Introduction to
Parallel Programming

& Cluster Computing
QJ| MP1 Collective Communications

Joshua Alexander, U Oklahoma Tom Murphy, Contra Costa College

Ivan Babic, Earlham College Kristin Muterspaw, Earlham College
Michial Green, Contra Costa College Henry Neeman, U Oklahoma
Mobeen Ludin, Earlham College Charlie Peck, Earlham College
LITTLEFE | scovey B o EARLHAM

COLTLETGE

'I INFORMATION
| TECHNOLOGY

| and Cluster Col ing Education On The Move
HTTPY//LITTLEFE.NET
va ;
u
Y
Weps

Y SHODOR

Q) Point to Point Always Works

= MPI Send and MPI Recv areknown as
Point to Point communications: they communicate from

one MPI process to another MPI process.
= But, what if you want to communicate like one of these?
= One to many
= many to one
= Mmany to many
= These are known as collective communications.

= MPI Send and MPI Recv canaccomplish any and all
of these — but should you use them that way?

NCSI Parallel & Cluster: MPI Collectives ‘ E=d) FARLHAM
a}[:/O&ERE\E Q' l’tgggmggg U Oklahoma, July 29 - Aug 4 2012 VSHODOR 2

Point to Point Isn’t Always Good

We’re interested in collective communications:

= One to many

= Mmany to one

= Mmany to many

In principle, MPI Send and MPI Recv can
accomplish any and all of these.

But that may be:
= inefficient;
= Inconvenient and cumbersome to code.

So, the designers of MPI came up with routines that perform
these collective communications for you.

NCSI Parallel & Cluster: MPI Collectives . EARLHAM

EO&ER% % Q' l’t;ggg;&gg U Oklahoma, July 29 - Aug 4 2012 VSHODOR 3

Q) Collective Communications

m MPI Bcast
= MPI Reduce, MPI Allreduce

m MPI Gather, MPI Gatherv, MPI Allgather,
MPI Allgatherv

m MPI Scatter, MPI Scatterv
= MPI Alltoall, MPI Alltoallv

NCSI Parallel & Cluster: MPI Collectives % EARLHAM
U Oklahoma, July 29 - Aug 4 2012 X W/ SHODOR 4

Ql MPI Bcast

What happens if one process has data that everyone else needs
to know?

For example, what if the server process needs to send a value
that it input from standard input to the other processes?

MPI Bcast(&length, 1, MPI INTEGER,
source, MPI COMM WORLD) ;
Notice:
= MPI Bcast doesn’tuse atag.

= The call is the same for both the sender and all of the
receivers (COUNTERINTUITIVE)).

All processes have to call MPI Bcast at the same time;
everyone waits until everyone is done.

‘ NCSI Parallel & Cluster: MPI Collectives

§—,\\E\\u’*‘ l/\,.-('u,: ‘ EARLH AM
=O&EVR§ % Q'l’t;;;%rmggy U Oklahoma, July 29 - Aug 4 2012 VSHODOR 5

Q) Broadcast Example Part 1

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <mpi.h>

int main (int argc, char** argv)
{ /* main */

const int server = 0;

const int source = server;

float* array = (float*)NULL;

int length, index;

int number of processes, my rank, mpi error code;

mpi error code = MPI Init(&argc, &argv);

mpi error code MPI Comm rank (MPI_COMM WORLD, &my rank);

mpi error code = MPI Comm size (MPI_ COMM WORLD,
&number of processes);

COLLEGE

) ‘ NCSI Parallel & Cluster: MPI Collectives % EARLHAM
'|,t.TNEmgg¢ U Oklahoma, July 29 - Aug 4 2012 XSE0e WSHODOR

:i;-oSceais

Q) Broadcast Example Part 2

if (my rank == source) ({
scanf ("%$d", &length) ;
} /* if (my rank == source) */
fprintf (stderr, "%d: before MPI Bcast, length = %d\n",
my rank, length);
mpi error code =
MPI Bcast(&length, 1, MPI_ INTEGER, source, MPI COMM WORLD) ;
fprintf (stderr, "%d: after " MPI _Bcast, length = %d\n",
my rank, length);
array = (float*)malloc(sizeof (float) * length);

if (my rank == source) {
for (index = 0; index < length; index++) {
array[index] = sqrt(index * 1.0); /* Or whatever you want */
} /* for index */
} /* if (my rank == source) */

mpi error code =
MPI Bcast(array, length, MPI FLOAT, source, MPI COMM WORLD) ;
mpi error code = MPI Finalize();
} /* main */

