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 I am NOT an expert, just someone who volunteered to 
talk about this topic!

 This is NOT a lecture!
 Please interrupt me during the session when you have 

questions / comments
 I assume you are somewhat familiar with programming 

under Linux
− Parallel programming experience preferred

WARNING!
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Debugging
 Detecting and removing of existing and potential errors (‘bugs’) in a 

software that can cause it to behave unexpectedly or crash. To 
prevent incorrect operation of a software 
− Syntax errors, segmentation faults (invalid memory access), I/O errors, ...

 Debugger : A tool that helps you debug (it doesn’t debug for you)
− CLI (Command Line Interface) based 

 write/printf, gdb, valgrind (memory issues), …
 Effectively pinpoint problems, works with serial/parallel codes
 Need to remember commands, not user friendly

− GUI (Graphical User Interface) debuggers
 TotalView, DDT, Intel Inspector, ...
 Powerful and user friendly

− ChatGPT

Design 
20%

Coding 
30%

Testing 
35%
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Using Compiler Flags
 Compilers can help debugging without a debugger
 Almost all debuggers require the code to be compiled with -g flag
 There are other compiler flags that can identify potential issues

− During compile time
− During runtime

 May not be as reliable as using a debugger
− Vendor dependent
− Version dependent



Using Compiler Flags – Compile time
 -Wall : (gnu, Intel - C/C++), -warn all (Intel - Fortran)

− Detect uninitialized variables
− Find unused parameters (variables, functions, labels, ...)
− Implicit function declaration in C /C++ (declare before use a function)

 -Wextra : (gnu) enables extra warning flags in addition to -Wall
− -Wall -Wextra : detects unused but set variables

 -Werror : (gnu) compilation stops at warnings
− Treat warnings as errors

 -Wuninitialized : (gnu) Warn at compiling time if a variable is used 
without first being initialized
− -check-uninit , -check unint (Intel) Runtime checking of undefined variables



Using Compiler Flags – Runtime
 -g : embed debug information to the binary (parts of the source itself)
 -fcheck=bounds : (gfortran) check array indices are within the declared 

range
− -check bounds / -CB (Intel)

 -fcheck=all : (gfortran) checks for invalid modification of loop iteration 
variables, memory allocation, bounds, etc



 -ftrapv : (gnu C/C++)detects integer overflow and abort the program

 -ffpe-trap=invalid,zero,... : (gfortran, gcc by default) detects and aborts 
the program
− invalid: invalid floating point operation  √-1
− zero: division by zero
− overflow: overflow in a floating point operation
− underflow: underflow in a floating point operation etc

Using Compiler Flags – Runtime

Odometer analogy



Using Compiler Flags

$ gfortran -ffpe-trap=overflow -o oflow oflow.f90
$ ./oflow 

Program received signal SIGABRT: Process abort signal.
...
Aborted (core dumped)

$ gcc -ftrapv -o oflow_c oflow.c
$ ./oflow_c 
Aborted (core dumped)

$ gfortran -o oflow oflow.f90
$ ./oflow 

2147483647   1.7976931348623157E+308 -2147483648  Infinity

$ gcc -o oflow_c oflow.c
$ ./oflow_c
-2147483648



Debug support from MPI Compilers
 Setting certain environment variables enable MPI to output 

information helpful for debugging applications during runtime
 Open MPI

− mpi_param_check : If true, checks MPI function values for illegal values such as 
NULL

− mpi_abort_delay : If nonzero, prints hostname and process ID of the process 
invoked MPI_ABORT

 MVAPICH2
− MV2_DEBUG_SHOW_BACKTRACE : Show backtrace when a process fails on errors 

like Segmentation fault, Bus error, Illegal Instruction, Abort etc
 -g flag is not needed for these to work
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Debugger Basics
 Debugger: Program that helps you run a software in a controlled way 

to help you find and fix bugs
 Breakpoint: Pauses execution of processes

− Unconditional: always pause
− Conditional: pauses only if a condition is satisfied
− Evaluation: pause and execute a code fragment when reached

