
Supercomputing
in Plain English

Teaching
High Performance Computing
to Inexperienced Programmers

Henry Neeman, University of Oklahoma
Julia Mullen, Worcester Polytechnic Institute

Lloyd Lee, University of Oklahoma
Gerald K. Newman, University of Oklahoma

This work was partially funded by NSF-0203481.

2

Outline
Introduction
Computational Science & Engineering (CSE)
High Performance Computing (HPC)
The Importance of Followup
Summary and Future Work

Introduction

4

Premises
Computational Science & Engineering (CSE) is an integral
part of science & engineering research.
Because most problems of CSE interest are large, CSE and
High Performance Computing (HPC) are inextricably linked.
Most science & engineering students have relatively little
programming experience.
Relatively few institutions teach either CSE or HPC to most
of their science & engineering students.
An important reason for this is that science & engineering
faculty believe that CSE and HPC require more computing
background than their students can handle.
We disagree.

5

The Role of Linux Clusters
Linux clusters are much cheaper than proprietary HPC
architectures (factor of 5 to 10 per GFLOP).
They’re largely useful for:

MPI
large numbers of single-processor applications

MPI software design is not easy for inexperienced
programmers:

difficult programming model
lack of user-friendly documentation – emphasis on technical details
rather than broad overview
hard to find good help

BUT: a few million dollars for MPI programmers is much
much cheaper than tens or hundreds of millions for big SMPs
– and the payoff lasts much longer.

6

Why is HPC Hard to Learn?
HPC technology changes very quickly:

Pthreads: 1988 (POSIX.1 FIPS 151-1) [1]

PVM: 1991 (version 2, first publicly released) [2]

MPI: 1994 (version 1) [3,4]

OpenMP: 1997 (version 1) [5,6]

Globus: 1998 (version 1.0.0) [7]

Typically a 5 year lag (or more) between the standard and
documentation readable by experienced computer scientists
who aren’t in HPC
1. Description of the standard
2. Reference guide, user guide for experienced HPC users
3. Book for general computer science audience
Documentation for novice programmers: very rare
Tiny percentage of physical scientists & engineers ever learn
these standards

7

Why Bother Teaching Novices?
Application scientists & engineers typically know their
applications very well, much better than a collaborating
computer scientist would ever be able to.
Because of Linux clusters, CSE is now affordable.
Commercial code development lags behind the research
community.
Many potential CSE users don’t need full time CSE and HPC
staff, just some help.
Today’s novices are tomorrow’s top researchers, especially
because today’s top researchers will eventually retire.

8

Questions for Teaching Novices
What are the fundamental issues of CSE?
What are the fundamental issues of HPC?
How can we express these issues in a way that makes sense
to inexperienced programmers?
Is classroom exposure enough, or is one-on-one contact with
experts required?

Computational Science
& Engineering

10

CSE Hierarchy
Phenomenon
Physics
Mathematics (continuous)
Numerics (discrete)
Algorithm
Implementation
Port
Solution
Analysis
Verification

11

CSE Fundamental Issues
Physics, mathematics and numerics are addressed well by
existing science and engineering curricula, though often in
isolation from one another.
So, instruction should be provided on issues relating
primarily to the later items – algorithm, implementation,
port, solution, analysis and verification – and on the
interrelationships between all of these items.
Example: algorithm choice
Typical mistake: solve a linear system by inverting the
matrix, without regard for performance, conditioning, or
exploiting the properties of the matrix.

12

The Five Rules for CSE [8]

1. Know the physics.
2. Control the software.
3. Understand the numerics.
4. Achieve expected behavior.
5. Question unexpected behavior.

13

Know the Physics
In general, scientists and engineers know their problems well –

they know how to build the mathematical model representing
their physical problem.

14

Understand the Numerics
This area is less well understood by the scientific and

engineering community. The tendency is toward old and
often inherently serial algorithms.

At this stage, a researcher is greatly aided by considering two
aspects of algorithm development:
Do the numerics accurately capture the physical phenomena?
Is the algorithm appropriate for parallel computing?

15

Achieve the Expected Behavior
The testing and validation of any code is essential to develop

confidence in the results. Verification is accomplished by
applying the code to problems with known solutions and
obtaining the expected behavior.

16

CSE Implies Multidisciplinary
CSE is the interface between physics, mathematics and
computer science.
Therefore, finding an effective and efficient way for these
disciplines to work together is critically important to success.
However, that’s not typically how CSE is taught; rather, it’s
taught in the context of a particular application discipline,
with relatively little regard for computing issues, especially
performance.
But, performance governs the range of problems that can be
tackled.
Therefore, the traditional approach limits the scope and
ambition of new practitioners.

