
Deploying Community Codes

Joshua Gyllinsky, PhD

1© 2022. J.Gyllinsky. Confidential. Do not distribute.

This is the fourth edition of this talk. With earlier versions by
Prasad Maddumage, Martin Čuma, and Joshua Alexander

© 2022. J.Gyllinsky. Confidential. Do not distribute.

This is the fourth edition of this talk and builds on the previous editions.
1. Prasad Maddumage, “Deploying Community Codes” Presentation and

Workshop, 2017 Virtual Residency Program (VRP) workshop, Online
and In-Person, July 31, 2017.
https://www.oscer.ou.edu/acirefvirtres2015_talk_deploying_community_
codes_20150601.pdf

2. Martin Čuma, “Deploying Community Codes” Presentation and Demo,
2016 Virtual Residency Program (VRP) workshop, Online and
In-Person, August 8, 2016.
https://www.oscer.ou.edu/acirefvirtres2016_talk_cuma_deploycodes_2
0160808.pdf

3. Joshua Alexander, “Deploying Community Codes” Presentation and
Demo, 2015 Virtual Residency Program (VRP) workshop, Online and
In-Person, June 1, 2015.
https://www.oscer.ou.edu/acirefvirtres2015_talk_deploying_community_
codes_20150601.pdf

The “Deploying Community Codes” VRP Session

2

• High-level.
• Not overly technical.
• Meant to give a

starting place.
• Cannot possibly

cover all scenarios.

© 2022. J.Gyllinsky. Confidential. Do not distribute.

Types of “Codes”

• Computationally intensive scientific analysis (Usually)
• Any programming language (Tends to be usual suspects)
• Usually Free (sort of..)
• POSIX targeted / designed for use with UNIX-like operating

systems (mostly)

3

© 2022. J.Gyllinsky. Confidential. Do not distribute.

Types of “Codes”: Ecosystem

Encountered code might be found in
several forms in the wild, including:

• OS Level

• Environment Modules

• Full Programs

• Program Modules and Plugins
(Require other complete programs)

• User Scripts

4

R
. M

un
ro

e,
 “D

ep
en

de
nc

y,
” x

kc
d.

 [O
nl

in
e]

. A
va

ila
bl

e:

ht
tp

s:
//x

kc
d.

co
m

/2
34

7/
. [

A
cc

es
se

d:
 2

9-
Ju

n-
20

22
].

© 2022. J.Gyllinsky. Confidential. Do not distribute.

Common Needs

Matrix Operations
Fast Fourier Transforms
Linear Algebra
ODE & PDE
Other Numerical Libraries
Weather Forecasting
Molecular Dynamics
Ab Initio Chemistry
Bioinformatics
Weather Tracking
Star Formation

5

R
. M

un
ro

e,
 “D

at
a

Tr
ap

,”
xk

cd
. [

O
nl

in
e]

. A
va

ila
bl

e:

ht
tp

s:
//x

kc
d.

co
m

/2
58

2/
. [

A
cc

es
se

d:
 2

9-
Ju

n-
20

22
].

© 2022. J.Gyllinsky. Confidential. Do not distribute.

Community And Commercial Programs
Commercial programs

• Licensed to user, department, or
institution for specific time period
with potential usage restrictions
including how it can be used in
research

• May need additional licensing
validation / verification configurations

• May be segmented into modules
with official support tiers

– may require additional payment
structure

6

Community programs

• Free (sort of), written by researchers

• Support and stability may be minimal

• Documentation may be sparse

• Official support may not be available

• May be less tested

– Does not necessarily mean
more buggy, but might not have
been tested on a similar setup
to the one you are using

© 2022. J.Gyllinsky. Confidential. Do not distribute.

Community Codes

• Languages, Drivers & Core Libraries

– Python, R, Julia, C, Fortran, PASCAL, COBOL

• Numerical Libraries

– FFTW, GotoBLAS, LAPACK

• Scientific Software

– WRF, GROMACS, NWChem, BLAST, LAMMPS, TopHat

• Visualization Software

– – WCT, Avogadro, AIPS

7

© 2022. J.Gyllinsky. Confidential. Do not distribute.

