
  

Debugging and Tuning

Prasad Maddumage



  

Debugging
● Detecting and removing of existing and potential errors (‘bugs’) in a 

software that can cause it to behave unexpectedly or crash. To prevent 
incorrect operation of a software 

● Syntax errors, segmentation faults (invalid memory access), I/O errors, 
hardware issues

● Terminal based debugging
– write/printf, gdb/idb, valgrind (memory issues), …
– Can effectively pinpoint problems, works with serial and parallel codes
– Need to remember commands, need recompiling codes

● GUI debuggers
– TotalView, DDT, Intel Inspector (GUI and cli)
– Powerful and user friendly



  

gdb Serial Debugging
$ gfortran trap.f90 -g -o trap
$ gdb trap

gdb) break 13
Breakpoint 1 at 0x11de: file trap.f90, line 13.
(gdb) break 15
Breakpoint 2 at 0x1234: file trap.f90, line 15.
(gdb) run
13   area = 0.5 * (sin(a) + sin(b))
(gdb) print a
$1 = 0
(gdb) p area
$2 = -209808
(gdb) next
14   DO i = 1, n-1
(gdb) p area
$3 = -4.37113883e-08
(gdb) continue
Continuing.

Breakpoint 2, trapz () at trap.f90:15
15      area = area + sin(a + i*h)
(gdb) p area
$4 = -4.37113883e-08
(gdb) continue
Continuing.

Breakpoint 2, trapz () at trap.f90:15
15      area = area + sin(a + i*h)
(gdb) p area
$5 = 0.0314107165
(gdb) clear
Deleted breakpoint 2 
(gdb) c
Continuing.
 Area =    1.99983561    
[Inferior 1 (process 13270) exited normally]
(gdb) q

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19



  

– Core dump analysis
●

● Use bt / frame / list / info locals / print etc to pin point the cause

gdb Serial Debugging
(gdb) run
Starting program: 

Program received signal SIGSEGV, Segmentation 
fault.
0x00005555555552bc in test () at test.f90:10
10      x(i) = i
(gdb) backtrace
#0  0x00005555555552bc in test () at test.f90:10
(gdb) frame 0
#0  0x00005555555552bc in test () at test.f90:10
10      x(i) = i
(gdb) print i
$1 = 30141
(gdb) print x
$2 = (1, 2, 3, 4, 5)

$ gdb <path to binary> <path to core dump>



  

Parallel (MPI) Debugging
● Attach gdb to each process of a running job and examine

–

– Can submit a (SLURM) job with gdb commands (break etc) supplied

● TotalView and DDT
– GUI debuggers offer convenience
– Expensive!

● Intel Inspector
–  Memory / thread checker 
– inspxe-gui and inspxe-cl

$ gdb attach <pid>



  

TotalView
– Recompile with -g
– totalview <your binary>

– Open TotalView and 
use startup dialog to 
choose the binary

– Attach TotalView to an  
already running job



  

TotalView



  

Intel Inspector
– Detect memory leaks
– Locate memory problems
– Locate deadlocks and data 

races

– GUI (inspxe-gui) and cli 
(inspxe-cl) versions

– Works with serial and mpi 
applications

– Cli version results can be 
visualized with GUI later

– Free!

srun -n8 inspxe-cl -collect mi3 
-r my_results my_mpi_app 



  

Language Specific Debuggers
● Bash: Use debug (xtrace) mode with -x option

● Python: pdb – add breakpoint() in the source (Python3)
– Interactive source debugger
– Supports breakpoints and single stepping at the source line level
– Inspection of stack frames, source code listing

● R: Use RStudio
– Set breakpoints in RStudio or put browser() in the line you want to break

– Then the IDE will enter debug mode
● Can check current variable stack, traceback the execution, and more 



  

Tuning
● Tuning involves profiling software to finding room for improvement 

and making a code run more efficiently
– Software profiling: dynamic code analysis where a program's behavior is 

investigated using the data collected as the program runs
● CPU/memory utilization, frequency of function calls, I/O, MPI library usage, hardware 

counters, etc.