 Watchpoint: monitors a variable and pauses execution when its value 
changes

 Backtrace: List of function calls currently active in a process
 Frame: (stack frame) Contains arguments given to a function, its local 

variables, and the address at which the function is executing
− There is always one or more frame(s) associated with a running 

program
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gdb
 gdb is the GNU project debugger
 Supports C, C++, Fortran, Assembly, Go, OpenCL, etc
 Capabilities

− Start a program
− Make a program stop on specified conditions
− Examine the program once its stopped
− Change variable values of a program while its running to examine the effect (on bugs) 

 Terminal based (text only) debugger
− The GUI front end of gdb is DDD (Data Display Debugger)
− Latest version of DDD was released on 05/10/2023. 

However, the previous release was in 2009!
 Not worked as intended in most new systems until last month



Serial debugging with gdb
$ gfortran trap.f90 -g -o trap
$ gdb trap

(gdb) break 13
Breakpoint 1 at 0x11de: file trap.f90, line 13.
(gdb) break 15
Breakpoint 2 at 0x1234: file trap.f90, line 15.
(gdb) run
13 area = 0.5 * (sin(a) + sin(b))
(gdb) print a
$1 = 0
(gdb) p area
$2 = -209808
(gdb) next
14 DO i = 1, n-1
(gdb) p area
$3 = -4.37113883e-08
(gdb) continue
Continuing.

Breakpoint 2, trapz () at trap.f90:15
15 area = area + sin(a + i*h)
(gdb) p area
$4 = -4.37113883e-08
(gdb) continue
Continuing.

Breakpoint 2, trapz () at trap.f90:15
15 area = area + sin(a + i*h)
(gdb) p area
$5 = 0.0314107165
(gdb) clear
Deleted breakpoint 2 
(gdb) c
Continuing.
Area =    1.99983561    
[Inferior 1 (process 13270) exited normally]
(gdb) q

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19



Serial debugging with gdb

(gdb) run
Starting program: 

Program received signal SIGSEGV, Segmentation fault.
0x00005555555552bc in test () at test.f90:10
10 x(i) = i
(gdb) backtrace
#0  0x00005555555552bc in test () at test.f90:10
(gdb) frame 0
#0  0x00005555555552bc in test () at test.f90:10
10 x(i) = i
(gdb) print i
$1 = 30141
(gdb) print x
$2 = (1, 2, 3, 4, 5)



Useful gdb Commands
 break location / thread thread# / if condition
 clear function/breakpoint … : Remove all or selected breakpoints
 step count : Pause the program after executing a count number of 

source line(s). Stops at each line of any functions called within a 
line

 next count : Same as step but does not stop when inside a 
function

 skip function / file : Prevent gdb from running a function or source 
file



Useful gdb Commands
 reverse-step : Run the program backward until it reaches the start of 

a different source line
 list : Print lines (at line #, function, before/after last line, …)
 set var variable=value : Change a variable value during the 

debugging session
 info locals : Display the local variable values in the current frame



 A core dump is a file containing part of the application’s memory  
when the process terminates unexpectedly
− Core dumps may be produced on-demand (eg: by a debugger) or automatically 

upon termination (crash)
 A core file can be opened and examined using gdb

− OR

− Use bt / frame / list / info locals / print etc to pin point the cause
 gcore can create a manual core dump of any process

Core Dump Analysis

$ gdb -e program_name -c core_dump_name
$ gdb program_name
(gdb) core core_dump_name

