
Parallel Programming 

& Cluster Computing 

The Tyranny of the Storage Hierarchy 

Joshua Alexander, U Oklahoma 
Ivan Babic, Earlham College 

Michial Green, Contra Costa College 
Mobeen Ludin, Earlham College 

Tom Murphy, Contra Costa College 
Kristin Muterspaw, Earlham College 

Henry Neeman, U Oklahoma 
Charlie Peck, Earlham College 



NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 

Outline 

 What is the storage hierarchy? 

 Registers 

 Cache 

 Main Memory (RAM) 

 The Relationship Between RAM and Cache 

 The Importance of Being Local 

 Hard Disk 

 Virtual Memory 

2 



The Storage Hierarchy 

 Registers 
 Cache memory 
 Main memory (RAM) 
 Hard disk 
 Removable media (CD, DVD etc) 
 Internet 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 3 

Fast, expensive, few 

Slow, cheap, a lot 

[5] 



A Laptop 

 Intel Core2 Duo SU9600                  

1.6 GHz w/3 MB L2 Cache 

 4 GB 1066 MHz DDR3 SDRAM 

 256 GB SSD Hard Drive 

 DVD+RW/CD-RW Drive (8x) 

 1 Gbps Ethernet Adapter 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 4 

Dell Latitude Z600[4] 



Storage Speed, Size, Cost 

 

Laptop 

Registers 

(Intel  

Core2 Duo 

1.6 GHz) 

Cache 

Memory 

(L2) 

Main 

Memory 

(1066MHz 

DDR3 

SDRAM) 

Hard 

Drive 

(SSD) 

Ethernet 

(1000 

Mbps) 

DVD+R 

(16x) 

Phone 

Modem 

(56 Kbps) 

Speed 

(MB/sec) 

[peak] 

314,573[6] 

(12,800 

MFLOP/s*) 

27,276 [7] 4500 [7] 250      
[9] 

125 

 

22             
[10] 

0.007 

Size 

(MB) 

464 bytes** 
[11] 

 

3 4096 256,000 unlimited unlimited 

 

unlimited 

Cost 

($/MB) 

 

– 

$285 [13] $0.03     
[12] 

$0.002 
[12] 

charged 

per month 

(typically) 

$0.00005 
[12] 

charged 

per month 

(typically) 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 5 

*   MFLOP/s: millions of floating point operations per second 

** 16 64-bit general purpose registers, 8 80-bit floating point registers, 

     16 128-bit floating point vector registers 



 

Registers 

[25] 



NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 

What Are Registers? 

Registers are memory-like locations inside the Central 

Processing Unit that hold data that are being used 

right now in operations. 

7 

… 

Arithmetic/Logic Unit Control Unit Registers 

Fetch Next Instruction Add Sub 

Mult Div 

And Or 

Not 
… 

Integer 

Floating Point 

… 

Fetch Data Store Data 

Increment Instruction Ptr 

Execute Instruction 

… 

CPU 



How Registers Are Used 

 Every arithmetic or logical operation has one or more 
operands and one result. 

 Operands are contained in source registers. 

 A “black box” of circuits performs the operation. 

 The result goes into a destination register. 

8 

E
x

am
p

le
: 

addend in R0 

augend in R1 
ADD sum in R2 

5 

7 
12 

Register Ri 

Register Rj 

Register Rk 

operand 

operand 

result 

Operation circuitry 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 



NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 

How Many Registers? 

 

Typically, a CPU has less than 8 KB (8192 bytes) of registers, usually 

split into registers for holding integer values and registers for 

holding floating point (real) values, plus a few special purpose 

registers. 

Examples: 

 IBM POWER7 (found in IBM p-Series supercomputers):            

226 64-bit integer registers and 348 128-bit merged       

vector/scalar registers (7376 bytes) [28] 

 Intel Core2 Duo: 16 64-bit general purpose registers, 8 80-bit 

floating point registers, 16 128-bit floating point vector registers 

(464 bytes) [11] 

 Intel Itanium2: 128 64-bit integer registers, 128 82-bit floating 

point registers (2304 bytes) [23] 

9 



 

Cache 

[4] 



What is Cache? 
 

 A special kind of memory where data reside that are 
about to be used or have just been used. 

 Very fast => very expensive => very small (typically 100 
to 10,000 times as expensive as RAM per byte) 

 Data in cache can be loaded into or stored from registers 
at speeds comparable to the speed of performing 
computations. 

 Data that are not in cache (but that are in Main Memory) 
take much longer to load or store. 

 Cache is near the CPU: either inside the CPU or on the 
motherboard that the CPU sits on. 

11 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 



From Cache to the CPU 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 
12 

Typically, data move between cache and the CPU at speeds relatively near to that of 

the CPU performing calculations. 

CPU 

Cache 

27 GB/sec (6x RAM)[7] 

307 GB/sec[7] 



NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 

Multiple Levels of Cache 

Most contemporary CPUs have more than one level of cache. 
For example: 

 Intel Pentium4 EM64T (Yonah) [??] 

