Tuning
 Profiling

 GNU Profiler - gprof
 TAU
 Intel Tools
 Profiling Python and R

 Tuning Applications
 Use Compiler Flags
 MAQAO
 Try Different Compilers
 Use Performance Optimized Libraries

Totalview
 Debugging and analyzing serial and parallel programs
 Both a GUI and command line interface
 Memory debugging features
 Graphical visualization of array data
 Comprehensive built-in help system
 Recording and replaying running programs
 Sessions Manager for managing and loading debugging sessions

$ totalview -args mpirun -np number_of_processes program_name

TotalView
 Process barrier: point to

synchronize all processes or
threads

 Able to check variable values in
different ranks without logging in
to that rank

 Batch (non-interactive)
debugging using tvscript

 Debugging on a remote host
— Connect to TotalView server

running on a remote system
 CUDA debugger
 Reverse debugging

— ReplayEngine records all
program’s activities to be
reviewed later

Breakpoint

Stacktrace

TotalView

Visualize
multidimensional arrays

What’s happening
on each rank

DDT
 CLI and GUI support
 Interactive and batch

debugging
 Attach to an already running

program
 Open core dump files
 Memory debugging
 Remote debugging
 CUDA debugging
 Python debugging

 Debugging
− Debugging using Compiler Flags
− Debugger Basics
− gdb
− Serial Debugging with gdb
− Parallel (MPI) Debugging

 Parallel Debugging with gdb
 Interactive Parallel Debugging with gdb
 Non-interactive Parallel Debugging with gdb
 Totalview and DDT

− CUDA Debugging with gdb
− Intel Inspector
− Language Specific Debuggers

 Profiling and Tuning
 Profiling

 GNU Profiler - gprof
 TAU
 Intel Tools
 Profiling Python and R

 Tuning Applications
 Use Compiler Flags
 MAQAO
 Try Different Compilers
 Use Performance Optimized Libraries

CUDA Debugging with gdb
 CUDA-GDB

− NVIDIA tool for debugging CUDA applications on Linux

− Can debug both GPU and CPU code simultaneously
− CUDA commands in addition to gdb commands
− MPI is supported
− Breakpoints supported on GPU and both breakpoints and watchpoints on CPU

 Breakpoints can be set by symbolically (function name), line number, memory
address, conditional, and kernel entry

− Can switch between threads and inspect program execution
− Stepping works by advancing all active threads in the warp of focus
− Remote debugging is possible
− GPU core dump is supported

$ nvcc -g -G foo.cu -o foo

$ pgfortran -g -Mcuda=nordc foo.cuf -o foo

Intel Inspector
 Detect memory leaks

− Locate memory problems
 Locate deadlocks and data

races
 GUI (inspxe-gui) and cli

(inspxe-cl) versions
 Works with serial and mpi

applications

 CLI version results can be
visualized with GUI later

 NOT a complete debugger
 Free!

srun -n8 inspxe-cl -collect mi3
-r my_results my_mpi_app

 Debugging
− Debugging using Compiler Flags
− Debugger Basics
− gdb
− Serial Debugging with gdb
− Parallel (MPI) Debugging

 Parallel Debugging with gdb
 Interactive Parallel Debugging with gdb
 Non-interactive Parallel Debugging with gdb
 Totalview and DDT

− CUDA Debugging with gdb
− Intel Inspector
− Language Specific Debuggers

 Profiling and Tuning
 Profiling

 GNU Profiler - gprof
 TAU
 Intel Tools
 Profiling Python and R

 Tuning Applications
 Use Compiler Flags
 MAQAO
 Try Different Compilers
 Use Performance Optimized Libraries

Language Specific Debuggers
 Python: pdb

− Interactive debugging: use python -m pdb source.py
− Batch/ interactive debugging: use breakpoint() or pdb.set_trace()in source code or

python prompt
 Need to import pdb for pdb.set_trace()

− Interactive source debugger
− Supports breakpoints and single stepping at the source line level
− Inspection of stack frames, source code listing

 R
− In RStudio

 Set breakpoints in RStudio or put browser() at the line you want to break
 This causes R to enter the debug mode