‘ NCSI Parallel & Cluster: MPI Collectives % FARLHAM

COLLEGE

% Q' l’t;gmmggg U Oklahoma, July 29 - Aug 4 2012 VSHODOR 7

z:ij-osCER;s

Broadcast Compile & Run

o°

o°

iiOSCER\ % ® '|lt 'T"Ezfm;zc

I—‘I—‘wm\l(ﬂsbNOOwaw\lsb

before
before
before
before
before
before
before
after
after
after
after
after
after
after
before
after

MPI Bcast
MPI Bcast

length
length
length
length
length
length
length
length
length
length
length
length
length
length
length
length

NCSI Parallel & Cluster:
U Oklahoma, July 29 - Aug 4 2012

mpicc -o mpibroadcast mpibroadcast.c -1m
mpirun -np 8 mpibroadcast
MPI Bcast,
MPI Bcast,
MPI Bcast,
MPI Bcast,
MPI Bcast,
MPI Bcast,
MPI Bcast,
MPI Bcast,
MPI Bcast,
MPI Bcast,
MPI Bcast,
MPI Bcast,
MPI Bcast,
MPI Bcast,

O O O OO

0

1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
0

1000000

MPI Collectives

‘ EARLHAM

SHODOR

8

nJ Reductions

A reduction converts an array to a scalar: for example,
sum, product, minimum value, maximum value, Boolean
AND, Boolean OR, etc.

Reductions are so common, and so important, that MPI has two
routines to handle them:

MPI Reduce: sends result to a single specified process

MPI Allreduce: sends result to all processes (and therefore
may take longer)

TECHN OLOGV

‘ NCSI Parallel & Cluster: MPI Collectives ‘ EARLI—[AM
z,aoscERi\é‘ % ® '|t U Oklahoma, July 29 - Aug 4 2012

INFORMATION VSHODOR 9

Q) Reduction Example Part 1

#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>

int main (int argc, char** argv)
{ /* main */
const int server = 0;
const int destination = server;
int value, value sum;
int number of processes, my rank, mpi error code;

mpi error code = MPI Init(&argc, &argv);

mpi error code MPI Comm rank (MPI_COMM WORLD, &my rank) ;

mpi error code = MPI Comm size (MPI_ COMM WORLD,
&number of processes);

COLLEGE

) ‘ NCSI Parallel & Cluster: MPI Collectives % EARLHAM
l’tgmmggg U Oklahoma, July 29 - Aug 4 2012 VSHODOR 10

:i;-oSceais

Reduction Example Part 1

}

z:‘:;-osCeais

value = my rank * number of processes;
fprintf (stderr, "%d: reduce value = %d\n",
my rank, value);
mpi error code =
MPI Reduce (&value, &value sum, 1, MPI INT, MPI SUM,
destination, MPI COMM WORLD) ;
fprintf (stderr, "%d: reduce value sum = %d\n",
my rank, value sum);
mpi error code =
MPI Allreduce(&value, &value sum, 1, MPI INT, MPI SUM,
MPI_COMM WORLD) ;
fprintf (stderr, "%d: allreduce value sum = $d\n",
my rank, value sum);
mpi error code = MPI Finalize();
/* main */

‘ NCSI Parallel & Cluster: MPI Collectives % EARLHAM

;réf:cglr;‘hg)iggg U Oklahoma, July 29 - Aug 4 2012 V;OS;OEI;(;R

11

Reduce: Compiling and Running

o°

o°

::i}oScERiﬁ

g % Q'lvf

oObLoPRPR OUOUODMNMNWdRL,OUOODMNMWNOBMO

reduce
reduce
reduce
reduce
reduce
reduce
reduce
reduce
reduce
reduce
reduce
reduce
reduce
reduce
reduce
reduce

IN FO RMATION
TECHN OLOGV

value
value
value
value
value
value
value
value
value sum
value sum
value sum
value sum
value sum
value sum
value sum
value sum

mpicc -o mpireduce mpireduce.c
mpirun -np 8 mpireduce

0

= 32

48

56

24

16

40

8
-9120
-9120
-9120
-9120
-9120
-9120
-9120
224

OO Uk, WAhAIDN

allreduce
allreduce
allreduce
allreduce
allreduce
allreduce
allreduce
allreduce

NCSI Parallel & Cluster: MPI Collectives

U Oklahoma, July 29 - Aug 4 2012

value sum = 224
value sum = 224
value sum = 224
value sum = 224
value sum = 224
value sum = 224
value sum = 224
value sum = 224
(229 EARLHAM
XSETe WSHonor

12

® Why Two Reduction Routines?