High Performance
Computing

18

OSCER
OU Supercomputing Center for Education & Research
OSCER is a new multidisciplinary center within OU’s
Department of Information Technology
OSCER is for:

Undergrad students
Grad students
Staff
Faculty

OSCER provides:
Supercomputing education
Supercomputing expertise
Supercomputing resources

Hardware
Software

19

HPC Fundamental Issues
Storage hierarchy
Parallelism

Instruction-level parallelism
Multiprocessing

Shared Memory Multithreading
Distributed Multiprocessing

High performance compilers
Scientific libraries
Visualization
Grid Computing

20

How to Express These Ideas?
Minimal jargon
Clearly define every new term in plain English
Analogies

Laptop analogy
Jigsaw puzzle analogy
Desert islands analogy

Narratives
Interaction: instead of just lecturing, ask questions to lead the
students to useful approaches
Followup: not just classroom but also one-on-one
This approach works not only for inexperienced
programmers but also for CS students.

21

HPC Workshop Series

Supercomputing
in Plain English

An Introduction to
High Performance Computing

Henry Neeman, Director
OU Supercomputing Center for Education & Research

22

HPC Workshop Topics
1. Overview
2. Storage Hierarchy
3. Instruction Level Parallelism
4. Stupid Compiler Tricks (high performance compilers)
5. Shared Memory Multithreading (OpenMP)
6. Distributed Multiprocessing (MPI)
7. Grab Bag: libraries, I/O, visualization

Sample slides from workshops follow.

23

What is Supercomputing About?

SpeedSize

24

What is the Storage Hierarchy?

Registers
Cache memory
Main memory (RAM)
Hard disk
Removable media (e.g., CDROM)
Internet

Fast, expensive, few

Slow, cheap, a lot

[9]

[10]

25

Why Have Cache?

Cache is nearly the same speed
as the CPU, so the CPU doesn’t
have to wait nearly as long for
stuff that’s already in cache:
it can do more
operations per second!

CPU 73.2 GB/sec

51.2 GB/sec

3.2 GB/sec

26

Henry’s Laptop

Pentium 4 1.6 GHz w/512 KB L2 Cache
512 MB 400 MHz DDR SDRAM
30 GB Hard Drive
Floppy Drive
DVD/CD-RW Drive
10/100 Mbps Ethernet
56 Kbps Phone Modem

Dell Latitude C840[11]

27

Storage Speed, Size, Cost

charged
per month
(typically)

unlimited

12

Ethernet
(100 Mbps)

charged per
month

(typically)

unlimited

0.007

Phone
Modem

(56 Kbps)

CD-RWHard
Drive

Main
Memory

(400 MHz
DDR

SDRAM)

Cache
Memory

(L2)

Registers
(Pentium 4
1.6 GHz)Henry’s

Laptop

$0.0015 [17]$0.009 [17]$1.17 [17]$1200 [17]

–
Cost

($/MB)

unlimited30,0005120.5304 bytes**
[16]

Size
(MB)

4 [9]100 [15]3,277 [14]52,428 [13]73,232[12]

(3200
MFLOP/s*)

Speed
(MB/sec)

[peak]

* MFLOP/s: millions of floating point operations per second
** 8 32-bit integer registers, 8 80-bit floating point registers, 8 64-bit MMX integer registers,

8 128-bit floating point XMM registers

28

Tiling
SUBROUTINE matrix_matrix_mult_tile (&
& dst, src1, src2, nr, nc, nq, &
& rstart, rend, cstart, cend, &
& qstart, qend)
DO c = cstart, cend

DO r = rstart, rend
if (qstart == 1) dst(r,c) = 0.0
DO q = qstart, qend

dst(r,c) = dst(r,c) + src1(r,q) * src2(q,c)
END DO !! q = qstart, qend

END DO !! r = rstart, rend
END DO !! c = cstart, cend

END SUBROUTINE matrix_matrix_mult_tile

DO cstart = 1, nc, ctilesize
cend = cstart + ctilesize - 1
IF (cend > nc) cend = nc
DO rstart = 1, nr, rtilesize

rend = rstart + rtilesize - 1
IF (rend > nr) rend = nr
DO qstart = 1, nq, qtilesize

qend = qstart + qtilesize - 1
IF (qend > nq) qend = nq
CALL matrix_matrix_mult_tile(&

& dst, src1, src2, nr, nc, nq, &
& rstart, rend, cstart, cend, qstart, qend)

END DO !! qstart = 1, nq, qtilesize
END DO !! rstart = 1, nr, rtilesize

END DO !! cstart = 1, nc, ctilesize

29

Parallelism

Parallelism means doing
multiple things at the same
time: you can get more
work done in the same time.