− Can check current variable stack, traceback the execution, and more

$ python3 -m pdb convert.py
> /home/prasad/Downloads/convert.py(1)<module>()
-> temp = input("Temperature : (e.g., 45F): ")
(Pdb) n
Temperature : (e.g., 45F): 75F
> /home/prasad/Downloads/convert.py(2)<module>()
-> degree = int(temp[:-1])
(Pdb) p degree
*** NameError: name 'degree' is not defined
(Pdb) n
> /home/prasad/Downloads/convert.py(3)<module>()
-> i_convention = temp[-1]
(Pdb) p degree
75
(Pdb) b 10
Breakpoint 1 at /home/prasad/Downloads/convert.py:10
(Pdb) l

3 i_convention = temp[-1]
4
5 if i_convention.upper() == "C":
6 result = int(round((9 * degree) / 5 + 32))
7 o_convention = "Fahrenheit"
8 -> elif i_convention.upper() == "F":
9 result = int(round((degree - 32) * 5 / 9))

10 B o_convention = "Celsius"
11 else:
12 print("Input proper convention.")
13 quit()

Python Debugging
temp = input("Temperature : (e.g., 45F): "
degree = int(temp[:-1])
i_convention = temp[-1]

if i_convention.upper() == "C":
result = int(round((9 * degree) / 5 + 32))
o_convention = "Fahrenheit"

elif i_convention.upper() == "F":
result = int(round((degree - 32) * 5 / 9))
o_convention = "Celsius"

else:
print("Input proper convention.")
quit()

print("Temperature in ", o_convention, " is ", result)

r(eturn) Continue until current function return

c(ontinue) Continue until next breakpoint

j(ump) line_no Next line to be executed (useful for breaking out of loops)

w(here) Print the current position and stack trace

a(rgs) Print args of the current function

q(uit) Quit pdb

R debugging

g <- function(b) {
browser()
h(b)

}

breakpoint

g <- function(b) {
if (b < 0) {

browser()
}
h(b)

}
conditional
breakpoint

where Print stack trace of all active function calls

c(ont) Exit browser, execute the next statement

f Finish execution of current loop or function

n Evaluate next line, step over any function calls

s Evaluate next line, step into any function calls

Q Exit browser and current evaluation and return to the top-level prompt

RStudio breakpoint
Click left of line number
OR
Press Shift+F9 at the line

Variable values, stacktrace,
etc are accessible through
Rstudio once program
pauses

> rescale <-function(x) {
+ rng <- range(x)
+ browser()
+ (x - rng[1]) / (rng[2] - rng[1])
}
> rescale(c(0,5,10))
Called from: rescale(c(0, 5, 10))
Browse[1]> rng
[1] 0 10
Browse[1]> x
[1] 0 5 10
Browse[1]> s
debug at #4: (x - rng[1])/(rng[2] - rng[1])
Browse[2]> c
[1] 0.0 0.5 1.0

 Debugging
− Debugging using Compiler Flags
− Debugger Basics
− gdb
− Serial Debugging with gdb
− Parallel (MPI) Debugging

 Parallel Debugging with gdb
 Interactive Parallel Debugging with gdb
 Non-interactive Parallel Debugging with gdb
 Totalview and DDT

− CUDA Debugging with gdb
− Intel Inspector
− Language Specific Debuggers

 Profiling and Tuning
 Profiling

 GNU Profiler - gprof
 TAU
 Intel Tools
 Profiling Python and R

 Tuning Applications
 Use Compiler Flags
 MAQAO
 Try Different Compilers
 Use Performance Optimized Libraries

Profiling and Tuning
 HPC emphasizes on performance of software

− Being bug-free is not enough
− Should be able to get maximum performance from the hardware

 Software can be tuned to increase efficiency
− Different compilers, compiler flags (-O2, -O3 etc)
− Better algorithms
− Using optimized libraries