$ gcore -o core_file_name process_id



$ gdb oflow /var/lib/apport/coredump/core._oflow.1000.b92dc8f9-2041-46b6-a112-455c25153497.53671.5260506
GNU gdb (Ubuntu 13.1-2ubuntu2) 13.1
...
Enable debuginfod for this session? (y or [n]) n
Debuginfod has been disabled.
...
Core was generated by `./oflow'.
Program terminated with signal SIGABRT, Aborted.
#0  __pthread_kill_implementation (no_tid=0, signo=6, threadid=<optimized out>) at ./nptl/pthread_kill.c:44
…
(gdb) bt
#0  __pthread_kill_implementation (no_tid=0, signo=6, threadid=<optimized out>) at ./nptl/pthread_kill.c:44
#1  __pthread_kill_internal (signo=6, threadid=<optimized out>) at ./nptl/pthread_kill.c:78
...
#5  0x000055b66343c1e1 in __addvsi3 ()
#6  0x000055b66343c189 in main () at oflow.c:5
(gdb) frame 6
#6  0x000055b66343c189 in main () at oflow.c:5
5 return printf("%d\n",i + 1);
(gdb) q
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Parallel (MPI) Debugging
 High Performance Computing (HPC) involves using more than a single 

node to solve a problem
− A common way to do this is using MPI (Message Passing Interface)
− MPI programs often need to be debugged in a cluster environment

 Using gdb
− Attach gdb to each process of an already running job
− Interactive job with all or some ranks run under gdb (interactive debugging)
− Submit a batch job so that all or some ranks run under gdb (non-interactive)

 TotalView and DDT
− GUI debuggers are user friendly and offer convenience
− Expensive!



Parallel Debugging with gdb
 Attach to already running job

− OR

− Need to login (ssh) to the compute node and find the process id first
 Use top (-u to display processes for a given user)

− After attaching, any gdb command can be used
− Interactive debugging
− Can only debug one (misbehaving) process at a time

 gdbserver is used to remotely debug applications
− Command line interface (CLI) only, no GUI
− This is left as an advanced topic

$ gdb program_name

$ gdb> attach process_id
$ gdb program_name process_id



Interactive Parallel Debugging with gdb
 Requires X11 forwarding support from scheduler

− If set up, use --x11 flag with SLURM or -X with PBS when making a reservation
$ salloc -n 2 --x11
$ export MPIGDB="xterm -e gdb –args"
$ mpirun $MPIGDB mpi_trap

(on node076) (on node074)



Interactive parallel debugging with gdb

(on node074)(on node076)



Interactive parallel debugging with gdb
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Interactive parallel debugging with gdb
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Interactive parallel debugging with gdb
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Interactive parallel debugging with gdb

(on node074)(on node076)
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Non-interactive Parallel Debugging with gdb
 No special scheduler setup is necessary
 Need to wait until end of the run to find results

mpirun -np 4 gdb --batch -q -x commands.txt mpi_trap

break Trap
run
print my_rank
info locals
continue



Non-interactive Parallel Debugging with gdb

Breakpoint 1 at 0x40116b: file mpi_trap.c, line 111.
Breakpoint 1 at 0x40116b: file mpi_trap.c, line 111.
Breakpoint 1 at 0x40116b: file mpi_trap.c, line 111.
Breakpoint 1 at 0x40116b: file mpi_trap.c, line 111.
…
Thread 1 "mpi_trap" hit Breakpoint 1, Trap (left_endpt=0.74999999999999989,  right_endpt=1.4999999999999998, trap_count=25000000, base_len=2.9999999999999997e-08) at 
mpi_trap.c:111
Thread 1 "mpi_trap" hit Breakpoint 1, Trap (left_endpt=2.25, right_endpt=3, trap_count=25000000, base_len=2.9999999999999997e-08) at mpi_trap.c:111
…
111        estimate = (f(left_endpt) + f(right_endpt))/2.0;
111        estimate = (f(left_endpt) + f(right_endpt))/2.0;
…
$1 = 2
estimate = 0
x = 2.0740954862918865e-317
i = 0
$1 = 3
estimate = 0
x = 2.0740954862918865e-317
i = 0
…

break Trap
run
print my_rank
info locals
continue
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Totalview
 Debugging and analyzing serial and parallel programs
 Both a GUI and command line interface
 Memory debugging features
 Graphical visualization of array data
 Comprehensive built-in help system
 Recording and replaying running programs
 Sessions Manager for managing and loading debugging sessions

