Message Passing Interface
MPI Send/Receive Blocked/Unblocked

Tom Murphy

Director of Contra Costa College
High Performance Computing Center

MPI Send/Receive Blocked/Unblocked
U Oklahoma, July 29 - Aug 4 2012

LLLLLLL

Y sHopor

Where are we headed?

INn focusing on Send and Recelve

= Blocking
= Easiest, but might waste time
= Send Communication Modes (same Receive)
= Non Blocking
= Extra things that might go wrong
= Might be able to overlap wait with other stuff
= Send/Receive and their friends

MPI Send/Receive Blocked/Unblocked

LLLLL

Y stHopor

o
) l' | INFORMATION
TECHNOLOGY

OOOOOOOOOOOOOOOOOOOOOOO

% T4 U Oklahoma, July 29 - Aug 4 2012 Ce) EARLHA)

From where ‘d we come?

6 MPI commandads
MPI Init (int *argc, char ***argv)
MPI Comm_rank (MPI Comm comm, int *rank)
MPI_Comm_size (MPI_Comm comm, int *size)

MPI Send(

void* buf, int count, MPI Datatype datatype,
int dest, inttag, MPI Comm comm)

MPI_Recv(
void* buf, int count, MPI Datatype datatype,
int source, int tag, MPI Comm comm,
MPI Status *status)

MPI Finalize ()

MPI Send/Receive Blocked/Unblocked

"o) U Oklahoma, July 29 - Aug 4 2012 % EARLHAM

COLLEGE

| | £ XSEDE W/SHODOR

rrrrrrrrrrr OF OKLAHOMA

Four Blocking Send Modes

basically synchronous communication
= Send 1s the focus
= MPI RECV works with all Sends

= Four Send modes to answer the questions ...
= Do an extra copy to dodge synchronization delay?
= How do Sends/Receives Start/Finish together?

= No change to parameters passed to send or receive

= What does change 1s the name of the function
= MPI Ssend, MPI Bsend, MPI Rsend, and MPI Send

MPI Send/Receive Blocked/Unblocked
U Oklahoma, July 29 - Aug 4 2012 % EARLHAM

COLLEGE

X Y sHoDpOR

4 Blocking Send modes
all use same blocking receive

= Synchronous —
= No buffer, but both sides wait for other

s Buffered — The roundabout You construct

= Explicit user buffer, alls well as long as within buffer
s Ready — Fire truck Stoplight Override
= No buffer, no handshake, Send is the firetruck
= Standard — Roundabout
= Not so standard blend of Synchronous and Buffered
= Internal buffer?

MPI Send/Receive Blocked/Unblocked
U Oklahoma, July 29 - Aug 4 2012 ~reere) EARLHA

COLLEGE

Y stHopor

Synchronous

no buffer
MPI Ssend
Send can 1nitiate, before Receive starts
Receilve must start, before Send sends anything

Safest and most portable
= Doesn’t care about order of Send/Receive
= Doesn’t care about any hidden internal buffer

May have high synchronization overhead

MPI Send/Receive Blocked/Unblocked

% Q"l 4 ‘ U Oklahoma, July 29 - Aug 4 2012 ‘ E=) FARLHAM
& :/z” Yensiry o ww““\'\\\\g D

INFORMATION VSHODOR 6

Buffered

explicit user defined buffer

MPI Bsend
Send can complete, before Receive even starts

Explicit buffer allocation, via MPI Buffer attach

Error, 1f buffer overflow
Eliminates synchronization overhead, at cost of extra copy

MPI Send/Receive Blocked/Unblocked

/) . U Oklahoma, July 29 - Aug 4 2012 % EARLHAM

LLLLL

nromaoy XSECE W/stonor !