 Profiling helps find which part(s) a program should be tuned
− Software profiling: Dynamic code analysis where a program's behavior is

investigated using the data collected during program execution
 CPU/memory utilization, frequency of function calls, I/O, MPI library usage, hardware

counters, etc.
− Identify bottlenecks

 Profilers
− gprof, TAU (Tuning and Analysis Utilities), Intel tools

 Debugging
− Debugging using Compiler Flags
− Debugger Basics
− gdb
− Serial Debugging with gdb
− Parallel (MPI) Debugging

 Parallel Debugging with gdb
 Interactive Parallel Debugging with gdb
 Non-interactive Parallel Debugging with gdb
 Totalview and DDT

− CUDA Debugging with gdb
− Intel Inspector
− Language Specific Debuggers

 Profiling and Tuning
 Profiling

 GNU Profiler - gprof
 TAU
 Intel Tools
 Profiling Python and R

 Tuning Applications
 Use Compiler Flags
 MAQAO
 Try Different Compilers
 Use Performance Optimized Libraries

GNU Profiler - gprof
 Terminal based profiler
 Already exist in most linux distributions
 Produces flat profile and a call graph

− Flat profile: A breakdown of time spent on each function call
− Call graph: In what order each subroutine / function was called

 Can profile serial as well as parallel applications

$ gfortran thermal.f -pg -o thermal
$./thermal
$ gprof thermal

Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls s/call s/call name
44.10 9.04 9.04 86150709 0.00 0.00 energy_
34.08 16.04 6.99 13893157 0.00 0.00 update_
19.75 20.09 4.05 771898 0.00 0.00 sumit_

Call graph (explanation follows)
granularity: each sample hit covers 4 byte(s) for 0.05% of 20.51 seconds

Index % time self children called name
0.03 20.45 1/1 main [2]

[1] 99.9 0.03 20.45 1 MAIN__ [1]
0.13 20.08 771780/771780 move_ [3]
0.16 0.00 771897/771897 locate_ [7]

$ export GMON_OUT_PREFIX='gmon.out-'
$ mpicc thermal_mpi.f -pg -o thermal_mpi
$ mpirun thermal_mpi
$ gprof -s thermal_mpi gmon.out-*

TAU (Tuning and Analysis Utilities)
 Integrated performance toolkit

− Instrumentation, measurement, analysis, visualization
− Performance data management and data mining
− 20+ year project actively developed by Univ. of Oregon, LANL, Julich

 Open source and FREE
 Works with or without recompiling code

− Dynamic instrumentation (without recompile) provides limited information
 Uses PAPI to measure hardware counters (cache, FLOPS, ...)
 Serial, parallel, GPU profiling capability
 Works with Fortran, C, C++, UPC, Java, Python
 Low performance overhead (can be compensated runtime)
 Complicated and steep learning curve

TAU
 Instrumentation

− Source code instrumentation using pre-processors and compiler scripts
 Instrumentation: Adding code to collect performance, behavior, and resource usage of

a program (manually or automatically)
− Wrapping external libraries (I/O, MPI, Memory, CUDA, OpenCL, pthread, ...)
− Rewriting the binary

 Measurement
− Direct: interval events, Indirect: collect samples to profile statement execution
− Per-process storage of performance data

 TAU creates one profile file per process in a single location
 Profile file names look like, profile.0.0.0, profile.1.0.0, ...

− Throttling and runtime control of low-level events
 Analysis

− 2D and 3D visualization of profile data using pprof and paraprof
− Trace conversion & display in external visualizers such as Jumpshot

TAU
 Profile: statistical summary of all

metrics measured
− Example: Show how much total

time & resources each call
utilized Source file name and

location of the function

 Trace: timeline of events took place
− Shows when each event happened

and where

TAU

Call graph

Communication matrix

Intel Advisor (FREE)
 Vectorization advisor and

Threading advisor
− Can time-consuming loops able

to benefit from vectorization or
already vectorized?

− Compile code with -g
− Collect data

− Visualize data

srun -n 1 -c 1 advixe-cl –-collect=survey
--project-dir=Directory_name --search-

dir=Directory_name
--trace-mpi program_name

advisor-gui Directory_name

Intel Advisor
 Roofline Analysis for

CPU/GPU
− What is the maximum

achievable performance with the
hardware used?