Commercial Codes

• Managed with critical concern given to the license methods
– Access and number of seats, etc
– Specific upgrade path might require very specific versions of

supporting software and might only be eligible for upgrades for a
specific timeframe or series

– May require additional licencing server deployments (networking
and security concerns)

• Examples include
– VASP, Gaussian, COMSOL

8

© 2022. J.Gyllinsky. Confidential. Do not distribute.

Where To Deploy?

• Personal / shared computer ?
• Personal / shared remote machine ?
• Personal / shared remote virtual machine / hypervisor ?
• Personal / shared account on shared setup ?
• As part of a scheduled job ?

9

© 2022. J.Gyllinsky. Confidential. Do not distribute.

Deployment Concerns

10

• Is this really for multiple users?

• How will this affect other users?

• How will this affect other software / systems / processes / dataflow?

• If there are issues, will this attempt affect future attempts to deploy?

• What is the management plan going forward (documentation / updates / releases)?

• Are there storage and access concerns?

• What are the security concerns?

• Is the data being processed need to be incoming - how can this be built / configured?

• Where is the install media and who maintains it?

© 2022. J.Gyllinsky. Confidential. Do not distribute.

Responsibilities / Who Installs What?

• Your machine (Single-User Systems)
– You are the administrator

➢ Install it yourself!

• Someone else’s machine (Multi-User Systems)
– You are likely a limited user

➢ Ask the System Administrators

➢ Install locally (if allowed)

! You will likely need to use a scheduler on run (slurm, etc.)

11

© 2022. J.Gyllinsky. Confidential. Do not distribute.

R
. M

un
ro

e,
 “W

is
do

m
 o

f t
he

 A
nc

ie
nt

s,
” x

kc
d.

 [O
nl

in
e]

.
Av

ai
la

bl
e:

 h
ttp

s:
//x

kc
d.

co
m

/9
79

/.
[A

cc
es

se
d:

 2
9-

Ju
n-

20
22

].

Document How You Did It

If you find an incompatibility,
please

● Push the patch

● Document

● Update open public ticket
with the solution so others
can benefit

12

© 2022. J.Gyllinsky. Confidential. Do not distribute.

User’s View Of Common Path To Installing Programs

• From Source
– GNU autoconf (./configure, make, make install)

– Cmake (mkdir build, cd ./build, ccmake ..)

• From Binary
– OS Package Manager (deb, rpm)

– Independant Package Manager (brew)

– Standalone Package (flatpak, appimage)

13

© 2022. J.Gyllinsky. Confidential. Do not distribute.

Dependency Hell

✓ Packages with shared
dependencies

✓ Depend on different
versions of other
packages

✓ Likely incompatible
versions

14

R
. M

un
ro

e,
 “P

yt
ho

n
en

vi
ro

nm
en

t,”
 x

kc
d.

 [O
nl

in
e]

. A
va

ila
bl

e:

ht
tp

s:
//x

kc
d.

co
m

/1
98

7/
. [

A
cc

es
se

d:
 2

9-
Ju

n-
20

22
].

How can we deploy software
while mitigating this concern?

© 2022. J.Gyllinsky. Confidential. Do not distribute.

Virtualization & Containers
• Virtualizations tools

– Docker
– VMWare vSphere Hypervisor
– Virtualbox
– QEMU
– RedHat Virtualization
– Oracle VM
– KVM
– LXD
– Xvisor
– Apptainer (formerly Singularity)

• Virtualization Management tools
– Lots (includes kubernetes, docker swarm, vagrant)

15

S. Carey, “What is Docker? the spark for the Container Revolution,” InfoWorld, 02-Aug-2021. [Online]. Available:
https://www.infoworld.com/article/3204171/what-is-docker-the-spark-for-the-container-revolution.html. [Accessed:
29-Jun-2022].

© 2022. J.Gyllinsky. Confidential. Do not distribute.