OOOOOOOOOOOOOOOOOOOOOOOO

Ready

NoO buffer - no synchronization

MPI Rsend
Receive must 1nitiate, before Send starts
Minimum idle Sender, at expense of Receiver

[.owest sender overhead

s No Sender/Receiver handshake
As with Synchronous

= No extra copy to buffer
As with Buffered and Standard

MPI Send/Receive Blocked/Unblocked

INFORMATION
TECHNOLOGY X

\\\\\\\\\\\\\\\\\\\\\\\\

Y sHoDpOR

§§OScER§§ % Q'/)) U Oklahoma, July 29 - Aug 4 2012 E==) FARLHAM

Standard

mysterious internal buffer

MPI Send

Buffer may be on send side, receive side, or both
Could be Synchronous, but users expect Buffered
Goes Synchronous, 1f you exceed hidden buffer size

Potential for unexpected timing behavior

MPI Send/Receive Blocked/Unblocked
. U Oklahoma, July 29 - Aug 4 2012 Emed) EARLHAM

LLLLL
INFORMATION

TECHNOLOGY X VSHODOR 9

uuuuuuuuuuuuuuuuuuuuuu

Non-Blocking Send/Receive

basically asynchronous communication

s Call returns immediately, which allows for
overlapping other work
= User must worry about whether ...
= Data to be sent 1s out of the send buffer
= Data to be received has finished arriving

= For sends and receives in flight
= MPI Wait — blocking - you go synchronous
= MPI Test —non-blocking - Status Check

m Check for existence of data to receive

= Blocking: MPI_Probe
Non-blocking: MPI_Iprobe

MPI Send/Receive Blocked/Unblocked

174 U Oklahoma, July 29 - Aug 4 2012 Emed) EARLHAM

LLLLLL

| | £ XSEDE W/SHODOR o

\\\\\\\\\\\\\\\\\\ AHOMA

Non-Blocking Call Sequence

Restricts other work you can do

Sender Receiver
MPI_Isend ->requestID

Don’t write to send buffer
till send completes

requestID ->MPI_Wait

MPI_Irecv ->requestID

Don’t use data
till receive completes

requestID -> MPI_Wait

MPI Send/Receive Blocked/Unblocked
U Oklahoma, July 29 - Aug 4 2012

Xt = ‘VSHODOR 11

Non-blocking Send/Receive

Ql/7. U Oklahoma, July 29 - Aug 4 2012 (imerd) AR HA
)%:%%v .\.w*\\"g A l " INFORMATION ;

request ID for status checks

MPI Isend(
void *buf, int count, MPI Datatype datatype,
int dest,int tag, MPI Comm comm,
MPI_Request *request)

MPI Trecv(

void *buf, int count, MPI Datatype datatype,
int source, int tag, MPI Comm comm,
MPI Request *request)

‘; MPI Send/Receive Blocked/Unblocked

COLLEGE

Y stHopor 12

TECHNOLOGY

OOOOOOOOOOOOOOOOOOOOOOO

Return to blocking

m Waiting on a single send
= MPI Wait(MPI Request *request, MPI Status *status)

m Waiting on multiple sends (get status of all)

m Till all complete, as a barrier

= MPI Waitall(int count, MPI Request #*requests,
MPI Status *statuses)

= Till at least one completes

= MPI Waitany(int count, MPI Request #*requests,
int *index, MPI Status *status)

= Helps manage progressive completions

= int MPI Waitsome(int incount, MPI Request #*requests,
int *outcount, int *indices, MPI Status *statuses)

MPI Send/Receive Blocked/Unblocked

T4 U Oklahoma, July 29 - Aug 4 2012 Emed) EARLHAM

COLLEGE

| | £ XSEDE W/SHODOR

\\\\\\\\\\\\\\\\\\ AHOMA

waiting for send/receive to complete

13

Tests don’ t block

but give you same info as a wait

m Flag true means completed

MPI Test(MPI Request *request,
int *flag, MPI Status #*status)

MPI Testall(int count, MPI Request #*requests,
int *flag, MPI Status *statuses)

int MPI Testany(int count, MPI Request *requests,
int *index, int *flag, MPI Status *status)

= Like a non blocking MPI Waitsome

MPI Testsome(int incount, MPI Request *requests,
int *outcount, int *indices, MPI Status *statuses)

MPI Send/Receive Blocked/Unblocked
t U Oklahoma, July 29 - Aug 4 2012 Emed) EARLHAM
l

LLL
INFORMATION

TECHNOLOGY X VSHODOR 14

\\\\\\\\\\\\\\\\\\\\\\\

Probe to Receive
you can know something's there

m Probes yield incoming size

= Blocking Probe,
wait til match

= MPI Probe(int source, int tag, MPI Comm comm,
MPI_ Status *status)