− Does application work optimally
on current hardware?

− If not, what are the best
candidates for optimization?

− Roofline plot shows theoretical
limits of computational
performance and
communication between
processors and memory

 Much higher overhead
compared to TAU

Different functions
of the code

Intel Vtune (FREE)
 Tune application

performance for CPU /
GPU

 Profile C, C++, C#,
Fortran, OpenCL, Python,
Google Go, Java, .NET,
Assembly

 Coarse-grained system
data for an extended
period

 Detailed results mapped
to source code

 Multi node (MPI) profiling

 MPI profiler
 Traces MPI code
 Identifies communication

inefficiencies
 To use with Intel MPI (only),

 traceanalyzer gui visualizes
generated results

Intel Trace Analyzer (FREE)

$ traceanalyzer wave_mpi.stf

$ mpirun -trace -np 4 ./wave_mpi

Profiling Python

python3 -m cProfile -s tottime numpy_io.py

3820056 function calls (3805275 primitive calls) in 8.231 seconds
Ordered by: internal time
ncalls tottime percall cumtime percall filename:lineno(function)

1 2.315 2.315 2.566 2.566 Gio.py:39(run)
1 0.588 0.588 0.643 0.643 Gtk.py:1(<module>)

32047 0.468 0.000 0.716 0.000 inspect.py:744(cleandoc)
5845 0.288 0.000 0.400 0.000 dates.py:305(_dt64_to_ordinalf)
30 0.214 0.007 0.219 0.007 {built-in method _imp.create_dynamic}

35070 0.155 0.000 0.242 0.000 _parser.py:83(get_token)
35146 0.137 0.000 0.137 0.000 {method 'astype' of 'numpy.ndarray' objects}

282 0.134 0.000 0.134 0.000 {method 'read' of '_io.BufferedReader' objects}
…

 Two built in profilers: cProfile and profile
− cProfile is recommended due to low overhead

 Whole program profiling

 Targeted profiling
− Only profile a selected parts (functions etc)

of a code

import cProfile
pr = cProfile.Profile()
pr.enable()
... your code/function to profile ...
pr.disable()
pr.print_stats()

Profiling Python
 Line profiling

− Only profile selected lines of a code
$ pip install line_profiler

$ kernprof -l -v prfact.py
Please Enter any Number: 2544
Wrote profile results to prfact.py.lprof
Timer unit: 1e-06 s

Total time: 0.00451784 s
File: prfact.py
Function: prfct at line 5

Line # Hits Time Per Hit % Time Line Contents
==

5 @profile
6 def prfct(n):
7 2543 2039.2 0.8 45.1 for i in range(2, n + 1):
8 2524 2350.7 0.9 52.0 if(n % i == 0):
9 19 15.5 0.8 0.3 isprime = 1
10 42 57.5 1.4 1.3 for j in range(2, (i //2 + 1)):
11 26 23.4 0.9 0.5 if(i % j == 0):
12 16 11.3 0.7 0.2 isprime = 0
13 16 20.2 1.3 0.4 break

-l : line by line
-v : visualize results

Profiling Python

$ python3 -m memory_profiler prfact.py
Please Enter any Number: 2588
Filename: prfact.py

Line # Mem usage Increment Occurrences Line Contents
===

5 21.875 MiB 21.875 MiB 1 @profile
6 def prfct(n):
7 21.875 MiB 0.000 MiB 2588 for i in range(2, n + 1):
8 21.875 MiB 0.000 MiB 2587 if(n % i == 0):
9 21.875 MiB 0.000 MiB 5 isprime = 1
10 21.875 MiB 0.000 MiB 327 for j in range(2, (i //2 + 1)):
11 21.875 MiB 0.000 MiB 325 if(i % j == 0):
12 21.875 MiB 0.000 MiB 3 isprime = 0
13 21.875 MiB 0.000 MiB 3 break

