
Introduction to

Parallel Programming

& Cluster Computing

 MPI Collective Communications
Joshua Alexander, U Oklahoma

Ivan Babic, Earlham College
Michial Green, Contra Costa College

Mobeen Ludin, Earlham College

Tom Murphy, Contra Costa College
Kristin Muterspaw, Earlham College

Henry Neeman, U Oklahoma
Charlie Peck, Earlham College

Point to Point Always Works

 MPI_Send and MPI_Recv are known as

Point to Point communications: they communicate from

one MPI process to another MPI process.

 But, what if you want to communicate like one of these?

 one to many

 many to one

 many to many

 These are known as collective communications.

 MPI_Send and MPI_Recv can accomplish any and all

of these – but should you use them that way?

NCSI Parallel & Cluster: MPI Collectives

U Oklahoma, July 29 - Aug 4 2012 2

Point to Point Isn’t Always Good

 We’re interested in collective communications:

 one to many

 many to one

 many to many

 In principle, MPI_Send and MPI_Recv can

accomplish any and all of these.

 But that may be:

 inefficient;

 inconvenient and cumbersome to code.

 So, the designers of MPI came up with routines that perform

these collective communications for you.

NCSI Parallel & Cluster: MPI Collectives

U Oklahoma, July 29 - Aug 4 2012 3

Collective Communications

 MPI_Bcast

 MPI_Reduce, MPI_Allreduce

 MPI_Gather, MPI_Gatherv, MPI_Allgather,

MPI_Allgatherv

 MPI_Scatter, MPI_Scatterv

 MPI_Alltoall, MPI_Alltoallv

NCSI Parallel & Cluster: MPI Collectives

U Oklahoma, July 29 - Aug 4 2012 4

5

MPI_Bcast

What happens if one process has data that everyone else needs
to know?

For example, what if the server process needs to send a value
that it input from standard input to the other processes?

 MPI_Bcast(&length, 1, MPI_INTEGER,

 source, MPI_COMM_WORLD);

Notice:

 MPI_Bcast doesn’t use a tag.

 The call is the same for both the sender and all of the
receivers (COUNTERINTUITIVE!).

All processes have to call MPI_Bcast at the same time;
everyone waits until everyone is done.

NCSI Parallel & Cluster: MPI Collectives

U Oklahoma, July 29 - Aug 4 2012

6

Broadcast Example Part 1
#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <mpi.h>

int main (int argc, char** argv)

{ /* main */

 const int server = 0;

 const int source = server;

 float* array = (float*)NULL;

 int length, index;

 int number_of_processes, my_rank, mpi_error_code;

 mpi_error_code = MPI_Init(&argc, &argv);

 mpi_error_code = MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

 mpi_error_code = MPI_Comm_size(MPI_COMM_WORLD,

 &number_of_processes);

NCSI Parallel & Cluster: MPI Collectives

U Oklahoma, July 29 - Aug 4 2012

7

Broadcast Example Part 2
 if (my_rank == source) {

 scanf("%d", &length);

 } /* if (my_rank == source) */

 fprintf(stderr, "%d: before MPI_Bcast, length = %d\n",

 my_rank, length);

 mpi_error_code =

 MPI_Bcast(&length, 1, MPI_INTEGER, source, MPI_COMM_WORLD);

 fprintf(stderr, "%d: after MPI_Bcast, length = %d\n",

 my_rank, length);

 array = (float*)malloc(sizeof(float) * length);

 if (my_rank == source) {

 for (index = 0; index < length; index++) {

 array[index] = sqrt(index * 1.0); /* Or whatever you want */

 } /* for index */

 } /* if (my_rank == source) */

 mpi_error_code =

 MPI_Bcast(array, length, MPI_FLOAT, source, MPI_COMM_WORLD);

 mpi_error_code = MPI_Finalize();

} /* main */

NCSI Parallel & Cluster: MPI Collectives

U Oklahoma, July 29 - Aug 4 2012

8

Broadcast Compile & Run

% mpicc -o mpibroadcast mpibroadcast.c -lm

% mpirun -np 8 mpibroadcast

4: before MPI_Bcast, length = 0

7: before MPI_Bcast, length = 0

3: before MPI_Bcast, length = 0

5: before MPI_Bcast, length = 0

6: before MPI_Bcast, length = 0

2: before MPI_Bcast, length = 0

0: before MPI_Bcast, length = 1000000

0: after MPI_Bcast, length = 1000000

2: after MPI_Bcast, length = 1000000

4: after MPI_Bcast, length = 1000000

5: after MPI_Bcast, length = 1000000

7: after MPI_Bcast, length = 1000000

6: after MPI_Bcast, length = 1000000

3: after MPI_Bcast, length = 1000000

1: before MPI_Bcast, length = 0

1: after MPI_Bcast, length = 1000000

NCSI Parallel & Cluster: MPI Collectives

U Oklahoma, July 29 - Aug 4 2012

9

Reductions

A reduction converts an array to a scalar: for example,

sum, product, minimum value, maximum value, Boolean

AND, Boolean OR, etc.