= Non Blocking Probe,
flag true if ready

= MPI Iprobe(int source, int tag, MPI Comm comm,
int *flag, MPI Status #*status)

MPI Send/Receive Blocked/Unblocked

§§OSCER§§ % Q'/’) U Oklahoma, July 29 - Aug 4 2012 E==) FARLHAN

Nromos XSEDE Y/ SHODOR P

\\\\\\\\\\\\\\\\\\\\\\

Non-Blocking Advantages

fine-tuning your send and receives

= Avoids Deadlock
s Decreases Synchronization Overhead

m Bestto

= Post non-blocking sends and receives
as early as possible

= Do waits as late as possible

= Otherwise consider using blocking calls

MPI Send/Receive Blocked/Unblocked
Q| 7 ‘ U Oklahoma, July 29 - Aug 4 2012

INFORMATION

VSHODOR 16

TECHNOLOGY

OOOOOOOOOOOOOOOOOOOOOOO

Illustrative sample code

sometimes causing deadlock

“deadlock” facilitates test of the four blocking send modes
Also serves as example code using these modes

How to use it:
= Two processors are each going to each do a send and receive

= First parameter specifies whether both send(S) first, or both receive first(R),
or one first sends and the other first receives (A)

= Second parameter specifies how many bytes of data to send

= Third parameter specified which send mode to use:
MPI Ssend(S), MPI Bsend (B), MPI Rsend (R), or MPI Send(S)

mpirun command line
= mpirun -np 2 deadlock [SRA] mesg len [SBRV]

MPI Send/Receive Blocked/Unblocked

@f) U Oklahoma, July 29 - Aug 4 2012 % EARLHAM

COLLEGE

| | £ XSEDE W/SHODOR v

\\\\\\\\\\\\\\\\\\ AHOMA

MPI Hello World

= Fire up a qsub interactive shell on AC

Lets explore some code

ssh <account>(@ac.ncsa.uiuc.edu

cp ~trad/deadlock.c

qsub —I

= mpdstartup

= mpicc —o deadlock deadlock.c

= mpirun -np 4 ./deadlock

o ")

@/IO

INFORMATION
TECHNOLOGY

uuuuuuuuuuuuuuuuuuuuuu

MPI Send/Receive Blocked/Unblocked
U Oklahoma, July 29 - Aug 4 2012

X

EARLHA

COLLEGE

Y stHopor

Exploring Blocking Send/Receive

= Commands to execute
= mpicc -0 deadlock deadlock.c

= mpirun -np 2 deadlock order msgl.en mode

= order 1s R(receive first), S(send first), or A(alternate)
= mode is B(Buffered), R(Ready), S(Synchronous), or V(Standard)

MPI Send/Receive Blocked/Unblocked

§§OSCER§,§ % Q'/’ . U Oklahoma, July 29 - Aug 4 2012 E==) FARLHAN

INFORMATION

TECHNOLOGY X VSHODOR

uuuuuuuuuuuuuuuuuuuuuu

deadlock.c

19

Lab exercise using “deadlock” code
explore by using/changing code

s Parameter study
= Which parameters result is a successful run?

= [fa parameter set fails, why does it fail?

= [s there a message length such that 2 the length and twice the length
have two different behaviors?

= For what modes does this happen?

s Code change questions
= What happens if you make the code non-blocking?

= What happens if you modify the code so sends block, but receives
are non blocking? Vice-versa?

= What about MPI Sendrecv?

MPI Send/Receive Blocked/Unblocked

SCER§§ % Q'/’) U Oklahoma, July 29 - Aug 4 2012 E==) FARLHAM

heomuo: XSEDE Y/ SHODOR 20

\\\\\\\\\\\\\\\\\\\\\\

MPI_Sendrecv

send/receive smooshed fogether

= MPI Sendrecv (
void *sendbuf, int sendcount, MPI Datatype sendtype,
int dest, int sendtag,
void *recvbuf, int recvcount, MPI Datatype recvtype,

int source, int recvtag,
MPI Comm comm, MPI Status *status)

MPI Send/Receive Blocked/Unblocked
Q| 7 ‘ U Oklahoma, July 29 - Aug 4 2012

INFORMATION
TECHNOLOGY

OOOOOOOOOOOOOOOOOOOOOOO

VSHODOR

21