$ totalview -args mpirun -np number_of_processes program_name 



TotalView
 Process barrier: point to 

synchronize all processes or 
threads

 Able to check variable values in 
different ranks without logging in 
to that rank

 Batch (non-interactive) 
debugging using tvscript

 Debugging on a remote host
— Connect to TotalView server 

running on a remote system
 CUDA debugger
 Reverse debugging

— ReplayEngine records all 
program’s activities to be 
reviewed later

Breakpoint

Stacktrace



TotalView

Visualize 
multidimensional arrays

What’s happening 
on each rank



DDT
 CLI and GUI support
 Interactive and batch 

debugging
 Attach to an already running 

program
 Open core dump files
 Memory debugging
 Remote debugging
 CUDA debugging
 Python debugging
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CUDA Debugging with gdb
 CUDA-GDB

− NVIDIA tool for debugging CUDA applications on Linux

− Can debug both GPU and CPU code simultaneously
− CUDA commands in addition to gdb commands
− MPI is supported
− Breakpoints supported on GPU and both breakpoints and watchpoints on CPU

 Breakpoints can be set by symbolically (function name), line number, memory 
address, conditional, and kernel entry

− Can switch between threads and inspect program execution
− Stepping works by advancing all active threads in the warp of focus
− Remote debugging is possible
− GPU core dump is supported

$ nvcc -g -G foo.cu -o foo

$ pgfortran -g -Mcuda=nordc foo.cuf -o foo



Intel Inspector
 Detect memory leaks

− Locate memory problems
 Locate deadlocks and data 

races
 GUI (inspxe-gui) and cli 

(inspxe-cl) versions
 Works with serial and mpi 

applications

 CLI version results can be 
visualized with GUI later

 NOT a complete debugger
 Free!

srun -n8 inspxe-cl -collect mi3 
-r my_results my_mpi_app 
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Language Specific Debuggers
 Python: pdb

− Interactive debugging: use python -m pdb source.py
− Batch/ interactive debugging:  use breakpoint() or pdb.set_trace()in source code or 

python prompt 
 Need to import pdb for pdb.set_trace()

− Interactive source debugger
− Supports breakpoints and single stepping at the source line level
− Inspection of stack frames, source code listing

 R
− In RStudio

 Set breakpoints in RStudio or put browser() at the line you want to break
 This causes R to enter the debug mode

− Can check current variable stack, traceback the execution, and more



$ python3 -m pdb convert.py 
> /home/prasad/Downloads/convert.py(1)<module>()
-> temp = input("Temperature : (e.g., 45F): ")
(Pdb) n
Temperature : (e.g., 45F): 75F
> /home/prasad/Downloads/convert.py(2)<module>()
-> degree = int(temp[:-1])
(Pdb) p degree
*** NameError: name 'degree' is not defined
(Pdb) n
> /home/prasad/Downloads/convert.py(3)<module>()
-> i_convention = temp[-1]
(Pdb) p degree
75
(Pdb) b 10
Breakpoint 1 at /home/prasad/Downloads/convert.py:10
(Pdb) l

3  i_convention = temp[-1]
4  
5  if i_convention.upper() == "C":
6  result = int(round((9 * degree) / 5 + 32))
7  o_convention = "Fahrenheit"
8  -> elif i_convention.upper() == "F":
9  result = int(round((degree - 32) * 5 / 9))

10 B o_convention = "Celsius"
11  else:
12  print("Input proper convention.")
13  quit()

Python Debugging
temp = input("Temperature : (e.g., 45F): "
degree = int(temp[:-1])
i_convention = temp[-1]

if i_convention.upper() == "C":
result = int(round((9 * degree) / 5 + 32))
o_convention = "Fahrenheit"

elif i_convention.upper() == "F":
result = int(round((degree - 32) * 5 / 9))
o_convention = "Celsius"

else:
print("Input proper convention.")
quit()

print("Temperature in ", o_convention, " is ", result)

r(eturn) Continue until current function return

c(ontinue) Continue until next breakpoint

j(ump) line_no Next line to be executed (useful for breaking out of loops)

w(here) Print the current position and stack trace

a(rgs) Print args of the current function

q(uit) Quit pdb



R debugging

g <- function(b) {
browser()
h(b)