MPI has two reduction routines because of the high cost of
each communication.

If only one process needs the result, then it doesn’t make sense
to pay the cost of sending the result to all processes.

But if all processes need the result, then it may be cheaper to
reduce to all processes than to reduce to a single process and
then broadcast to all.

You can think of MPI Allreduce as
MPI Reduce followed by MPI Bcast
(though 1t doesn’t have to be implemented that way).

‘ NCSI Parallel & Cluster: MPI Collectives ‘ EARLHAM
nnnnnnnnnnn U Oklahoma, July 29 - Aug 4 2012 VSHODOR 13

OOOOOOOOOOO
THE UNIVERSITY OF OKLAHOMA

Reduction on Arrays #1

MPI Reduce and MPI Allreduce are actually designed
to work on arrays, where the corresponding elements of each
source array are reduced into the corresponding element of
the destination array (all of the same length):

MPI Allreduce (source array, destination array,
number of array elements,
MPI DATATYPE, MPI OPERATION, MPI_COMMUNICATOR) ;

For example:

MPI Allreduce (local force on particle, global force on particle,
number of particles,
MPI FLOAT, MPI SUM, MPI COMM WORLD) ;

NCSI Parallel & Cluster: MPI Collectives ‘ E=d) FARLHAM
=1:O&ER§ Q' l’tggg&r&ggg U Oklahoma, July 29 - Aug 4 2012 VSHODOR 14

Q) Reduction on Arrays #2

MPI Allreduce(local force on particle, global force on particle,

number of particles,
MPI FLOAT, MPI SUM, MPI COMM WORLD) ;

global force on particle]
] on Rank 0 +

]
P
p] on Rank 1 +
P

B
local force on particle]
local force on particle]

[

local force on particle[p] on Rank 2 +

local force on particle[p] on Rank np-1;

/7 . NCSI Parallel & Cluster: MPI Collectives % EARLHAM

LLL

INFORMATION U Oklahoma, July 29 - Aug 4 2012 X VSHODOR 15

TECHNOLOGV

Q) Scatter and Gather

= To scatter is to send data from one place to many places.

= To gather is to receive data from many places into one
place.

= MPI has a variety of scatter and gather routines:
= MPI Scatter, MPI Scatterv

= MPI Gather, MPI Gatherv,
MPI Allgather, MPI Allgatherv

= The scatter routines split up a single larger array into
smaller subarrays, one per MPI process, and send each
subarray to an MPI process.

= The gather routines receive many smaller subarrays, one per
MPI process and assemble them into a single larger array.

NCSI Parallel & Cluster: MPI Collectives ‘ EARLHAM
OSCERm % Q"Ilt . @ &

Fc:&%{ggv U Oklahoma, JUly 29 - Aug 42012 VSHODOR 16

(of

Q| MPI_Scatter

MPI Scatter takesan array whose length is divisible by the
number of MPI processes, and splits it up into subarrays of
equal length, then sends one subarray to each MPI process.

MPI Scatter(large array, small array length,
MPI DATATYPE,
small subarray, small subarray length,
MPI DATATYPE, source, MPI COMMUNICATOR) ;

So, for a large array of length 100 on 5 MPI processes:
= each smaller subarray has length 20;

= large array[0] .. large_array[19] go to small_array on Rank O;
= large_array[20]..large_array[39] go to small_array on Rank 1,
m efc

\ NCSI Parallel & Cluster: MPI Collectives ‘ EARLHAM
3}[:/05CER] '|,‘|:.TNEFCOH%ALT(;gc U Oklahoma, July 29 - Aug 4 2012 Vsiovor 17

QJ MPI_Scatterv

MPI Scatterv Isjustlike MPI Scatter, except that the
subarray lengths don’t have to be the same (and therefore
the length of the large array doesn’t have to be divisible by
the number of MPI processes).