OS Level Installs
• Administrator access

– usually unrealistic as a deployment post base install
– Introduces significant security and management concerns

• Package management specific to distro
– Redhat (CentOS, RHEL, Fedora)

• RPM
– sudo dnf install package
– sudo rpm -i "package.rpm"

– Debian (Ubuntu, Mobian)
• DEB

– sudo apt install package
– sudo dpkg -i “package.deb”

– Gentoo
• EBUILD

16

Editor, D. Smenov, E. Tsoutsouris, and Tim, “Editor,” Linux Directory Structure and Important Files Paths Explained, 07-Jan-2015. [Online]. Available:
https://www.tecmint.com/linux-directory-structure-and-important-files-paths-explained/. [Accessed: 29-Jun-2022].

© 2022. J.Gyllinsky. Confidential. Do not distribute.

Environment Modules

• Alternatively, change software
at the user level

• Allow user to load and unload
program settings
– Tcl/c (Tcl)
– Lmod (Lua)

17

R
. M

un
ro

e,
 “W

or
kf

lo
w

” x
kc

d.
 [O

nl
in

e]
. A

va
ila

bl
e:

 h
ttp

s:
//x

kc
d.

co
m

/1
17

2/
.

[A
cc

es
se

d:
 2

9-
Ju

n-
20

22
].

© 2022. J.Gyllinsky. Confidential. Do not distribute.

Automated Building Single Programs

• Rely on external package management
– ./Configure && Make
– CMake
– Scons

• Includes some package management
– Pip (wheel)
– Conda (forge)

• As part of package management
– EasyBuild
– Spack
– Brew

18

R
. M

un
ro

e,
 “U

ni
ve

rs
al

 In
st

al
l S

cr
ip

t”
xk

cd
. [

O
nl

in
e]

. A
va

ila
bl

e:

ht
tp

s:
//x

kc
d.

co
m

/1
65

4/
. [

A
cc

es
se

d:
 2

9-
Ju

n-
20

22
].

© 2022. J.Gyllinsky. Confidential. Do not distribute.

Automation

Is automation right for deploying my
community code?

19

R
. M

un
ro

e,
 “I

s
It

W
or

th
 th

e
Ti

m
e?

” x
kc

d.
 [O

nl
in

e]
. A

va
ila

bl
e:

ht

tp
s:

//x
kc

d.
co

m
/1

20
5/

. [
A

cc
es

se
d:

 2
9-

Ju
n-

20
22

].

© 2022. J.Gyllinsky. Confidential. Do not distribute.

Previously Covered In Earlier VRPs

✓ Autotools ./configure && Make
✓ Redhat Package Management (RPM)
✓ Spack
✓ EasyBuild

20

© 2022. J.Gyllinsky. Confidential. Do not distribute.

 Package: grep
 Essential: yes
 Priority: required
 Section: base
 Maintainer: Wichert Akkerman <wakkerma@debian.org>
 Architecture: sparc
 Version: 2.4-1
 Pre-Depends: libc6 (>= 2.0.105)
 Provides: rgrep
 Conflicts: rgrep
 Description: GNU grep, egrep and fgrep.
 The GNU family of grep utilities may be the "fastest grep in the west".
 GNU grep is based on a fast lazy-state deterministic matcher (about
 twice as fast as stock Unix egrep) hybridized with a Boyer-Moore-Gosper
 search for a fixed string that eliminates impossible text from being
 considered by the full regexp matcher without necessarily having to
 look at every character. The result is typically many times faster
 than Unix grep or egrep. (Regular expressions containing backreferencing
 will run more slowly, however).

• Software management via apt (apt-get, aptitude, synaptic)

• Native to Ubuntu Server (Although you may also want to use
snap instead)

• If you run Mobian, can even run on your linux phone

• To build your own

– Create a folder with the necessary software

– Write package description file (CONTROL)

– Write package post install file (Postinst)

– chmod 775 mypackage/DEBIAN/postinst

– dpkg-deb --build mypackage

– sudo apt-get install ./mypackage.deb

Debian Package (.DEB)

21

Mobian. [Online]. Available: https://mobian-project.org/. [Accessed: 29-Jun-2022].
Deb-Control(5) - linux manual page. [Online]. Available: https://www.man7.org/linux/man-pages/man5/deb-control.5.html. [Accessed: 29-Jun-2022].

© 2022. J.Gyllinsky. Confidential. Do not distribute.