}

breakpoint

g <- function(b) {
if (b < 0) {

browser()
}
h(b)

}
conditional 
breakpoint

where Print stack trace of all active function calls

c(ont) Exit browser, execute the next statement

f Finish execution of current loop or function

n Evaluate next line, step over any function calls

s Evaluate next line, step into any function calls

Q Exit browser and current evaluation and return to the top-level prompt

RStudio breakpoint
Click left of line number
OR
Press Shift+F9 at the line

Variable values, stacktrace, 
etc are accessible through 
Rstudio once program 
pauses  

> rescale <-function(x) {
+ rng <- range(x)
+ browser()
+ (x - rng[1]) / (rng[2] - rng[1])
}
> rescale(c(0,5,10))
Called from: rescale(c(0, 5, 10))
Browse[1]> rng
[1]  0 10
Browse[1]> x
[1]  0  5 10
Browse[1]> s
debug at #4: (x - rng[1])/(rng[2] - rng[1])
Browse[2]> c
[1] 0.0 0.5 1.0
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Profiling and Tuning
 HPC emphasizes on performance of software

− Being bug-free is not enough
− Should be able to get maximum performance from the hardware

 Software can be tuned to increase efficiency
− Different compilers, compiler flags (-O2, -O3 etc)
− Better algorithms
− Using optimized libraries

 Profiling helps find which part(s) a program should be tuned
− Software profiling: Dynamic code analysis where a program's behavior is 

investigated using the data collected during program execution
 CPU/memory utilization, frequency of function calls, I/O, MPI library usage, hardware 

counters, etc.
− Identify bottlenecks

 Profilers
− gprof, TAU (Tuning and Analysis Utilities), Intel tools
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GNU Profiler - gprof
 Terminal based profiler
 Already exist in most linux distributions
 Produces flat profile and a call graph

− Flat profile: A breakdown of time spent on each function call
− Call graph: In what order each subroutine / function was called

 Can profile serial as well as parallel applications

$ gfortran thermal.f -pg -o thermal
$ ./thermal
$ gprof thermal

Flat profile:

Each sample counts as 0.01 seconds.
%       cumulative     self                             self total           

time   seconds       seconds calls             s/call   s/call    name    
44.10      9.04            9.04      86150709     0.00     0.00    energy_
34.08     16.04          6.99       13893157     0.00     0.00    update_
19.75     20.09          4.05        771898         0.00     0.00    sumit_

Call graph (explanation follows)
granularity: each sample hit covers 4 byte(s) for 0.05% of 20.51 seconds

Index     % time    self     children    called                      name
0.03   20.45         1/1                          main [2]

[1]          99.9        0.03   20.45         1                               MAIN__ [1]
0.13   20.08         771780/771780    move_ [3]
0.16    0.00          771897/771897    locate_ [7]

$ export GMON_OUT_PREFIX='gmon.out-'
$ mpicc thermal_mpi.f -pg -o thermal_mpi
$ mpirun thermal_mpi
$ gprof -s thermal_mpi gmon.out-*



TAU (Tuning and Analysis Utilities)
 Integrated performance toolkit

− Instrumentation, measurement, analysis, visualization
− Performance data management and data mining
− 20+ year project actively developed by Univ. of Oregon, LANL, Julich

 Open source and FREE
 Works with or without recompiling code

− Dynamic instrumentation (without recompile) provides limited information
 Uses PAPI to measure hardware counters (cache, FLOPS, ...)
 Serial, parallel, GPU profiling capability
 Works with Fortran, C, C++, UPC, Java, Python
 Low performance overhead (can be compensated runtime)
 Complicated and steep learning curve