Reductions are so common, and so important, that MPI has two

routines to handle them:

MPI_Reduce: sends result to a single specified process

MPI_Allreduce: sends result to all processes (and therefore

may take longer)

NCSI Parallel & Cluster: MPI Collectives

U Oklahoma, July 29 - Aug 4 2012

10

Reduction Example Part 1
#include <stdio.h>

#include <stdlib.h>

#include <mpi.h>

int main (int argc, char** argv)

{ /* main */

 const int server = 0;

 const int destination = server;

 int value, value_sum;

 int number_of_processes, my_rank, mpi_error_code;

 mpi_error_code = MPI_Init(&argc, &argv);

 mpi_error_code = MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

 mpi_error_code = MPI_Comm_size(MPI_COMM_WORLD,

 &number_of_processes);

NCSI Parallel & Cluster: MPI Collectives

U Oklahoma, July 29 - Aug 4 2012

11

Reduction Example Part 1
 value = my_rank * number_of_processes;

 fprintf(stderr, "%d: reduce value = %d\n",

 my_rank, value);

 mpi_error_code =

 MPI_Reduce (&value, &value_sum, 1, MPI_INT, MPI_SUM,

 destination, MPI_COMM_WORLD);

 fprintf(stderr, "%d: reduce value_sum = %d\n",

 my_rank, value_sum);

 mpi_error_code =

 MPI_Allreduce(&value, &value_sum, 1, MPI_INT, MPI_SUM,

 MPI_COMM_WORLD);

 fprintf(stderr, "%d: allreduce value_sum = %d\n",

 my_rank, value_sum);

 mpi_error_code = MPI_Finalize();

} /* main */

NCSI Parallel & Cluster: MPI Collectives

U Oklahoma, July 29 - Aug 4 2012

Reduce: Compiling and Running

% mpicc -o mpireduce mpireduce.c

% mpirun -np 8 mpireduce

0: reduce value = 0

4: reduce value = 32

6: reduce value = 48

7: reduce value = 56

3: reduce value = 24

2: reduce value = 16

5: reduce value = 40

1: reduce value = 8

7: reduce value_sum = -9120

3: reduce value_sum = -9120

2: reduce value_sum = -9120

5: reduce value_sum = -9120

1: reduce value_sum = -9120

6: reduce value_sum = -9120

4: reduce value_sum = -9120

0: reduce value_sum = 224

2: allreduce value_sum = 224

7: allreduce value_sum = 224

4: allreduce value_sum = 224

3: allreduce value_sum = 224

1: allreduce value_sum = 224

5: allreduce value_sum = 224

0: allreduce value_sum = 224

6: allreduce value_sum = 224

NCSI Parallel & Cluster: MPI Collectives

U Oklahoma, July 29 - Aug 4 2012 12

13

Why Two Reduction Routines?

MPI has two reduction routines because of the high cost of

each communication.

If only one process needs the result, then it doesn’t make sense

to pay the cost of sending the result to all processes.

But if all processes need the result, then it may be cheaper to

reduce to all processes than to reduce to a single process and

then broadcast to all.

You can think of MPI_Allreduce as

MPI_Reduce followed by MPI_Bcast

(though it doesn’t have to be implemented that way).

NCSI Parallel & Cluster: MPI Collectives

U Oklahoma, July 29 - Aug 4 2012

Reduction on Arrays #1

MPI_Reduce and MPI_Allreduce are actually designed

to work on arrays, where the corresponding elements of each

source array are reduced into the corresponding element of

the destination array (all of the same length):

MPI_Allreduce(source_array, destination_array,

 number_of_array_elements,

 MPI_DATATYPE, MPI_OPERATION, MPI_COMMUNICATOR);

For example:

MPI_Allreduce(local_force_on_particle, global_force_on_particle,

 number_of_particles,

 MPI_FLOAT, MPI_SUM, MPI_COMM_WORLD);

NCSI Parallel & Cluster: MPI Collectives

U Oklahoma, July 29 - Aug 4 2012 14

Reduction on Arrays #2

MPI_Allreduce(local_force_on_particle, global_force_on_particle,

 number_of_particles,

 MPI_FLOAT, MPI_SUM, MPI_COMM_WORLD);

global_force_on_particle[p] =

 local_force_on_particle[p] on Rank 0 +

 local_force_on_particle[p] on Rank 1 +

 local_force_on_particle[p] on Rank 2 +

 ...

 local_force_on_particle[p] on Rank np–1;

NCSI Parallel & Cluster: MPI Collectives

U Oklahoma, July 29 - Aug 4 2012 15

Scatter and Gather

 To scatter is to send data from one place to many places.

 To gather is to receive data from many places into one

place.

 MPI has a variety of scatter and gather routines:

 MPI_Scatter, MPI_Scatterv

 MPI_Gather, MPI_Gatherv,

MPI_Allgather, MPI_Allgatherv

 The scatter routines split up a single larger array into

smaller subarrays, one per MPI process, and send each

subarray to an MPI process.