Less fish …

More fish!

30

Instruction Level Parallelism
Superscalar: perform multiple operations at the same time
Pipeline: start performing an operation on one piece of data
while continuing the same operation on another piece of data
Superpipeline: perform multiple pipelined operations at the
same time
Vector: load multiple pieces of data into special registers in
the CPU and perform the same operation on all of them at the
same time

31

Why You Shouldn’t Panic
In general, the compiler and the CPU will do most of the heavy

lifting for instruction-level parallelism.

BUT:
You need to be aware of ILP, because how your code is
structured affects how much ILP the compiler and the CPU can
give you.

32

The Jigsaw Puzzle Analogy

33

The Jigsaw Puzzle Analogy (2002)

34

Serial Computing
Suppose you want to do a jigsaw puzzle
that has, say, a thousand pieces.

We can imagine that it’ll take you a
certain amount of time. Let’s say
that you can put the puzzle together in
an hour.

35

Shared Memory Parallelism
If Julie sits across the table from you,
then she can work on her half of the
puzzle and you can work on yours.
Once in a while, you’ll both reach into
the pile of pieces at the same time
(you’ll contend for the same resource),
which will cause a little bit of
slowdown. And from time to time
you’ll have to work together
(communicate) at the interface between
her half and yours. The speedup will
be nearly 2-to-1: y’all might take 35
minutes instead of 30.

36

The More the Merrier?
Now let’s put Lloyd and Jerry on the
other two sides of the table. Each of
you can work on a part of the puzzle,
but there’ll be a lot more contention
for the shared resource (the pile of
puzzle pieces) and a lot more
communication at the interfaces. So
y’all will get noticeably less than a
4-to-1 speedup, but you’ll still have
an improvement, maybe something
like 3-to-1: the four of you can get it
done in 20 minutes instead of an hour.

37

Diminishing Returns
If we now put Cathy and Denese and
Chenmei and Nilesh on the corners of
the table, there’s going to be a whole
lot of contention for the shared
resource, and a lot of communication
at the many interfaces. So the
speedup y’all get will be much less
than we’d like; you’ll be lucky to get
5-to-1.

So we can see that adding more and
more workers onto a shared resource
is eventually going to have a
diminishing return.

38

Distributed Parallelism

Now let’s try something a little different. Let’s set up two
tables, and let’s put you at one of them and Julie at the other.
Let’s put half of the puzzle pieces on your table and the other
half of the pieces on Julie’s. Now y’all can work completely
independently, without any contention for a shared resource.
BUT, the cost of communicating is MUCH higher (you have
to scootch your tables together), and you need the ability to
split up (decompose) the puzzle pieces reasonably evenly,
which may be tricky to do for some puzzles.

39

More Distributed Processors
It’s a lot easier to add
more processors in
distributed parallelism.
But, you always have to
be aware of the need to
decompose the problem
and to communicate
between the processors.
Also, as you add more
processors, it may be
harder to load balance
the amount of work that
each processor gets.

40

Load Balancing

Load balancing means giving everyone roughly the same
amount of work to do.

For example, if the jigsaw puzzle is half grass and half sky,
then you can do the grass and Julie can do the sky, and then
y’all only have to communicate at the horizon – and the
amount of work that each of you does on your own is
roughly equal. So you’ll get pretty good speedup.

41

Load Balancing

Load balancing can be easy, if the problem splits up into
chunks of roughly equal size, with one chunk per
processor. Or load balancing can be very hard.

42

Hybrid Parallelism

The Desert Islands
Analogy

44

An Island Hut
Imagine you’re on an island in a little

hut.
Inside the hut is a desk.
On the desk is a phone, a pencil, a

calculator, a piece of paper with
numbers, and a piece of paper with
instructions.

45

Instructions
The instructions are split into two kinds:

Arithmetic/Logical: e.g.,
Add the 27th number to the 239th number
Compare the 96th number to the 118th number to see
whether they are equal

Communication: e.g.,
dial 555-0127 and leave a voicemail containing the
962nd number
call your voicemail box and collect a voicemail from
555-0063 and put that number in the 715th slot

46

Is There Anybody Out There?
If you’re in a hut on an island, you aren’t specifically aware of

anyone else.
Especially, you don’t know whether anyone else is working on

the same problem as you are, and you don’t know who’s at
the other end of the phone line.