TAU
 Instrumentation

− Source code instrumentation using pre-processors and compiler scripts
 Instrumentation: Adding code to collect performance, behavior, and resource usage of 

a program (manually or automatically)
− Wrapping external libraries (I/O, MPI, Memory, CUDA, OpenCL, pthread, ...)
− Rewriting the binary

 Measurement
− Direct: interval events, Indirect: collect samples to profile statement execution
− Per-process storage of performance data

 TAU creates one profile file per process in a single location
 Profile file names look like, profile.0.0.0, profile.1.0.0, ...

− Throttling and runtime control of low-level events
 Analysis

− 2D and 3D visualization of profile data using pprof and paraprof
− Trace conversion & display in external visualizers such as Jumpshot



TAU
 Profile: statistical summary of all 

metrics measured
− Example: Show how much total 

time & resources each call 
utilized Source file name and 

location of the function

 Trace: timeline of events took place
− Shows when each event happened 

and where





TAU

Call graph

Communication matrix



Intel Advisor (FREE)
 Vectorization advisor and 

Threading advisor
− Can time-consuming loops able 

to benefit from vectorization or 
already vectorized?

− Compile code with -g
− Collect data

− Visualize data 

srun -n 1 -c 1 advixe-cl –-collect=survey
--project-dir=Directory_name              --search-

dir=Directory_name
--trace-mpi program_name

advisor-gui Directory_name



Intel Advisor
 Roofline Analysis for 

CPU/GPU
− What is the maximum 

achievable performance with the 
hardware used?

− Does application work optimally 
on current hardware?

− If not, what are the best 
candidates for optimization?

− Roofline plot shows theoretical 
limits of computational 
performance and 
communication between 
processors and memory

 Much higher overhead 
compared to TAU

Different functions
of the code



Intel Vtune (FREE)
 Tune application 

performance for CPU / 
GPU

 Profile  C, C++, C#, 
Fortran, OpenCL, Python, 
Google Go, Java, .NET, 
Assembly

 Coarse-grained system 
data for an extended 
period

 Detailed results mapped 
to source code

 Multi node (MPI) profiling



 MPI profiler
 Traces MPI code
 Identifies communication 

inefficiencies
 To use with Intel MPI (only),

 traceanalyzer gui visualizes 
generated results

Intel Trace Analyzer (FREE)

$ traceanalyzer wave_mpi.stf

$ mpirun -trace -np 4 ./wave_mpi



Profiling Python

python3 -m cProfile -s tottime numpy_io.py

3820056 function calls (3805275 primitive calls) in 8.231 seconds
Ordered by: internal time
ncalls  tottime  percall  cumtime  percall filename:lineno(function)

1    2.315    2.315    2.566    2.566 Gio.py:39(run)
1    0.588    0.588    0.643    0.643 Gtk.py:1(<module>)

32047    0.468    0.000    0.716    0.000 inspect.py:744(cleandoc)
5845    0.288    0.000    0.400    0.000 dates.py:305(_dt64_to_ordinalf)
30    0.214    0.007    0.219    0.007 {built-in method _imp.create_dynamic}

35070    0.155    0.000    0.242    0.000 _parser.py:83(get_token)
35146    0.137    0.000    0.137    0.000 {method 'astype' of 'numpy.ndarray' objects}

282    0.134    0.000    0.134    0.000 {method 'read' of '_io.BufferedReader' objects}
…

 Two built in profilers: cProfile and profile
− cProfile is recommended due to low overhead

 Whole program profiling

 Targeted profiling
− Only profile a selected parts (functions etc) 

of a code

import cProfile
pr = cProfile.Profile()
pr.enable()
# ... your code/function to profile ...
pr.disable()
pr.print_stats()



Profiling Python
 Line profiling

− Only profile selected lines of a code
$ pip install line_profiler

$ kernprof -l -v prfact.py
Please Enter any Number: 2544
Wrote profile results to prfact.py.lprof
Timer unit: 1e-06 s