 Level 1 caches:     32 KB instruction, 32 KB data 

 Level 2 cache:  2048 KB unified (instruction+data) 

 IBM POWER7 [28] 

 Level 1 cache:      32 KB instruction, 32 KB data per core 

 Level 2 cache:    256 KB unified per core 

 Level 3 cache:  4096 KB unified per core 

13 



NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 

Why Multiple Levels of Cache? 

The lower the level of cache: 
 the faster the cache can transfer data to the CPU; 
 the smaller that level of cache is (faster => more expensive => smaller). 

Example: IBM POWER7 latency to the CPU [28] 
 L1 cache:       1    cycle   =    0.29  ns for 3.5 GHz 

 L2 cache:       8.5 cycles =   2.43  ns for 3.5 GHz (average) 

 L3 cache:     23.5 cycles =    5.53  ns for 3.5 GHz (local to core) 

 RAM:        346    cycles = 98.86  ns for 3.5 GHz (1066 MHz RAM) 

Example: Intel Itanium2 latency to the CPU [19] 

 L1 cache:   1 cycle   =   1.0 ns for 1.0 GHz 

 L2 cache:   5 cycles =   5.0 ns for 1.0 GHz 

 L3 cache: 12-15 cycles = 12 – 15 ns for 1.0 GHz 

Example: Intel Pentium4 (Yonah) 
 L1 cache:   3 cycles =  1.64 ns for a 1.83 GHz CPU =   12 calculations 

 L2 cache: 14 cycles =  7.65 ns for a 1.83 GHz CPU =   56 calculations 

 RAM:       48 cycles = 26.2 ns for a 1.83 GHz CPU = 192 calculations  

14 



NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 

Cache & RAM Latencies 

Cache & RAM Latency: Intel T2400 (1.83 GHz)

0

10

20

30

40

50

60

10
24

20
48

40
32

72
96

12
48

0

21
05

6

35
13

6

58
17

6

96
00

0

15
76

32

25
84

96

42
35

52

69
35

04

11
35

48
8

18
58

43
2

30
41

40
8

49
76

96
0

81
43

74
4

Array Size (bytes)

L
a

te
n

cy
 (

cl
o

ck
 c

y
cl

es
)

Memory Latency

3 cycles

14 cycles

47 cycles

15 

Better 

[26] 



Main Memory 

[13] 



NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 

What is Main Memory? 

 

 Where data reside for a program that is  currently running 

 Sometimes called RAM (Random Access Memory): you can 

load from or store into any main memory location at any time 

 Sometimes called core (from magnetic “cores” that some 

memories used, many years ago) 

 Much slower => much cheaper => much bigger 

 

17 



What Main Memory Looks Like 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 
18 

… 
0 1 2 3 4 5 6 7 8 9 10 

536,870,911 

You can think of main memory as a 

big long 1D array of bytes. 



The Relationship 

Between 

Main Memory & Cache 



RAM is Slow 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 
20 

CPU 307 GB/sec[6] 

4.4 GB/sec[7] (1.4%) 

Bottleneck 

The speed of data transfer 

between Main Memory and the 

CPU is much slower than the 

speed of calculating, so the CPU 

spends most of its time waiting 

for data to come in or go out. 



Why Have Cache? 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 
21 

CPU 
Cache is much closer to the speed 

of the CPU, so the CPU doesn’t 

have to wait nearly as long for 

stuff that’s already in cache: 

it can do more 

operations per second! 4.4 GB/sec[7] (1%) 

27 GB/sec (9%)[7] 



NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 

Cache & RAM Bandwidths 

Cache & RAM Bandwidth: Intel T2400 (1.83 GHz)

0

2000

4000

6000

8000

10000

12000

14000

16000

10
24

17
40

8

33
79

2

66
56

0

12
08

32

20
68

48

34
81

60

58
06

08

96
05

12

15
84

12
8

26
00

96
0

42
65

98
4

69
88

80
0

Array Size (bytes)

B
a
n

d
w

id
th

 (
M

B
/s

ec
)

Read BW

Write BW

32 KB (L1 cache size)

2 MB (L2 cache size)

7.7 GB/sec14.2 GB/sec

3.5 GB/sec

1.4 GB/sec

22 

Better 

[26] 



Cache Use Jargon 

 

 Cache Hit:  the data that the CPU needs right now are 
already in cache. 

 Cache Miss: the data that the CPU needs right now are 
not currently in cache. 

If all of your data are small enough to fit in cache, then when 
you run your program, you’ll get almost all cache hits 
(except at the very beginning), which means that your 
performance could be excellent! 

Sadly, this rarely happens in real life: most problems of 
scientific or engineering interest are bigger than just a few 
MB. 

23 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 



NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 

Cache Lines 

 A cache line is a small, contiguous region in cache, 
corresponding to a contiguous region in RAM of the same 
size, that is loaded all at once. 