 The gather routines receive many smaller subarrays, one per

MPI process, and assemble them into a single larger array.
NCSI Parallel & Cluster: MPI Collectives

U Oklahoma, July 29 - Aug 4 2012 16

MPI_Scatter

MPI_Scatter takes an array whose length is divisible by the

number of MPI processes, and splits it up into subarrays of

equal length, then sends one subarray to each MPI process.

MPI_Scatter(large_array, small_array_length,

 MPI_DATATYPE,

 small_subarray, small_subarray_length,

 MPI_DATATYPE, source, MPI_COMMUNICATOR);

So, for a large array of length 100 on 5 MPI processes:

 each smaller subarray has length 20;

 large_array[0] .. large_array[19] go to small_array on Rank 0;

 large_array[20]..large_array[39] go to small_array on Rank 1;

 etc

NCSI Parallel & Cluster: MPI Collectives

U Oklahoma, July 29 - Aug 4 2012 17

MPI_Scatterv

MPI_Scatterv is just like MPI_Scatter, except that the

subarray lengths don’t have to be the same (and therefore

the length of the large array doesn’t have to be divisible by

the number of MPI processes).
MPI_Scatterv(large_array, small_subarray_lengths,

 displacements,

 MPI_DATATYPE,

 small_subarray, small_subarray_lengths,

 MPI_DATATYPE, source, MPI_COMMUNICATOR);

The displacements array says where each small subarray

begins within the large array.

NCSI Parallel & Cluster: MPI Collectives

U Oklahoma, July 29 - Aug 4 2012 18

MPI_Gather

MPI_Gather receives a small array on each of the MPI

processes, all subarrays of equal length, and joins them into a

single large array on the destination MPI process.
MPI_Gather(small_subarray, small_subarray_length,

 MPI_DATATYPE,

 large_array, large_array_length,

 MPI_DATATYPE, destination, MPI_COMMUNICATOR);

So, for a small subarray of length 20 on each of 5 MPI processes:

 the large array on the destination process has length 100;

 large_array[0] .. large_array[19] come from small_array on

Rank 0;

 large_array[20]..large_array[39] come from small_array on

Rank 1;

 etc
NCSI Parallel & Cluster: MPI Collectives

U Oklahoma, July 29 - Aug 4 2012 19

MPI_Gatherv

MPI_Gatherv is just like MPI_Gather, except that the

subarray lengths don’t have to be the same (and therefore the

length of the large array doesn’t have to be divisible by the

number of MPI processes).
MPI_Gatherv(small_subarray, small_subarray_length,

 MPI_DATATYPE,

 large_array, small_subarray_lengths,

 displacements,

 MPI_DATATYPE, destination, MPI_COMMUNICATOR);

The displacements array says where each small subarray

begins within the large array.

NCSI Parallel & Cluster: MPI Collectives

U Oklahoma, July 29 - Aug 4 2012 20

MPI_Allgather & MPI_Allgatherv

MPI_Allgather and MPI_Allgatherv are the same

as MPI_Gather and MPI_Gatherv, except that the

large array gets filled on every MPI process, so no

destination process argument is needed.

NCSI Parallel & Cluster: MPI Collectives

U Oklahoma, July 29 - Aug 4 2012 21

22

OK Supercomputing Symposium 2012

2006 Keynote:

Dan Atkins

Head of NSF’s

Office of

Cyberinfrastructure

2004 Keynote:
Sangtae Kim

NSF Shared
Cyberinfrastructure
Division Director

2003 Keynote:
Peter Freeman

NSF
Computer & Information
Science & Engineering

Assistant Director

2005 Keynote:
Walt Brooks

NASA Advanced
Supercomputing
Division Director

2007 Keynote:
Jay Boisseau

Director
Texas Advanced

Computing Center
U. Texas Austin

2008 Keynote:
José Munoz

Deputy Office
Director/ Senior

Scientific Advisor
NSF Office of

Cyberinfrastructure

2009 Keynote:
Douglass Post
Chief Scientist

US Dept of Defense
HPC Modernization

Program

FREE! Wed Oct 3 2012 @ OU
Over 235 registra2ons already!

Over 150 in the first day, over 200 in the first week,
over 225 in the first month.

http://symposium2012.oscer.ou.edu/

Reception/Poster Session

FREE! Tue Oct 2 2012 @ OU
FREE! Symposium Wed Oct 3 2012 @ OU

2010 Keynote:
Horst Simon

Deputy Director
Lawrence Berkeley
National Laboratory

Thom Dunning, Director

National Center for Supercomputing

Applications

NCSI Parallel & Cluster: Storage Hierarchy

U Oklahoma, July 29 - Aug 4 2012

2011 Keynote:
Barry Schneider

Program Manager
National Science

Foundation

http://symposium2012.oscer.ou.edu/

Thanks for your
attention!

Questions?
www.oscer.ou.edu

http://www.oscer.ou.edu/