Total time: 0.00451784 s
File: prfact.py
Function: prfct at line 5

Line #      Hits         Time  Per Hit   % Time  Line Contents
==============================================================

5                                           @profile
6                                           def prfct(n):
7      2543       2039.2      0.8     45.1      for i in range(2, n + 1):
8      2524       2350.7      0.9     52.0          if(n % i == 0):
9        19         15.5      0.8      0.3              isprime = 1
10        42         57.5      1.4      1.3              for j in range(2, (i //2 + 1)):
11        26         23.4      0.9      0.5                  if(i % j == 0):
12        16         11.3      0.7      0.2                      isprime = 0
13        16         20.2      1.3      0.4                      break

-l : line by line
-v : visualize results



Profiling Python

$ python3 -m memory_profiler prfact.py
Please Enter any Number: 2588
Filename: prfact.py

Line #    Mem usage    Increment  Occurrences   Line Contents
=============================================================

5   21.875 MiB   21.875 MiB           1   @profile
6                                         def prfct(n):
7   21.875 MiB    0.000 MiB        2588       for i in range(2, n + 1):
8   21.875 MiB    0.000 MiB        2587           if(n % i == 0):
9   21.875 MiB    0.000 MiB           5               isprime = 1
10   21.875 MiB    0.000 MiB         327               for j in range(2, (i //2 + 1)):
11   21.875 MiB    0.000 MiB         325                   if(i % j == 0):
12   21.875 MiB    0.000 MiB           3                       isprime = 0
13   21.875 MiB    0.000 MiB           3                       break

$ pip install memory_profiler

 Memory profiling
− Keep track of memory usage



Profiling R
 Select Rstudio’s built in Profile > Start Profiling menu and run the R code
 Enclose the function or code with profvis function
 Enables a user to:

− Measure time and memory
− Find bottlenecks

library(profvis)
profvis({

data(diamonds, package = "ggplot2")
plot(price ~ carat, data = diamonds)
m <- lm(price ~ carat, data = diamonds)
abline(m, coln0 = "red")

})



 Debugging
− Debugging using Compiler Flags
− Debugger Basics
− gdb
− Serial Debugging with gdb
− Parallel (MPI) Debugging

 Parallel Debugging with gdb
 Interactive Parallel Debugging with gdb
 Non-interactive Parallel Debugging with gdb
 Totalview and DDT

− CUDA Debugging with gdb
− Intel Inspector
− Language Specific Debuggers

 Profiling and Tuning
 Profiling

 GNU Profiler - gprof
 TAU
 Intel Tools
 Profiling Python and R

 Tuning Applications
 Use Compiler Flags
 MAQAO
 Try Different Compilers
 Use Performance Optimized Libraries



Tuning Applications

 Code tuning is the process of manually optimizing a program to lower 
its runtime requirements (runtime, memory, disk space, ...)
− Better algorithms
− Different compiler flags (-O2, -O3 etc)
− Using different compilers
− Using optimized libraries
− Vectorizing loops
− Using non-blocking MPI calls

 Hide latency

https://magazine.foriowa.org/archive/archive-story.php?ed=true&storyid=1568



Use Compiler Flags
 -march=cpu-type : Generate instructions for the machine type cpu-type

− Exploits various capabilities in different CPUs, support for different instruction 
sets, different ways of executing code, etc to generate optimized binary for a 
target CPU

− cpu-type = native : Use processor type of the compiling machine (local machine 
installation, compiling for a homogeneous cluster etc)

− cpu-type = sandybridge, haswell, skylake, znver2, etc : Compile for Intel Sandy 
Bridge, Haswell, Skylate, AMD zen2, etc 

− cpu-type = core-avx2 (Intel compiler): Compile for a for processors that supports 
Advanced Vector Extensions 2