 Typical size:  32 to 1024 bytes 

 Examples 

 Core 2 Duo [26] 

 L1 data cache:               64 bytes per line 

 L2 cache:                     64 bytes per line 

 POWER7 [28] 
 L1 instruction cache:  128 bytes per line 

 L1 data cache:            128 bytes per line 

 L2 cache:                    128 bytes per line 

 L3 cache:                    128bytes per line  

24 



NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 

How Cache Works 

 

When you request data from a particular address in Main 
Memory, here’s what happens: 

1. The hardware checks whether the data for that address is 
already in cache. If so, it uses it. 

2. Otherwise, it loads from Main Memory the entire cache 
line that contains the address. 

For example, on a 1.83 GHz Pentium4 Core Duo (Yonah), a 
cache miss makes the program stall (wait) at least 48 
cycles (26.2 nanoseconds) for the next cache line to load – 
time that could have been spent performing up to 192 
calculations! [26] 

25 



If It’s in Cache, It’s Also in RAM 

If a particular memory address is currently in cache, then it’s 

also in Main Memory (RAM). 

That is, all of a program’s data are in Main Memory, but some 

are also in cache. 

We’ll revisit this point shortly. 

26 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 



NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 

Mapping Cache Lines to RAM 

Main memory typically maps into cache in one of three 
ways: 

 Direct mapped    (occasionally) 

 Fully associative (very rare these days) 

 Set associative    (common) 

DON’T 
PANIC! 

27 



NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 

Direct Mapped Cache 

Direct Mapped Cache is a scheme in which each location in 

main memory corresponds to exactly one location in cache 

(but not the reverse, since cache is much smaller than main 

memory). 

Typically, if a cache address is represented by c bits, and a 

main memory address is represented by m bits, then the 

cache location associated with main memory address A is 

MOD(A,2c); that is,  the lowest c bits of A. 

Example: POWER4 L1 instruction cache 

28 



Direct Mapped Cache Illustration 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 
29 

Must go into 

cache address 

11100101 

Main Memory Address 

0100101011100101 

Notice that 11100101 

is the low 8 bits of 

0100101011100101. 



NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 

Jargon: Cache Conflict 

Suppose that the cache address 11100101 currently contains 
RAM address 0100101011100101. 

But, we now need to load RAM address 1100101011100101, 
which maps to the same cache address as 
0100101011100101. 

This is called a cache conflict : the CPU needs a RAM 
location that maps to a cache line already in use. 

In the case of direct mapped cache, every cache conflict leads 
to the new cache line clobbering the old cache line. 

This can lead to serious performance problems. 

30 



NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 

Problem with Direct Mapped: F90 

If you have two arrays that start in the same place relative 

to cache, then they might clobber each other all the 

time: no cache hits! 

31 

REAL,DIMENSION(multiple_of_cache_size) :: a, b, c 

INTEGER :: index 

 
DO index = 1, multiple_of_cache_size 

    a(index) = b(index) + c(index) 

END DO 

In this example, a(index), b(index) and c(index) all map to the same 

cache line, so loading c(index) clobbers  b(index) – no cache reuse! 



NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 

Problem with Direct Mapped: C 

If you have two arrays that start in the same place relative 

to cache, then they might clobber each other all the 

time: no cache hits! 

32 

float a[multiple_of_cache_size], 

      b[multiple_of_cache_size, 

      c[multiple_of_cache_size]; 

int index; 
 
for (index = 0; index < multiple_of_cache_size; 
     index++) 

    { a[index] = b[index] + c[index]; } 

In this example, a[index], b[index] and c[index] all map to the same 

cache line, so loading c[index] clobbers  b[index] – no cache reuse! 



Fully Associative Cache 
 

Fully Associative Cache can put any line of main memory into 
any cache line. 

Typically, the cache management system will put the newly 
loaded data into the Least Recently Used cache line, though 
other strategies are possible (e.g., Random, First In First 
Out, Round Robin, Least Recently Modified). 

So, this can solve, or at least reduce, the cache conflict 
problem. 

But, fully associative cache tends to be expensive, so it’s pretty 
rare: you need Ncache

. NRAM connections! 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 33 



Fully Associative Illustration 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 
34 

Could go into 

any cache line 

Main Memory Address 

0100101011100101 



Set Associative Cache 

Set Associative Cache is a compromise between direct 
mapped and fully associative.  A line in main memory 
can map to any of a fixed number of cache lines. 

For example, 2-way Set Associative Cache can map each 
main memory line to either of 2 cache lines (e.g., to the 
Least Recently Used), 3-way maps to any of 3 cache 
lines, 4-way to 4 lines, and so on. 

Set Associative cache is cheaper than fully associative – 

you need K . NRAM connections – but more robust than 
direct mapped. 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 35 



2-Way Set Associative Illustration 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 
36 

Could go into 

cache address 

11100101 

Main Memory Address 

0100101011100101 

Could go into 

cache address 

01100101 

OR 



Cache Associativity Examples 

 Core 2 Duo [26] 
 L1 data cache:           8-way set associative 

 L2 cache:                   8-way set associative 

 POWER4 [12] 
 L1 instruction cache:  direct mapped 

 L1 data cache:            2-way set associative 

 L2 cache:                    8-way set associative 

 L3 cache:                    8-way set associative 

 POWER7 [28] 

 L1 instruction cache:   4-way set associative 

 L1 data cache:              8-way set associative 

 L2 cache:                     8-way set associative 

 L3 cache:                     8-way set associative 

 
NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 37 



If It’s in Cache, It’s Also in RAM 

As we saw earlier: 

 If a particular memory address is currently in cache, then 

it’s also in Main Memory (RAM). 