MPI Scatterv(large array, small subarray lengths,
displacements,
MPI DATATYPE,
small subarray, small subarray lengths,
MPI DATATYPE, source, MPI COMMUNICATOR) ;

The displacements array says where each small subarray
begins within the large array.

NCSI Parallel & Cluster: MPI Collectives ‘ E=d) FARLHAM
=1:O&ER§ Q' l’tgggmggg U Oklahoma, July 29 - Aug 4 2012 VSHODOR 18

® MPI Gather

MPI Gather receives asmall array on each of the MPI

processes, all subarrays of equal length, and joins them into a

single large array on the destination MPI process.

MPI Gather (small subarray, small subarray length,
MPI DATATYPE,

large array, large array length,
MPI DATATYPE, destination, MPI COMMUNICATOR) ;

So, for a small subarray of length 20 on each of 5 MPI processes:

= the large array on the destination process has length 100;

= large array[0] .. large_array[19] come from small_array on
Rank O;

= large array[20]..large_array[39] come from small_array on
Rank 1,
etc

NCSI Parallel & Cluster: MPI Collectives
;};oSCERm % Q,.I’t ‘ ‘ Emed) EARLHAM

#rézc:lr:‘%{ggv U Oklahoma, JUly 29 - Aug 42012 VSHODOR 19

® MPI_ Gatherv

MPI Gatherv Isjustlike MPI Gather, except that the

subarray lengths don’t have to be the same (and therefore the

length of the large array doesn’t have to be divisible by the
number of MPI processes).

MPI Gatherv(small subarray, small subarray length,
MPI DATATYPE,

large array, small subarray lengths,
displacements,

MPI DATATYPE, destination, MPI COMMUNICATOR) ;

The displacements array says where each small subarray
begins within the large array.

NCSI Parallel & Cluster: MPI Collectives ‘ E=d) FARLHAM
=1:O&ER§ Q' l’tgggmggg U Oklahoma, July 29 - Aug 4 2012 VSHODOR 20

@) MPI_Allgather & MPI_Allgatherv

MPI Allgather and MPI Allgatherv arethe same
as MPI Gather and MPI Gatherv, except that the
large array gets filled on every MPI process, so no
destination process argument is needed.

NCSI Parallel & Cluster: MPI Collectives . EARLHAM
U Oklahoma, July 29 - Aug 4 2012 VSHODOR 21

@ OK Supercomputing Symposium 2012

2003 Keynote: 2004 Keynote: A '4 ”'A
Peter Freeman Sangtae Kim 2005 Keynote: 2006 Keynote: 5007 kevnote: 2008 Keynote:
NSF : NSF Shared Walt Brooks Dan Atkins Jay Boisseau José Munoz .
Computer & Information Cyberinfrastructure NASA Advanced Head of NSF’s Director Deputy Office
Science & Engineering Division Director Supercomputing Office of Texas Advanced Director/ Senior

Assistant Director

Division Director Cyberinfrastructure Computing Center SCientific Advisor
' ‘ U. Texas Austin NSF Office of
' Cyberinfrastructure
Thom Dunning, Director
National Center for Supercomputing

Applications

-.

2009 Keynote: 2010 K“eynote' _ F 3 EE! Wed OCt 3 2012 @ OU
(I:Dr?_u?lgs$ PE[)_S'[t Horst Simon. ég&; Sngr?eoitjeér http://symposium2012.oscer.ou.edu/
1eT Sclents : . -
US Dept of Defense | et "t Program Manager Reception/Poster Session
HPC Modernization National Laboratory Foundation FREE! Tue Oct 2 2012 @ OU

Program

FREE! Symposium Wed Oct 3 2012 @ OU
? NCSI Parallel & Cluster: Storage Hierarchy EARLHAM
b |

VL omion U Oklahoma, July 29 - Aug 4 2012 WV stobor 22

THE UNIVERSITY OF OKLAHOMA

http://symposium2012.oscer.ou.edu/

Thanks for your
attention!

Q||

Questions?

WWW.oscer.ou.edu

http://www.oscer.ou.edu/