All you know is what to do with the voicemails you get, and
what phone numbers to send voicemails to.

47

Someone Might Be Out There
Now suppose that Julie is on another island somewhere, in the

same kind of hut, with the same kind of equipment.
Suppose that she has the same list of instructions as you, but a

different set of numbers (both data and phone numbers).
Like you, she doesn’t know whether there’s anyone else

working on her problem.

48

Even More People Out There
Now suppose that Lloyd and Jerry are also in huts on islands.
Suppose that each of the four has the exact same list of

instructions, but different lists of numbers.
And suppose that the phone numbers that people call are each

others’. That is, your instructions have you call Julie, Lloyd
and Jerry, Julie’s has her call Lloyd, Jerry and you, and so on.

Then you might all be working together on the same problem.

49

All Data Are Private
Notice that you can’t see Julie’s or Lloyd’s or Jerry’s numbers,

nor can they see yours or each other’s.
Thus, everyone’s numbers are private: there’s no way for

anyone to share numbers, except by leaving them in
voicemails.

50

Long Distance Calls: 2 Costs
When you make a long distance phone call, you typically have to

pay two costs:
Connection charge: the fixed cost of connecting your phone to
someone else’s, even if you’re only connected for a second
Per-minute charge: the cost per minute of talking, once you’re
connected

If the connection charge is large, then you want to make as few
calls as possible.

51

Like Desert Islands
Distributed parallelism is very much like the Desert Islands

analogy:
Processors are independent of each other.
All data are private.
Processes communicate by passing messages (like
voicemails).
The cost of passing a message is split into the latency
(connection time) and the bandwidth (time per byte).

The Importance
of Followup

53

Why Followup?
Classroom exposure isn’t enough, because in the classroom
you can’t cover all the technical issues, or how to think about
parallel programming in the context of each of dozens of
specific applications.
So, experts have to spend time with student researchers (and,
for that matter, faculty and staff researchers) one-on-one (or
one-on-few) to work on their specific applications.
But, the amount of time per research group can be small –
maybe an hour a week for 1 to 2 years.

54

OSCER Rounds

From left: Civil Engr undergrad from Cornell; CS grad student; OSCER
Director; Civil Engr grad student; Civil Engr prof; Civil Engr undergrad

55

Why Do Rounds?
“The devil is in the details” – and we can’t cover all the
necessary detail in 7 hours of workshops.
HPC novices need expert help, but not all that much – an
hour or so a week is typically enough, especially once they
get going.
Novices don’t need to become experts, and in fact they can’t:
there’s too much new stuff coming out all the time (e.g., Grid
computing).
But, someone should be an expert, and that person should be
available to provide useful information.

56

HPC Learning Curve
1. Learning Phase: HPC expert learns about the application;

application research team learns how basic HPC strategies
relate to their application

2. Development Phase: discuss and implement appropriate
optimization and parallelization strategies

3. Refinement Phase: initial approaches are improved through
profiling, benchmarking, testing, etc

Lots of overlap between these phases

Summary and
Future Work

58

CSE/HPC Experts
Most application research groups don’t need a full time CSE
and/or HPC expert, but they do need some help (followup).
So, an institution with one or a few such experts can spread
their salaries over dozens of research projects, since each
project will only need a modest amount of their time.
Thus, these experts are cost effective:

For each project, they add a lot of value for minimal cost.
Their participation in each project raises the probability of each grant
proposal being funded, because the proposals are multidisciplinary,
have enough CSE and/or HPC expertise to be practicable, and include
a strong educational component.
The more projects an expert participates in, the broader their range of
experience, and so the more value they bring to each new project.

In a sense, the experts’ job is to make themselves obsolete,
but to a specific student or project rather than to their
institution – “there’s plenty more where that came from.”

59

OU CRCD Project
Develop CSE & HPC modules
Teach CSE & HPC modules within nanotechnology course
Assessment

Surveys
Pre & post test
Attitudinal

Programming Project
We develop parallel Monte Carlo code.
We remove the parallel constructs.
Students (re-)parallelize the code, under our supervision and mentoring.