 That is, all of a program’s data are in Main Memory, but 

some are also in cache. 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 38 



Changing a Value That’s in Cache 

Suppose that you have in cache a particular line of main 

memory (RAM). 

If you don’t change the contents of any of that line’s bytes 

while it’s in cache, then when it gets clobbered by another 

main memory line coming into cache, there’s no loss of 

information. 

But, if you change the contents of any byte while it’s in cache, 

then you need to store it back out to main memory before 

clobbering it.  

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 39 



Cache Store Strategies 

Typically, there are two possible cache store strategies: 

 Write-through: every single time that a value in cache is 

changed, that value is also stored back into main memory 

(RAM). 

 Write-back: every single time that a value in cache is 

changed, the cache line containing that cache location gets 

marked as dirty. When a cache line gets clobbered, then if it 

has been marked as dirty, then it is stored back into main 

memory (RAM). [14] 

  

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 40 



Cache Store Examples 

 Core 2 Duo [26] 

 L1 cache:            write-back 

 Pentium D [26] 

 L1 cache:                   write-through 

41 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 



The Importance of 

Being Local 

[15] 



More Data Than Cache 

Let’s say that you have 1000 times more data than cache.  

Then won’t most of your data be outside the cache? 

 

YES! 
 
Okay, so how does cache help? 

43 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 



Improving Your Cache Hit Rate 

Many scientific codes use a lot more data than can fit in cache 

all at once. 

Therefore, you need to ensure a high cache hit rate even 

though you’ve got much more data than cache. 

So, how can you improve your cache hit rate? 

Use the same solution as in Real Estate: 

Location, Location, Location! 

44 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 



Data Locality 
Data locality is the principle that, if you use data in a particular 

memory address, then very soon you’ll use either the same 
address or a nearby address. 

 Temporal locality:  if you’re using address A now, then 
you’ll probably soon use address A again. 

 Spatial locality:  if you’re using address A now, then you’ll 
probably soon use addresses between  A-k and  A+k, where 
k is small. 

Note that this principle works well for sufficiently small values 
of “soon.” 

Cache is designed to exploit locality, which is why a cache miss 
causes a whole line to be loaded. 

45 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 



Data Locality Is Empirical: C 

Data locality has been observed empirically in many, many 

programs. 

46 

void ordered_fill (float* array, int array_length) 

{ /* ordered_fill */ 

  int index; 

 

  for (index = 0; index < array_length; index++) { 

    array[index] = index; 

  } /* for index */ 

} /* ordered_fill */ 

 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 



Data Locality Is Empirical: F90 

Data locality has been observed empirically in many, many 

programs. 

47 

SUBROUTINE ordered_fill (array, array_length) 

  IMPLICIT NONE 

  INTEGER,INTENT(IN) :: array_length 

  REAL,DIMENSION(array_length),INTENT(OUT) :: array 

  INTEGER :: index 

 

  DO index = 1, array_length 

    array(index) = index 

  END DO 

END SUBROUTINE ordered_fill 

 
NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 



No Locality Example: C 

In principle, you could write a program that exhibited 

absolutely no data locality at all: 

48 

void random_fill (float* array, 

                  int* random_permutation_index, 

                  int array_length) 

{ /* random_fill */ 

  int index; 

 

  for (index = 0; index < array_length; index++) { 

    array[random_permutation_index[index]] = index; 

  } /* for index */ 

} /* random_fill */ 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 



No Locality Example: F90 

In principle, you could write a program that exhibited 

absolutely no data locality at all: 

49 

SUBROUTINE random_fill (array, 

              random_permutation_index, array_length) 

  IMPLICIT NONE 

  INTEGER,INTENT(IN) :: array_length 

  INTEGER,DIMENSION(array_length),INTENT(IN) :: & 

&   random_permutation_index 

  REAL,DIMENSION(array_length),INTENT(OUT) :: array 

  INTEGER :: index 
 
  DO index = 1, array_length 

    array(random_permutation_index(index)) = index 

  END DO 

END SUBROUTINE random_fill 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 



Permuted vs. Ordered 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 50 

In a simple array fill, locality provides a factor of 8 to 20 speedup over a randomly 

ordered fill on a Pentium4. 

Better 

0

5

10

15

20

25

30

0 5 10 15 20 25 30

Array size (log2 bytes)

C
P

U
 s

ec
o

n
d

s

Random

Ordered



Exploiting Data Locality 

If you know that your code is capable of operating with a 

decent amount of data locality, then you can get speedup by 

focusing your energy on improving the locality of the 

code’s behavior. 

This will substantially increase your cache reuse. 