$ pip install memory_profiler

 Memory profiling
− Keep track of memory usage

Profiling R
 Select Rstudio’s built in Profile > Start Profiling menu and run the R code
 Enclose the function or code with profvis function
 Enables a user to:

− Measure time and memory
− Find bottlenecks

library(profvis)
profvis({

data(diamonds, package = "ggplot2")
plot(price ~ carat, data = diamonds)
m <- lm(price ~ carat, data = diamonds)
abline(m, coln0 = "red")

})

 Debugging
− Debugging using Compiler Flags
− Debugger Basics
− gdb
− Serial Debugging with gdb
− Parallel (MPI) Debugging

 Parallel Debugging with gdb
 Interactive Parallel Debugging with gdb
 Non-interactive Parallel Debugging with gdb
 Totalview and DDT

− CUDA Debugging with gdb
− Intel Inspector
− Language Specific Debuggers

 Profiling and Tuning
 Profiling

 GNU Profiler - gprof
 TAU
 Intel Tools
 Profiling Python and R

 Tuning Applications
 Use Compiler Flags
 MAQAO
 Try Different Compilers
 Use Performance Optimized Libraries

Tuning Applications

 Code tuning is the process of manually optimizing a program to lower
its runtime requirements (runtime, memory, disk space, ...)
− Better algorithms
− Different compiler flags (-O2, -O3 etc)
− Using different compilers
− Using optimized libraries
− Vectorizing loops
− Using non-blocking MPI calls

 Hide latency

https://magazine.foriowa.org/archive/archive-story.php?ed=true&storyid=1568

Use Compiler Flags
 -march=cpu-type : Generate instructions for the machine type cpu-type

− Exploits various capabilities in different CPUs, support for different instruction
sets, different ways of executing code, etc to generate optimized binary for a
target CPU

− cpu-type = native : Use processor type of the compiling machine (local machine
installation, compiling for a homogeneous cluster etc)

− cpu-type = sandybridge, haswell, skylake, znver2, etc : Compile for Intel Sandy
Bridge, Haswell, Skylate, AMD zen2, etc

− cpu-type = core-avx2 (Intel compiler): Compile for a for processors that supports
Advanced Vector Extensions 2

Use Compiler Flags
 -O : Vectorization, scalar

optimizations, loop
optimizations, inlining, …
− Too aggressive optimizations may

affect computtional accuracy

Two n body simulations written in C (naive
brute force method and Barnes-Hut
approximation) compiled with GNU compiler
Source code:
https://github.com/KimTorberntsson/Barnes-Hut

gcc -c barnes_hut.c

gcc -c barnes_hut.c -O1/2/3/fast

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Modular Assembly Quality Analyzer and Optimizer
(MAQAO)

 A profiling tool, binary disassembler, and code quality analyzer
− A user friendly performance analysis and optimization framework
− Provides reports and hints for code optimization
− Analyzes production binary

 Binary can be freely downloaded from https://www.maqao.org
 Analyzing applications and generating a report

 This will run the binary with the given mpi command and generate the results
− Default report format is html and can be configured to text / excel etc

 Focuses on memory alignment, loop interchange, loop strides, etc

maqao oneview –create-report=one –binary=../test/wave –mpi_command=”mpirun -np 2”

https://www.maqao.org/

MAQAO

Array Access Efficiency: Percentage of Unit Stride access

FP vectorized: Performance gain if all FP arithmetic operations were vectorized

Fully vectorized: Performance gain if all the FP arithmetic operations +
Load/Store instructions were vectorized

 Debugging
− Debugging using Compiler Flags
− Debugger Basics
− gdb
− Serial Debugging with gdb
− Parallel (MPI) Debugging

 Parallel Debugging with gdb
 Interactive Parallel Debugging with gdb
 Non-interactive Parallel Debugging with gdb
 Totalview and DDT

− CUDA Debugging with gdb
− Intel Inspector
− Language Specific Debuggers

 Profiling and Tuning
 Profiling

 GNU Profiler - gprof
 TAU
 Intel Tools
 Profiling Python and R

 Tuning Applications
 Use Compiler Flags
 MAQAO
 Try Different Compilers
 Use Performance Optimized Libraries

