

Shared Memory
&

OpenMP

Michial Green II
-

Contra Costa College

Shared Memory Architecture

Threads

● Short for

“Thread of execution”
● Threads execute the

statements within a
program.

● Threads are usually
created by a process

Distributed:

●Multiple Instances of program created

●Each process has it's own local memory

●One process cannot see anything local to
another process

●May not even be on same node

●Memory communicated via message passing

Shared

● Only one instance runs
● Threads are created as needed within
● Each thread has local memory
● Each thread can be run by separate CPUs

or
● Each thread can run on the same CPU
● Local memory can be communicated by

updates to main memory

The Round Table

● Round table with one worker

worker has:

-Pencil

-paper

-calculator

-public checkbook to balance

The Round Table

● Worker calls in 2
more helpers.

● The helpers get:

-pencil

-paper

-calculator

Helpers may also
look at the public
checkbook!

The Round Table

● No one can see what
you write on your
own paper.

● But you can change
the public checkbook
at any time so
everyone can see.

The Round Table

● Helpers finish their jobs, and
then are dismissed.

● Before leaving they record
their results in the public
checkbook.

Fork and Join

Notice the areas with
just the original
master thread.

Amdahl's Law

● F= the parallelizable sections of serial code
● N = number of processors

Pseudo Parallelism?

● What if you have two threads on one
processor?

● What about your operating system?

Time Slices

● A processor can only do one thing at a time.
● So it switches between jobs quickly

Caveats

The word we hear so much:

Overhead

● Creating threads

● Communicating between threads

● Managing Memory Access

Thread Creation Overhead

● Anything else running?

● Resources present?

● Are there enough physical processors?
● These can be expensive
● Expense rises as the number of threads

required rises
● No work until workers arrive

Thread Communication Overhead

● Do they need to talk?
● Structure scenarios for communicating
● Choosing reliable communications

● Remember time spent talking is not time spent
working

Shared Memory Concerns

● Shared literally means “Shared”

A:What's mine is mine, I do what I please

B:What's yours is mine, I do what I please

Managing Memory Access

● Writing at the same time
● Only reading valid data
● Waiting..... waiting..... waiting....

OpenMP

● Don't confuse with OpenMPI
● MP means “multiprocessing”

● Unlike MPI, some OpenMP capabilities require
compiler support, and aren't linked into your
executable.

Compiling OpenMP Programs

● Call your openmp compliant compiler as
normal.

Example:
gcc filename.c

● Add your appropriate compiler flag to enable
openMP.

GNU = -fopenmp ; Intel = -Qopenmp ; etc.

check → openmp.org/wp/openmp-compilers/

● Gcc -g -o myprogram -fopenmp filename.c -lm

Going Parallel
● #include <stdio.h>
●

● using namespace std;
● const int thread_count = 2;
●

● void Hello(void)
● {
● printf(“Oh well helllooooooo!\n”);
● }
● int main(void)
● {
● # pragma omp parallel num_threads(thread_count)
● Hello();
● return 0;
● }
●

Setting the number of threads

● export OMP_NUM_THREADS = #
● setenv OMP_NUM_THREADS #

● # pragma omp parallel num_threads(thread_count)

changes the number of threads arbitrarily

The Parallel Construct - C

● # pragma omp parallel
– Next structured block runs in parallel

 the number of threads used are determined by
OMP_NUM_THREADS

or

THE NUMBER OF AVAILABLE PROCESSORS

– OMP_NUM_PROCS

● Clauses can be added to refine your approach

Parallel clauses

● num_threads(int)
– Use: #pragma omp parallel num_threads(15)

specifies the number of threads to run in block

● private(variablename1, variablename2,...,)
– Use: #pragma omp parallel private(i, my_rank)

grants all threads in block a local version of the

specified variables, that they can manipulate

Parallel for construct

● |-----|-----|-----|-----|-----|-----|-----|-----|
● # pragma omp parallel for

for(int i=0; i<limit; i++){sum+=i;}

● Assuming that sum was defined before
– Sum is visible and shared to all threads

– No while loops or do while loops

Parallel for Construct

● Trouble comes at the statement:
– sum+=i;

because the variable is shared.

● Who will update the variable and when?

Critical Sections

● You don't want multiple updates
● Make the area mutually exclusive

We could use:

pragma omp critical

{sum+=i;}

Critical Sections

● Bonus:
– No need to worry about interrupts

● Caveats:
– This area is SERIAL BY NATURE

– Performance hit

Parallel for Construct

● We could make the variable private
– # pragma omp parallel for private(sum)

● Now its up to us to gather the values from
each thread

● This is a lot of work.

The Reduction Clause

Int sum = 0, limit = 10000000;

pragma omp parallel for num_threads(8) \
reduction(+: sum)

for(int i=0; i<limit; i++){sum += i;}

● sum+=i remains parallel
● I no longer have to coordinate a reduction

manually

Runtime Libraries

● #include <omp.h>

● Who am I, How many of us are there?

Int omp_get_num_threads();

int omp_get_thread_num();

#include <cstdio>
#include <omp.h>
main () {

int nthreads, tid;

/* Fork a team of threads with each thread having a private tid
variable */

#pragma omp parallel private(tid)
{

/* Obtain and print thread id */

tid = omp_get_thread_num();

printf("Hello World from thread = %d\n", tid);
printf(“Hello, I may appear in what seems a random spot!\n”);

/* Only master thread does this */

if (tid == 0)

{

nthreads = omp_get_num_threads();

printf("Number of threads = %d\n", nthreads);

}

} /* All threads join master thread and terminate */

return 0;
}

OpenMP – Area Under the curve

● Setup OpenMP (-fopenmp, setenv)
● Defining your constants
● Determining your number of rectangles
● Fork a team to create chunks of rectangles
● Calculate areas
● Remember to use reduction on for construct
● Output result and timing

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

