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Shared Memory Architecture



  

Threads

● Short for 

“Thread of execution”
● Threads execute the 

statements within a 
program.

● Threads are usually 
created by a process



  

Distributed:

●Multiple Instances of program created

●Each process has it's own local memory  

●One process cannot see anything local to 
another process

●May not even be on same node

●Memory communicated via message passing



  

Shared

● Only one instance runs
● Threads are created as needed within
● Each thread has local memory
● Each thread can be run by separate CPUs

or
● Each thread can run on the same CPU
● Local memory  can be communicated by 

updates to main memory 



  

The Round Table

● Round table with one worker

worker has:

-Pencil

-paper

-calculator

-public checkbook to balance



  

The Round Table

● Worker calls in 2 
more helpers.

● The helpers get:

-pencil

-paper

-calculator 

Helpers may also 
look at the public 
checkbook!



  

The Round Table

● No one can see what 
you write on your 
own paper.

● But you can change 
the public checkbook 
at any time so 
everyone can see.



  

The Round Table

● Helpers finish their jobs, and 
then are dismissed.

● Before leaving they record 
their results in the public 
checkbook.



  

Fork and Join

Notice the areas with 
just the original 
master thread.



  

Amdahl's Law

● F= the parallelizable sections of serial code
● N = number of processors



  

Pseudo Parallelism?

● What if you have two threads on one 
processor?

● What about your operating system?



  

Time Slices

● A processor can only do one thing at a time.
● So it switches between jobs quickly



  

Caveats

The word we hear so much:

Overhead

● Creating threads

● Communicating between threads

● Managing Memory Access



  

Thread Creation Overhead

● Anything else running?

● Resources present?

● Are there enough physical processors?
● These can be expensive
● Expense rises as the number of threads 

required rises
● No work until workers arrive



  

Thread Communication Overhead

● Do they need to talk?
● Structure scenarios for communicating
● Choosing reliable communications

● Remember time spent talking is not time spent 
working



  

Shared Memory Concerns

● Shared literally means “Shared”

A:What's mine is mine, I do what I please

B:What's yours is mine, I do what I please



  

Managing Memory Access

● Writing at the same time
● Only reading valid data
● Waiting..... waiting..... waiting....



  

OpenMP

● Don't confuse with OpenMPI
● MP means “multiprocessing”

● Unlike MPI, some OpenMP capabilities require 
compiler support, and aren't linked into your 
executable.



  

Compiling OpenMP Programs

● Call your openmp compliant compiler as 
normal.

Example: 
gcc filename.c

● Add your appropriate compiler flag to enable 
openMP.

GNU = -fopenmp  ;  Intel = -Qopenmp  ; etc.

check →  openmp.org/wp/openmp-compilers/

● Gcc -g -o myprogram -fopenmp filename.c -lm



  

Going Parallel
● #include <stdio.h>
●

● using namespace std;
● const int thread_count = 2;
●

● void Hello(void)
● {
● printf(“Oh well helllooooooo!\n”);
● }
● int main(void)
● {
● # pragma omp parallel num_threads(thread_count)
● Hello();
● return 0;
● }
●



  

Setting the number of threads

● export OMP_NUM_THREADS = #
● setenv OMP_NUM_THREADS #

● # pragma omp parallel num_threads(thread_count)

changes the number of threads arbitrarily



  

The Parallel Construct - C

● # pragma omp parallel
– Next structured block runs in parallel

 the number of threads used are determined by 
OMP_NUM_THREADS

or

THE NUMBER OF AVAILABLE PROCESSORS

– OMP_NUM_PROCS 

● Clauses can be added to refine your approach



  

Parallel clauses

● num_threads(int)
– Use: #pragma omp parallel num_threads(15)

specifies the number of threads to run in block

● private(variablename1, variablename2,...,)
– Use: #pragma omp parallel private(i, my_rank)

grants all threads in block a local version of the 

specified variables, that they can manipulate



  

Parallel for construct

● |-----|-----|-----|-----|-----|-----|-----|-----|
● # pragma omp parallel for

for(int i=0; i<limit; i++){sum+=i;}

● Assuming that sum was defined before
– Sum is visible and shared to all threads

– No while loops or do while loops



  

Parallel for Construct

● Trouble comes at the statement:
–                 sum+=i;

because the variable is shared. 

● Who will update the variable and when?



  

Critical Sections

● You don't want multiple updates
● Make the area mutually exclusive

We could use:

# pragma omp critical

{sum+=i;}



  

Critical Sections

● Bonus:
– No need to worry about interrupts

● Caveats:
– This area is SERIAL BY NATURE

– Performance hit



  

Parallel for Construct

● We could make the variable private
– # pragma omp parallel for private(sum)

● Now its up to us to gather the values from 
each thread

● This is a lot of work.



  

The Reduction Clause

Int sum = 0, limit = 10000000;

# pragma omp parallel for num_threads(8)  \
reduction(+: sum)

for(int i=0; i<limit; i++){sum += i;}

● sum+=i  remains parallel
● I no longer have to coordinate a reduction 

manually



  

Runtime Libraries

● #include <omp.h>

● Who am I, How many of us are there?

Int omp_get_num_threads();

int omp_get_thread_num();



  

#include <cstdio>
#include <omp.h>
main () {

int nthreads, tid;

/* Fork a team of threads with each thread having a private tid 
variable */

#pragma omp parallel private(tid)
{

/* Obtain and print thread id */

tid = omp_get_thread_num();

printf("Hello World from thread = %d\n", tid);
printf(“Hello, I may appear in what seems a random spot!\n”);

/* Only master thread does this */

if (tid == 0)

{

nthreads = omp_get_num_threads();

printf("Number of threads = %d\n", nthreads);

}

} /* All threads join master thread and terminate */

return 0;
}



  

OpenMP – Area Under the curve

● Setup OpenMP (-fopenmp, setenv)
● Defining your constants
● Determining your number of rectangles
● Fork a team to create chunks of rectangles
● Calculate areas
● Remember to use reduction on for construct
● Output result and timing
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