Try Different Compilers
 Different compilers (GNU vs Intel vs other) may yield different

performance
− OpenMPI vs MVAPICH2 vs Intel MPI

a Core Count

WRF

a Core Count

LAMMPS

Use Performance Optimized Libraries
 Solving most problems numerically involves performing similar tasks

− Vector operations (dot product, norm, …)
− Matrix operations (solving systems of equations, matrix product, …)
− Fourier Transform, parallel input/output

 Numerical libraries are developed to perform these basic tasks
optimally
− Highly tuned for performance, different hardware for decade(s)
− Well documented and easy to use

 Most become community standards (eg. FFTw)
− Use these libraries as building blocks to develop applications

 Never write your own solvers!

Numerical Libraries
 BLAS

− Basic Linear Algebra Subprograms
 Written in Fortran, provides C bindings

− Provides a standard interface to vector, matrix-vector, matrix-matrix routines that
have been optimized for various computer architectures

− Implementations: OpenBLAS, BLIS (BLAS-like Library Instantiation Software),
ATLAS (Automatically Tuned Linear Algebra Software), Intel Math Kernel Library
(IMKL), Accelerate, cuBLAS (cuda BLAS), GotoBLAS, …

 LAPACK
− Linear Algebra PACKage: Built on top of BLAS
− Designed to solve system of linear equations, eigenvalue problems, singular

value problems, LU factorization, etc
− ScaLAPACK: Parallel version of LAPACK

Numerical Libraries

BLAS LAPACK

ScaLAPACK

HYPRE
PETSc

SLEPSc

SuperLU

FFTw

Eigen

OGDIMUMPS

ARPACK

Armadillo

ELSI

GTS

GEOS

TA-Lib

Numerical Libraries
 Try to use libraries widely used and still active / supported

− Most issues were identified and fixed
− Community support

 Test different libraries if available and check performance
− Performance may differ depending on usage, hardware, etc
− Use libraries built / tuned for your hardware architecture

Thank you

	Slide Number 1
	WARNING!
	Overview
	Debugging
	Slide Number 5
	Using Compiler Flags
	Using Compiler Flags – Compile time
	Using Compiler Flags – Runtime
	Using Compiler Flags – Runtime
	Using Compiler Flags
	Debug support from MPI Compilers
	Slide Number 12
	Debugger Basics
	Slide Number 14
	gdb
	Serial debugging with gdb
	Serial debugging with gdb
	Useful gdb Commands
	Useful gdb Commands
	Core Dump Analysis
	Slide Number 21
	Slide Number 22
	Parallel (MPI) Debugging
	Parallel Debugging with gdb
	Interactive Parallel Debugging with gdb
	Interactive parallel debugging with gdb
	Interactive parallel debugging with gdb
	Interactive parallel debugging with gdb
	Interactive parallel debugging with gdb
	Interactive parallel debugging with gdb
	Slide Number 31
	Non-interactive Parallel Debugging with gdb
	Non-interactive Parallel Debugging with gdb
	Slide Number 34
	Totalview
	TotalView
	TotalView
	DDT
	Slide Number 39
	CUDA Debugging with gdb
	Intel Inspector
	Slide Number 42
	Language Specific Debuggers
	Python Debugging
	R debugging
	Slide Number 46
	Profiling and Tuning
	Slide Number 48
	Slide Number 49
	GNU Profiler - gprof
	TAU (Tuning and Analysis Utilities)
	TAU
	TAU
	Slide Number 54
	TAU
	Intel Advisor (FREE)
	Intel Advisor
	Intel Vtune (FREE)
	Intel Trace Analyzer (FREE)
	Profiling Python
	Profiling Python
	Profiling Python
	Profiling R
	Slide Number 64
	Tuning Applications
	Use Compiler Flags
	Use Compiler Flags
	Modular Assembly Quality Analyzer and Optimizer (MAQAO)
	MAQAO
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Try Different Compilers
	Use Performance Optimized Libraries
	Numerical Libraries
	Numerical Libraries
	Numerical Libraries
	Slide Number 78