51 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 



A Sample Application 

Matrix-Matrix Multiply 

Let A, B and C be matrices of sizes 
nr  nc, nr  nk and nk  nc, respectively: 

52 

























ncnrnrnrnr

nc

nc

nc

aaaa

aaaa

aaaa

aaaa

,3,2,1,

,33,32,31,3

,23,22,21,2

,13,12,11,1











A

























nknrnrnrnr

nk

nk

nk

bbbb

bbbb

bbbb

bbbb

,3,2,1,

,33,32,31,3

,23,22,21,2

,13,12,11,1











B

























ncnknknknk

nc

nc

nc

cccc

cccc

cccc

cccc

,3,2,1,

,33,32,31,3

,23,22,21,2

,13,12,11,1











C





nk

k

cnknkrcrcrcrckkrcr cbcbcbcbcba
1

,,,33,,22,,11,,,, 

The definition of  A = B • C  is 

for r  {1, nr}, c  {1, nc}. 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 



Matrix Multiply w/Initialization: F90 

 

SUBROUTINE matrix_matrix_mult_by_init (dst, src1, src2, & 

 &                                     nr, nc, nq) 

  IMPLICIT NONE 

  INTEGER,INTENT(IN) :: nr, nc, nq 

  REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst 

  REAL,DIMENSION(nr,nq),INTENT(IN)  :: src1 

  REAL,DIMENSION(nq,nc),INTENT(IN)  :: src2 

 
  INTEGER :: r, c, q 

 
  DO c = 1, nc 

    DO r = 1, nr 

      dst(r,c) = 0.0 

      DO q = 1, nq 

        dst(r,c) = dst(r,c) + src1(r,q) * src2(q,c) 

      END DO !! q 

    END DO !! r 

  END DO !! c 

END SUBROUTINE matrix_matrix_mult_by_init 

 
 

53 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 



Matrix Multiply w/Initialization: C 

 

void matrix_matrix_mult_by_init ( 

         float** dst, float** src1, float** src2, 

         int nr, int nc, int nq) 

{ /* matrix_matrix_mult_by_init */ 
  int r, c, q; 

 
  for (r = 0; r < nr; r++) { 

    for (c = 0; c < nc; c++) { 

      dst[r][c] = 0.0; 

      for (q = 0; q < nq; q++) { 

        dst[r][c] = dst[r][c] + src1[r][q] * src2[q][c]; 

      } /* for q */ 

    } /* for c */ 

  } /* for r */ 

} /* matrix_matrix_mult_by_init */ 

54 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 



Matrix Multiply Via Intrinsic: F90 

 

SUBROUTINE matrix_matrix_mult_by_intrinsic ( & 

 &           dst, src1, src2, nr, nc, nq) 

  IMPLICIT NONE 

  INTEGER,INTENT(IN) :: nr, nc, nq 

  REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst 

  REAL,DIMENSION(nr,nq),INTENT(IN)  :: src1 

  REAL,DIMENSION(nq,nc),INTENT(IN)  :: src2 

 

  dst = MATMUL(src1, src2) 

END SUBROUTINE matrix_matrix_mult_by_intrinsic 

 

55 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 



Matrix Multiply Behavior 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 
56 

If the matrix is big, then each sweep of a row will clobber nearby values in cache. 



Performance of Matrix Multiply 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 
57 

0

100

200

300

400

500

600

700

800

0 10000000 20000000 30000000 40000000 50000000 60000000

C
P

U
 s

ec

Total Problem Size in bytes (nr*nc+nr*nq+nq*nc)

Matrix-Matrix Multiply

Naive

Init

Intrinsic

Better 



Tiling 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 
58 



Tiling 

 Tile: a small rectangular subdomain of a problem domain.  

Sometimes called a block or a chunk. 

 Tiling: breaking the domain into tiles. 

 Tiling strategy: operate on each tile to completion, then 

move to the next tile. 

 Tile size can be set at runtime, according to what’s best for 

the machine that you’re running on. 

59 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 



Tiling Code: F90 

SUBROUTINE matrix_matrix_mult_by_tiling (dst, src1, src2, nr, nc, nq, & 

 &           rtilesize, ctilesize, qtilesize) 

  IMPLICIT NONE 

  INTEGER,INTENT(IN) :: nr, nc, nq 

  REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst 

  REAL,DIMENSION(nr,nq),INTENT(IN)  :: src1 

  REAL,DIMENSION(nq,nc),INTENT(IN)  :: src2 

  INTEGER,INTENT(IN) :: rtilesize, ctilesize, qtilesize 
 
  INTEGER :: rstart, rend, cstart, cend, qstart, qend 
 
  DO cstart = 1, nc, ctilesize 

    cend = cstart + ctilesize - 1 

    IF (cend > nc) cend = nc 

    DO rstart = 1, nr, rtilesize 

      rend = rstart + rtilesize - 1 

      IF (rend > nr) rend = nr 

      DO qstart = 1, nq, qtilesize 

        qend = qstart + qtilesize - 1 

        IF (qend > nq) qend = nq 

        CALL matrix_matrix_mult_tile(dst, src1, src2, nr, nc, nq, & 

 &                                   rstart, rend, cstart, cend, qstart, qend) 