AppImage Package (.AppImage)

• Software management via file-system (sort of)

• Linux Distribution Agnostic (mostly)

• Program is self-contained
• To build your own

– Create a folder with the necessary software

– ./appimagetool-x86_64.AppImage ./mypackage/

– Can also be built with appimage-builder

– chmod +x mypackage.AppImage

– Then just run it with: ./my.AppImage

22

“Appimage,” AppImage. [Online]. Available: https://appimage.org/. [Accessed: 29-Jun-2022].
“Quickstart,” Quickstart - AppImage documentation, 25-Nov-2020. [Online]. Available: https://docs.appimage.org/introduction/quickstart.html#how-to-run-an-appimage. [Accessed: 29-Jun-2022].

© 2022. J.Gyllinsky. Confidential. Do not distribute.

Singularity / Apptainer

• Last year was forked and merged into The Linux Foundation

• https://github.com/apptainer/apptainer

• From their website:
– “An immutable single-file container image format, supporting cryptographic

signatures and encryption.”

– “Integration over isolation by default. Easily make use of GPUs, high speed
networks, parallel filesystems on a cluster or server.”

– “Mobility of compute. The single file SIF container format is easy to transport and
share.”

– “A simple, effective security model. You are the same user inside a container as
outside, and cannot gain additional privilege on the host system by default.”

“Home,” Apptainer. [Online]. Available: https://apptainer.org/. [Accessed: 28-Jun-2022].
Apptainer, “Apptainer/apptainer: Apptainer: Application containers for linux,” GitHub. [Online]. Available: https://github.com/apptainer/apptainer. [Accessed: 29-Jun-2022].

23

© 2022. J.Gyllinsky. Confidential. Do not distribute.

Building For Multiple Architectures

✓ https://easybuild.io/

✓ Well documented

✓ Can be used without root

✓ Built specifically for scientific
programs and hpc

✓ Uses prebuilt build recipes

24

Spack

“Building software with ease,” EasyBuild. [Online]. Available: https://easybuild.io/. [Accessed: 29-Jun-2022].
Spack. [Online]. Available: https://spack.io/. [Accessed: 29-Jun-2022].

✓ https://spack.io/

✓ Well documented

✓ Can be used without root

✓ Built specifically for scientific
programs and hpc

✓ Uses prebuilt build recipes

© 2022. J.Gyllinsky. Confidential. Do not distribute.

Deploying FOSS (Highly Generalized)

1. Verify the requirements of the project, and that the software package
meets those needs including in both functionality and in license.

2. Identify the mainline version of the software to ensure that the correct
fork is being evaluated.

3. Verify that the resources available are sufficient for the software's
deployment and use, and identify system environment in which it is
being deployed.

4. Identify the documentation and other resources for the software
package, reading relevant material as necessary (such as known
issues, security concerns, or configuration and deployment
parameters).

25

© 2022. J.Gyllinsky. Confidential. Do not distribute.

Deploying FOSS (Highly Generalized)

5. Actively keep an eye-out while evaluating the documentation for
alternative software solutions which may address the users need
more optimally, especially if the user is not as familiar with the related
technology. If anything has identified, proceed as requested but
additionally inform the user of the alternative solution. If the user
wishes to change to the other option do so and continue otherwise.

6. Identify any necessary processes for the upgrade / deployment, and
if necessary, how to safely recover quickly if a rollback as needed.

7. Identify that the user's have all necessary authorizations as required
by policy, what support is needed, and the software's ownership and
access, and life cycle on the university's resources.

26

© 2022. J.Gyllinsky. Confidential. Do not distribute.

Deploying FOSS (Highly Generalized)

8. Once the deployment process is then generally understood, follow
the necessary deployment process.

9. When possible keep issues tracked and any patches in software or
documentation pushed back upstream for others users.

10. Finally, schedule a follow-up for assessing the software's continued
use / deployment and any needs of the researcher, department, or
university.

27

© 2022. J.Gyllinsky. Confidential. Do not distribute.

Don’t Forget To Ask Questions

• Ask questions if you don’t understand the
documentation

– It tends to be those who write the
documentation are not those who need it.

• Finding A Community
– Does the project have a main page?

– Is there a slack / discord / IRC / forum /
user-group?