CSE & HPC modules ported to other courses to ensure broad
applicability

60

References
[1] S.J. Norton, M. D. Depasquale, Thread Time: The MultiThreaded Programming Guide, 1st ed, Prentice Hall, 1996, p. 38.
[2] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, V. Sunderam, PVM: Parallel Virtual Machine: A Users’ Guide
and Tutorial for Networked Parallel Computing. The MIT Press, 1994. http://www.netlib.org/pvm3/book/pvm-book.ps
[3] Message Passing Interface Forum, MPI: A Message Passing Interface Standard. 1994. http://www.openmp.org/specs/mp-
documents/fspec10.pdf
[4] P.S. Pacheco, Parallel Programming with MPI. Morgan Kaufmann Publishers Inc., 1997.
[5] OpenMP Architecture Review Board, “OpenMP Fortran Application Program Interface.” 1997.
http://www.openmp.org/specs/mp-documents/fspec10.pdf
[6] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, R. Menon, Parallel Programming in OpenMP. Morgan
Kaufmann Publishers Inc., 2001.
[7] Globus News Archive. http://www.globus.org/about/news/
[8] Robert E. Peterkin, personal communication, 2002.
[9] http://www.f1photo.com/
[10] http://www.vw.com/newbeetle/
[11] http://www.dell.com/us/en/bsd/products/model_latit_latit_c840.htm
[12] R. Gerber, The Software Optimization Cookbook: High-performance Recipes for the Intel Architecture. Intel Press, 2002,
pp. 161-168.
[13] http://www.anandtech.com/showdoc.html?i=1460&p=2
[14] ftp://download.intel.com/design/Pentium4/papers/24943801.pdf
[15] http://www.toshiba.com/taecdpd/products/features/MK2018gas-Over.shtml
[16] http://www.toshiba.com/taecdpd/techdocs/sdr2002/2002spec.shtml
[17] ftp://download.intel.com/design/Pentium4/manuals/24896606.pdf
[18] http://www.pricewatch.com/
[19] K. Dowd and C. Severance, High Performance Computing, 2nd ed. O’Reilly, 1998, p. 16.

http://www.netlib.org/pvm3/book/pvm-book.ps
http://www.netlib.org/pvm3/book/pvm-book.ps
http://www.openmp.org/specs/mp-documents/fspec10.pdf
http://www.openmp.org/specs/mp-documents/fspec10.pdf
http://www.openmp.org/specs/mp-documents/fspec10.pdf
http://www.openmp.org/specs/mp-documents/fspec10.pdf
http://www.openmp.org/specs/mp-documents/fspec10.pdf
http://www.openmp.org/specs/mp-documents/fspec10.pdf
http://www.openmp.org/specs/mp-documents/fspec10.pdf
http://www.openmp.org/specs/mp-documents/fspec10.pdf
http://www.globus.org/about/news/
http://www.f1photo.com/
http://www.vw.com/newbeetle/
http://www.dell.com/us/en/bsd/products/model_latit_latit_c840.htm
http://www.anandtech.com/showdoc.html?i=1460&p=2
ftp://download.intel.com/design/Pentium4/papers/24943801.pdf
http://www.toshiba.com/taecdpd/products/features/MK2018gas-Over.shtml
http://www.toshiba.com/taecdpd/techdocs/sdr2002/2002spec.shtml
ftp://download.intel.com/design/Pentium4/manuals/24896606.pdf
http://www.pricewatch.com/

	Supercomputingin Plain English
	Outline
	Introduction
	Premises
	The Role of Linux Clusters
	Why is HPC Hard to Learn?
	Why Bother Teaching Novices?
	Questions for Teaching Novices
	Computational Science & Engineering
	CSE Hierarchy
	CSE Fundamental Issues
	The Five Rules for CSE [8]
	Know the Physics
	Understand the Numerics
	Achieve the Expected Behavior
	CSE Implies Multidisciplinary
	High Performance Computing
	OSCER
	HPC Fundamental Issues
	How to Express These Ideas?
	HPC Workshop Series
	HPC Workshop Topics
	What is Supercomputing About?
	What is the Storage Hierarchy?
	Why Have Cache?
	Henry’s Laptop
	Storage Speed, Size, Cost
	Tiling
	Parallelism
	Instruction Level Parallelism
	Why You Shouldn’t Panic
	The Jigsaw Puzzle Analogy
	The Jigsaw Puzzle Analogy (2002)
	Serial Computing
	Shared Memory Parallelism
	The More the Merrier?
	Diminishing Returns
	Distributed Parallelism
	More Distributed Processors
	Load Balancing
	Load Balancing
	Hybrid Parallelism
	The Desert Islands Analogy
	An Island Hut
	Instructions
	Is There Anybody Out There?
	Someone Might Be Out There
	Even More People Out There
	All Data Are Private
	Long Distance Calls: 2 Costs
	Like Desert Islands
	The Importance of Followup
	Why Followup?
	OSCER Rounds
	Why Do Rounds?
	HPC Learning Curve
	Summary andFuture Work
	CSE/HPC Experts
	OU CRCD Project
	References