      END DO !! qstart 

    END DO !! rstart 

  END DO !! cstart 

END SUBROUTINE matrix_matrix_mult_by_tiling 

 

60 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 



Tiling Code: C 

void matrix_matrix_mult_by_tiling ( 

         float** dst, float** src1, float** src2, 

         int nr, int nc, int nq, 

         int rtilesize, int ctilesize, int qtilesize) 

{ /* matrix_matrix_mult_by_tiling */ 

  int rstart, rend, cstart, cend, qstart, qend; 
 
  for (rstart = 0; rstart < nr; rstart += rtilesize) { 

    rend = rstart + rtilesize – 1; 

    if (rend >= nr) rend = nr - 1; 

    for (cstart = 0; cstart < nc; cstart += ctilesize) { 

      cend = cstart + ctilesize – 1; 

      if (cend >= nc) cend = nc - 1; 

      for (qstart = 0; qstart < nq; qstart += qtilesize) { 

        qend = qstart + qtilesize – 1; 

        if (qend >= nq) qend = nq - 1; 

        matrix_matrix_mult_tile(dst, src1, src2, nr, nc, nq, 

                                rstart, rend, cstart, cend, qstart, qend); 

      } /* for qstart */ 

    } /* for cstart */ 

  } /* for rstart */ 

} /* matrix_matrix_mult_by_tiling */ 

61 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 



Multiplying Within a Tile: F90 

SUBROUTINE matrix_matrix_mult_tile (dst, src1, src2, nr, nc, nq, & 

 &             rstart, rend, cstart, cend, qstart, qend) 

  IMPLICIT NONE 

  INTEGER,INTENT(IN) :: nr, nc, nq 

  REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst 

  REAL,DIMENSION(nr,nq),INTENT(IN)  :: src1 

  REAL,DIMENSION(nq,nc),INTENT(IN)  :: src2 

  INTEGER,INTENT(IN) :: rstart, rend, cstart, cend, qstart, qend 

 

  INTEGER :: r, c, q 

 

  DO c = cstart, cend 

    DO r = rstart, rend 

      IF (qstart == 1) dst(r,c) = 0.0 

      DO q = qstart, qend 

        dst(r,c) = dst(r,c) + src1(r,q) * src2(q,c) 

      END DO !! q 

    END DO !! r 

  END DO !! c 

END SUBROUTINE matrix_matrix_mult_tile 

62 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 



Multiplying Within a Tile: C 

void matrix_matrix_mult_tile ( 

         float** dst, float** src1, float** src2, 

         int nr, int nc, int nq, 

         int rstart, int rend, int cstart, int cend, 

         int qstart, int qend) 

{ /* matrix_matrix_mult_tile */ 

  int r, c, q; 

 

  for (r = rstart; r <= rend; r++) { 

    for (c = cstart; c <= cend; c++) { 

      if (qstart == 0) dst[r][c] = 0.0; 

      for (q = qstart; q <= qend; q++) { 

        dst[r][c] = dst[r][c] + src1[r][q] * src2[q][c]; 

      } /* for q */ 

    } /* for c */ 

  } /* for r */ 

} /* matrix_matrix_mult_tile */ 

63 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 



Performance with Tiling 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 
64 

Matrix-Matrix Mutiply Via Tiling (log-log)

0.1

1

10

100

1000

101001000100001000001000000100000001E+08

Tile Size (bytes)

C
P

U
 s

ec

512x256

512x512

1024x512

1024x1024

2048x1024

Matrix-Matrix Mutiply Via Tiling

0

50

100

150

200

250

10100100010000100000100000010000000100000000

Tile Size (bytes)

Better 



The Advantages of Tiling 

 It allows your code to exploit data locality better, to get 

much more cache reuse: your code runs faster! 

 It’s a relatively modest amount of extra coding (typically a 

few wrapper functions and some changes to loop bounds). 

 If you don’t need tiling – because of the hardware, the 

compiler or the problem size – then you can  turn it off by 

simply setting the tile size equal to the problem size. 

65 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 



Will Tiling Always Work? 

Tiling WON’T always work. Why? 

Well, tiling works well when: 

 the order in which calculations occur doesn’t matter much, 

AND 

 there are lots and lots of calculations to do for each memory 

movement. 

If either condition is absent, then tiling won’t help. 

66 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 



Hard Disk 



Why Is Hard Disk Slow? 

Your hard disk is much much slower than main memory (factor of 

10-1000).  Why? 

Well, accessing data on the hard disk involves physically moving: 

 the disk platter 

 the read/write head 

In other words, hard disk is slow because objects move much slower 

than electrons: Newtonian speeds are much slower than 

Einsteinian speeds. 

68 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 



I/O Strategies 

Read and write the absolute minimum amount. 

 Don’t reread the same data if you can keep it in memory. 

 Write binary instead of characters. 

 Use optimized I/O libraries like NetCDF [17] and HDF [18]. 