– Are others at your institution using this
software (or find another institution you can
ask)

28

R
. M

un
ro

e,
 “S

el
ec

tio
n

B
ia

s”
 x

kc
d.

 [O
nl

in
e]

. A
va

ila
bl

e:
 h

ttp
s:

//x
kc

d.
co

m
/2

61
8/

.
[A

cc
es

se
d:

 2
9-

Ju
n-

20
22

].

© 2022. J.Gyllinsky. Confidential. Do not distribute.

References (1 of 2)

1. Apptainer, “Apptainer/apptainer: Apptainer: Application containers for linux,” GitHub. [Online]. Available:
https://github.com/apptainer/apptainer. [Accessed: 29-Jun-2022].

2. Deb-Control(5) - linux manual page. [Online]. Available:
https://www.man7.org/linux/man-pages/man5/deb-control.5.html. [Accessed: 29-Jun-2022].

3. Editor, D. Smenov, E. Tsoutsouris, and Tim, “Editor,” Linux Directory Structure and Important Files Paths
Explained, 07-Jan-2015. [Online]. Available:
https://www.tecmint.com/linux-directory-structure-and-important-files-paths-explained/. [Accessed: 29-Jun-2022].

4. Joshua Alexander, “Deploying Community Codes” Presentation and Demo, 2015 Virtual Residency Program
(VRP) workshop, Online and In-Person, June 1, 2015.

5. Martin Čuma, “Deploying Community Codes” Presentation and Demo, 2016 Virtual Residency Program (VRP)
workshop, Online and In-Person, August 8, 2016.

6. Mobian. [Online]. Available: https://mobian-project.org/. [Accessed: 29-Jun-2022].
7. Prasad Maddumage, “Deploying Community Codes” Presentation and Workshop, 2017 Virtual Residency

Program (VRP) workshop, Online and In-Person, July 31, 2017.
8. R. Munroe, “Data Trap,” xkcd. [Online]. Available: https://xkcd.com/2582/. [Accessed: 29-Jun-2022].
9. R. Munroe, “Dependency,” xkcd. [Online]. Available: https://xkcd.com/2347/. [Accessed: 29-Jun-2022].

10. R. Munroe, “Is It Worth the Time?” xkcd. [Online]. Available: https://xkcd.com/1205/. [Accessed: 29-Jun-2022].

29

© 2022. J.Gyllinsky. Confidential. Do not distribute.

References (2 of 2)
11. R. Munroe, “Selection Bias” xkcd. [Online]. Available: https://xkcd.com/2618/. [Accessed: 29-Jun-2022].
12. R. Munroe, “Universal Install Script” xkcd. [Online]. Available: https://xkcd.com/1654/. [Accessed:

29-Jun-2022].
13. R. Munroe, “Wisdom of the Ancients,” xkcd. [Online]. Available: https://xkcd.com/979/. [Accessed:

29-Jun-2022].
14. R. Munroe, “Workflow” xkcd. [Online]. Available: https://xkcd.com/1172/. [Accessed: 29-Jun-2022].
15. Spack. [Online]. Available: https://spack.io/. [Accessed: 29-Jun-2022]
16. S. Carey, “What is Docker? the spark for the Container Revolution,” InfoWorld, 02-Aug-2021. [Online].

Available:
https://www.infoworld.com/article/3204171/what-is-docker-the-spark-for-the-container-revolution.html.
[Accessed: 29-Jun-2022].

17. “Appimage,” AppImage. [Online]. Available: https://appimage.org/. [Accessed: 29-Jun-2022].
18. “Building software with ease,” EasyBuild. [Online]. Available: https://easybuild.io/. [Accessed:

29-Jun-2022].
19. “Home,” Apptainer. [Online]. Available: https://apptainer.org/. [Accessed: 28-Jun-2022].
20. “Quickstart,” Quickstart - AppImage documentation, 25-Nov-2020. [Online]. Available:

https://docs.appimage.org/introduction/quickstart.html#how-to-run-an-appimage. [Accessed:
29-Jun-2022].

30

© 2022. J.Gyllinsky. Confidential. Do not distribute.

Thank you for your time.

Questions?

31

3232