– Profiling can help find ways to increase efficiency of a program
– Identify bottlenecks
– Improve scaling of parallel programs

● Profilers
– gprof, TAU (Tuning and Analysis Utilities), Intel tools



  

gprof
● Terminal based serial profiler
● Produces flat profile and a call graph

– Flat profile: A breakdown of time spent on 
each subroutine / function call

– Call graph: In what order each subroutine / 
function was called

● Comes with gcc and already exist in 
most systems

gfortran thermal.f -pg -o thermal
./thermal
gprof thermal

Flat profile:

Each sample counts as 0.01 seconds.
  %   cumulative   self              self     total           
 time   seconds   seconds    calls   s/call   s/call  name    
 44.10      9.04     9.04 86150709     0.00     0.00  energy_
 34.08     16.04     6.99 13893157     0.00     0.00  update_
 19.75     20.09     4.05   771898     0.00     0.00  sumit_

     Call graph (explanation follows)

granularity: each sample hit covers 4 byte(s) for 0.05% of 20.51 
seconds

index % time    self  children    called     name
                0.03   20.45       1/1           main [2]
[1]     99.9    0.03   20.45       1         MAIN__ [1]
                0.13   20.08  771780/771780      move_ [3]
                0.16    0.00  771897/771897      locate_ [7]



  

TAU
● Tuning and Analysis Utilities (20+ year project actively developed by 

Univ. of Oregon, LANL, Julich)
● Integrated performance toolkit

– Instrumentation, measurement, analysis, visualization
– Performance data management and data mining
– Open source and free

● Works with or without recompiling code
– Dynamic instrumentation (without recompile) provides limited information

● Use PAPI to measure hardware counters (cache, FLOPS, ...)
● Serial and MPI profiling capability
● Complicated / steep learning curve



  

TAU
● Profile: statistical summary of all 

metrics measured
– Shows how much total time & 

resources each call utilized

● Trace: timeline of runtime events took 
place
– Shows when each event happened 

and where



  

TAU

Call paths

Communication matrix



  

Intel Advisor
– Roofline Analysis for CPU/GPU
– Vectorization Optimization
– Offload Modeling
– Thread Prototyping
– Flow Graph Analyzer
– Much higher overhead compared to 

TAU



  

Intel Advisor



  

Intel Trace Analyzer

mpirun -trace -np 4 ./wave_mpi

traceanalyzer wave_mpi.stf

– MPI profiler
– traces MPI code
– identifies communication 

inefficiencies
– to profile the executable, just 

append '-trace' to mpirun

– traceanalyzer gui can use 
to visualize generated results



  

Intel VTune
– Tune application performance 

for CPU / GPU
– Profile  C, C++, C#, Fortran, 

OpenCL, Python*, Google 
Go, Java*, .NET, Assembly

– Coarse-grained system data 
for an extended period or 
detailed results mapped to 
source code

– Multi node (MPI) profiling



  

Profiling Python

python3 -m cProfile -s tottime numpy_io.py

         3820056 function calls (3805275 primitive calls) in 8.231 seconds
   Ordered by: internal time
   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    2.315    2.315    2.566    2.566 Gio.py:39(run)
        1    0.588    0.588    0.643    0.643 Gtk.py:1(<module>)
    32047    0.468    0.000    0.716    0.000 inspect.py:744(cleandoc)
     5845    0.288    0.000    0.400    0.000 dates.py:305(_dt64_to_ordinalf)
       30    0.214    0.007    0.219    0.007 {built-in method _imp.create_dynamic}
    35070    0.155    0.000    0.242    0.000 _parser.py:83(get_token)
    35146    0.137    0.000    0.137    0.000 {method 'astype' of 'numpy.ndarray' objects}
      282    0.134    0.000    0.134    0.000 {method 'read' of '_io.BufferedReader' objects}
.
.
.



  

Profiling R
● Use RStudio’s built in Profile > Start Profiling menu and run the 

R code

● Or, enclose the function or code with profvis function
● Enables a user to:

– Profile time, memory
– Find bottlenecks

library(profvis)
profvis({
  data(diamonds, package = "ggplot2")
  plot(price ~ carat, data = diamonds)
  m <- lm(price ~ carat, data = diamonds)
  abline(m, col = "red")
})



  

Thank you


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