69 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 



Avoid Redundant I/O: C 

An actual piece of code seen at OU: 

70 

for (thing = 0; thing < number_of_things; thing++) { 

  for (timestep = 0; timestep < number_of_timesteps; timestep++) { 

    read_file(filename[timestep]); 

    do_stuff(thing, timestep); 

  } /* for timestep */ 

} /* for thing */ 

for (timestep = 0; timestep < number_of_timesteps; timestep++) { 

  read_file(filename[timestep]); 

  for (thing = 0; thing < number_of_things; thing++) { 

    do_stuff(thing, timestep); 

  } /* for thing */ 

} /* for timestep */ 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 

Savings (in real life):  factor of 500! 

Improved version: 



Avoid Redundant I/O: F90 

An actual piece of code seen at OU: 

71 

DO thing = 1, number_of_things 

  DO timestep = 1, number_of_timesteps 

    CALL read_file(filename(timestep)) 

    CALL do_stuff(thing, timestep) 

  END DO !! timestep 

END DO !! thing 

Improved version: 

DO timestep = 1, number_of_timesteps 

  CALL read_file(filename(timestep)) 

  DO thing = 1, number_of_things 

    CALL do_stuff(thing, timestep) 

  END DO !! thing 

END DO !! timestep 

Savings (in real life):  factor of 500! 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 



Write Binary, Not ASCII 

When you write binary data to a file, you’re writing (typically) 

4 bytes per value. 

When you write ASCII (character) data, you’re writing 

(typically) 8-16 bytes per value. 

So binary saves a factor of 2 to 4 (typically). 

72 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 



Problem with Binary I/O 

There are many ways to represent data inside a computer, 

especially floating point (real) data. 

Often, the way that one kind of computer (e.g., an Intel i7) 

saves binary data is different from another kind of 

computer (e.g., an IBM POWER7). 

So, a file written on an Intel i7 machine may not be readable 

on an IBM POWER7. 

73 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 



Portable I/O Libraries 

NetCDF and HDF are the two most commonly used I/O 

libraries for scientific computing. 

Each has its own internal way of representing numerical data.  

When you write a file using, say, HDF, it can be read by a 

HDF on any kind of computer. 

Plus, these libraries are optimized to make the I/O very fast. 

74 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 



Virtual Memory 



Virtual Memory 

 

 Typically, the amount of main memory (RAM) that a CPU 

can address is larger than the amount of data physically 

present in the computer. 

 For example, consider a laptop that can address 16 GB of 

main memory (roughly 16 billion bytes), but only contains        

4 GB (roughly 4 billion bytes). 

76 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 



Virtual Memory (cont’d) 

 

 Locality:  Most programs don’t jump all over the memory 

that they use; instead, they work in a particular area of 

memory for a while, then move to another area. 

 So, you can offload onto hard disk much of the memory 

image of a program that’s running. 

77 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 



Virtual Memory (cont’d) 

 

 Memory is chopped up into many pages of modest size (e.g., 

1 KB – 32 KB; typically 4 KB). 

 Only pages that have been recently used actually reside in 

memory; the rest are stored on hard disk. 

 Hard disk is 10 to 1,000 times slower than main memory, so 

you get better performance if you rarely get a page fault, 

which forces a read from (and maybe a write to) hard disk: 

exploit data locality! 

78 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 



Cache vs. Virtual Memory 

 

 Lines (cache) vs. pages (VM) 

 Cache faster than RAM (cache) vs.                                

RAM faster than disk (VM) 

79 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 



Storage Use Strategies 

 

 Register reuse: do a lot of work on the same data before 
working on new data. 

 Cache reuse: the program is much more efficient if all of 
the data and instructions fit in cache; if not, try to use what’s 
in cache a lot before using anything that isn’t in cache (e.g., 
tiling). 

 Data locality: try to access data that are near each other in 
memory before data that are far. 

 I/O efficiency: do a bunch of I/O all at once rather than a 
little bit at a time; don’t mix calculations and I/O. 

 

80 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 



81 

OK Supercomputing Symposium 2012 

2006 Keynote: 

Dan Atkins 

Head of NSF’s 

Office of 

Cyberinfrastructure 

2004 Keynote: 
Sangtae Kim 

NSF Shared  
Cyberinfrastructure 
Division Director 

2003 Keynote: 
Peter Freeman 

NSF 
Computer & Information 
Science & Engineering 

Assistant Director 

2005 Keynote: 
Walt Brooks 

NASA Advanced 
Supercomputing 
Division Director 

2007 Keynote: 
Jay Boisseau 

Director 
Texas Advanced 

Computing Center 
U. Texas Austin 

2008 Keynote:     
José Munoz     

Deputy Office 
Director/ Senior 

Scientific Advisor 
NSF Office of 

Cyberinfrastructure 

2009 Keynote: 
Douglass Post  
Chief Scientist         

US Dept of Defense       
HPC Modernization 

Program 

FREE! Wed Oct 3 2012 @ OU 
Over 235 registra2ons already! 