Use Compiler Flags
 -O : Vectorization, scalar 

optimizations, loop 
optimizations, inlining, …
− Too aggressive optimizations may 

affect computtional accuracy

Two n body simulations written in C (naive 
brute force method and Barnes-Hut 
approximation) compiled with GNU compiler
Source code: 
https://github.com/KimTorberntsson/Barnes-Hut

gcc -c barnes_hut.c

gcc -c barnes_hut.c -O1/2/3/fast

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html



Modular Assembly Quality Analyzer and Optimizer 
(MAQAO)

 A profiling tool, binary disassembler, and code quality analyzer 
− A user friendly performance analysis and optimization framework
− Provides reports and hints for code optimization
− Analyzes production binary

 Binary can be freely downloaded from https://www.maqao.org
 Analyzing applications and generating a report

 This will run the binary with the given mpi command and generate the results
− Default report format is html and can be configured to text / excel etc

 Focuses on memory alignment, loop interchange, loop strides, etc

maqao oneview –create-report=one –binary=../test/wave –mpi_command=”mpirun -np 2”

https://www.maqao.org/


MAQAO

Array Access Efficiency: Percentage of Unit Stride access

FP vectorized: Performance gain if all FP arithmetic operations were vectorized

Fully vectorized: Performance gain if all the FP arithmetic operations +
Load/Store instructions were vectorized







 Debugging
− Debugging using Compiler Flags
− Debugger Basics
− gdb
− Serial Debugging with gdb
− Parallel (MPI) Debugging

 Parallel Debugging with gdb
 Interactive Parallel Debugging with gdb
 Non-interactive Parallel Debugging with gdb
 Totalview and DDT

− CUDA Debugging with gdb
− Intel Inspector
− Language Specific Debuggers

 Profiling and Tuning
 Profiling

 GNU Profiler - gprof
 TAU
 Intel Tools
 Profiling Python and R

 Tuning Applications
 Use Compiler Flags
 MAQAO
 Try Different Compilers
 Use Performance Optimized Libraries



Try Different Compilers
 Different compilers (GNU vs Intel vs other) may yield different 

performance
− OpenMPI vs MVAPICH2 vs Intel MPI

a Core Count

WRF

a Core Count

LAMMPS



Use Performance Optimized Libraries
 Solving most problems numerically involves performing similar tasks

− Vector operations (dot product, norm, …)
− Matrix operations (solving systems of equations, matrix product, …)
− Fourier Transform, parallel input/output

 Numerical libraries are developed to perform these basic tasks 
optimally
− Highly tuned for performance, different hardware for decade(s)
− Well documented and easy to use

 Most become community standards (eg. FFTw)
− Use these libraries as building blocks to develop applications

 Never write your own solvers!



Numerical Libraries
 BLAS

− Basic Linear Algebra Subprograms
 Written in Fortran, provides C bindings

− Provides a standard interface to vector, matrix-vector, matrix-matrix routines that 
have been optimized for various computer architectures

− Implementations: OpenBLAS, BLIS (BLAS-like Library Instantiation Software), 
ATLAS (Automatically Tuned Linear Algebra Software), Intel Math Kernel Library 
(IMKL), Accelerate, cuBLAS (cuda BLAS), GotoBLAS, …

 LAPACK
− Linear Algebra PACKage: Built on top of BLAS
− Designed to solve system of linear equations, eigenvalue problems, singular 

value problems, LU factorization, etc
− ScaLAPACK: Parallel version of LAPACK



Numerical Libraries

BLAS LAPACK

ScaLAPACK

HYPRE
PETSc

SLEPSc

SuperLU

FFTw

Eigen

OGDIMUMPS

ARPACK

Armadillo

ELSI

GTS

GEOS

TA-Lib



Numerical Libraries
 Try to use libraries widely used and still active / supported

− Most issues were identified and fixed
− Community support

 Test different libraries if available and check performance
− Performance may differ depending on usage, hardware, etc
− Use libraries built / tuned for your hardware architecture



Thank you
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