Over 150 in the first day, over 200 in the first week, 
over 225 in the first month. 

http://symposium2012.oscer.ou.edu/ 

Reception/Poster Session 

FREE! Tue Oct 2 2012 @ OU 
FREE! Symposium Wed Oct 3 2012 @ OU 

2010 Keynote: 
Horst Simon  

Deputy Director         
Lawrence Berkeley 
National Laboratory 

Thom Dunning, Director 

National Center for Supercomputing 

Applications 

NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 

2011 Keynote: 
Barry Schneider  

Program Manager         
National Science 

Foundation 

http://symposium2012.oscer.ou.edu/


Thanks for your 
attention! 

 
 

Questions? 
www.oscer.ou.edu 

http://www.oscer.ou.edu/


NCSI Parallel & Cluster: Storage Hierarchy 

U Oklahoma, July 29 - Aug 4 2012 

References 

83 

 

 

[1] http://graphics8.nytimes.com/images/2007/07/13/sports/auto600.gif 

[2]  http://www.vw.com/newbeetle/ 

[3] http://img.dell.com/images/global/products/resultgrid/sm/latit_d630.jpg 

[4] http://en.wikipedia.org/wiki/X64  

[5]  Richard Gerber, The Software Optimization Cookbook: High-performance Recipes for the Intel Architecture. Intel Press, 2002, pp. 161-168. 

[6]  http://www.anandtech.com/showdoc.html?i=1460&p=2 

[8]  http://www.toshiba.com/taecdpd/products/features/MK2018gas-Over.shtml 

[9]  http://www.toshiba.com/taecdpd/techdocs/sdr2002/2002spec.shtml 

[10] ftp://download.intel.com/design/Pentium4/manuals/24896606.pdf 

[11] http://www.pricewatch.com/ 

[12] http://en.wikipedia.org/wiki/POWER7 

[13] http://www.kingston.com/branded/image_files/nav_image_desktop.gif  

14] M. Wolfe, High Performance Compilers for Parallel Computing. Addison-Wesley Publishing Company, Redwood City CA, 1996. 

[15] http://www.visit.ou.edu/vc_campus_map.htm 

[16] http://www.storagereview.com/ 

[17] http://www.unidata.ucar.edu/packages/netcdf/ 

[18] http://hdf.ncsa.uiuc.edu/ 

[23] http://en.wikipedia.org/wiki/Itanium 

[19] ftp://download.intel.com/design/itanium2/manuals/25111003.pdf 

[20] http://images.tomshardware.com/2007/08/08/extreme_fsb_2/qx6850.jpg (em64t) 

[21] http://www.pcdo.com/images/pcdo/20031021231900.jpg (power5) 

[22] http://vnuuk.typepad.com/photos/uncategorized/itanium2.jpg (i2) 

[??] http://www.anandtech.com/cpuchipsets/showdoc.aspx?i=2353&p=2 (Prescott cache latency) 

[??] http://www.xbitlabs.com/articles/mobile/print/core2duo.html (T2400 Merom cache) 

[??] http://www.lenovo.hu/kszf/adatlap/Prosi_Proc_Core2_Mobile.pdf (Merom cache line size) 

[25] http://www.lithium.it/nove3.jpg  

[26] http://cpu.rightmark.org/  
[27] Tribuvan Kumar Prakash, “Performance Analysis of Intel Core 2 Duo Processor.” MS Thesis, Dept of Electrical and Computer Engineering, Louisiana 
State University, 2007. 
[28] R. Kalla, IBM, personal communication, 10/26/2010. 

http://graphics8.nytimes.com/images/2007/07/13/sports/auto600.gif
http://www.vw.com/newbeetle/
http://img.dell.com/images/global/products/resultgrid/sm/latit_d630.jpg
http://en.wikipedia.org/wiki/X64
http://www.anandtech.com/showdoc.html?i=1460&p=2
http://www.toshiba.com/taecdpd/products/features/MK2018gas-Over.shtml
http://www.toshiba.com/taecdpd/products/features/MK2018gas-Over.shtml
http://www.toshiba.com/taecdpd/products/features/MK2018gas-Over.shtml
http://www.toshiba.com/taecdpd/techdocs/sdr2002/2002spec.shtml
ftp://download.intel.com/design/Pentium4/manuals/24896606.pdf
http://www.pricewatch.com/
http://en.wikipedia.org/wiki/POWER7
http://www.kingston.com/branded/image_files/nav_image_desktop.gif
http://www.visit.ou.edu/vc_campus_map.htm
http://www.storagereview.com/
http://www.unidata.ucar.edu/packages/netcdf/
http://hdf.ncsa.uiuc.edu/
http://en.wikipedia.org/wiki/Itanium
ftp://download.intel.com/design/itanium2/manuals/25111003.pdf
http://images.tomshardware.com/2007/08/08/extreme_fsb_2/qx6850.jpg
http://www.pcdo.com/images/pcdo/20031021231900.jpg
http://vnuuk.typepad.com/photos/uncategorized/itanium2.jpg
http://www.anandtech.com/cpuchipsets/showdoc.aspx?i=2353&p=2
http://www.xbitlabs.com/articles/mobile/print/core2duo.html
http://www.lenovo.hu/kszf/adatlap/Prosi_Proc_Core2_Mobile.pdf
http://www.lithium.it/nove3.jpg
http://cpu.rightmark.org/

