
MPI Send/Receive Blocked/Unblocked
U Oklahoma, July 29 - Aug 4 2012

MPI Send/Receive Blocked/Unblocked

Tom Murphy

Director of Contra Costa College
High Performance Computing Center

Message Passing Interface

MPI Send/Receive Blocked/Unblocked
U Oklahoma, July 29 - Aug 4 2012

Where are we headed?

n  Blocking
n  Easiest, but might waste time
n  Send Communication Modes (same Receive)

n  Non Blocking
n  Extra things that might go wrong
n  Might be able to overlap wait with other stuff
n  Send/Receive and their friends

in focusing on Send and Receive

MPI Send/Receive Blocked/Unblocked
U Oklahoma, July 29 - Aug 4 2012

From where‘d we come?

•  MPI_Init (int *argc, char ***argv)
n  MPI_Comm_rank (MPI_Comm comm, int *rank)
n  MPI_Comm_size (MPI_Comm comm, int *size)
n  MPI_Send(

 void* buf, int count, MPI_Datatype datatype,
 int dest, int tag, MPI_Comm comm)

n  MPI_Recv(
 void* buf, int count, MPI_Datatype datatype,
 int source, int tag, MPI_Comm comm,
 MPI_Status *status)

•  MPI_Finalize ()

3

6 MPI commands

MPI Send/Receive Blocked/Unblocked
U Oklahoma, July 29 - Aug 4 2012

Four Blocking Send Modes

n  Send is the focus
n  MPI_RECV works with all Sends

n  Four Send modes to answer the questions …
n  Do an extra copy to dodge synchronization delay?
n  How do Sends/Receives Start/Finish together?

n  No change to parameters passed to send or receive
n  What does change is the name of the function

n  MPI_Ssend, MPI_Bsend, MPI_Rsend, and MPI_Send

4

basically synchronous communication

MPI Send/Receive Blocked/Unblocked
U Oklahoma, July 29 - Aug 4 2012

4 Blocking Send modes

n  Synchronous – Stoplight Intersection
n  No buffer, but both sides wait for other

n  Buffered – The roundabout You construct
n  Explicit user buffer, alls well as long as within buffer

n  Ready – Fire truck Stoplight Override
n  No buffer, no handshake, Send is the firetruck

n  Standard – The Roundabout
n  Not so standard blend of Synchronous and Buffered
n  Internal buffer?

5

all use same blocking receive

MPI Send/Receive Blocked/Unblocked
U Oklahoma, July 29 - Aug 4 2012

Synchronous

n  MPI_Ssend
n  Send can initiate, before Receive starts
n  Receive must start, before Send sends anything
n  Safest and most portable

n  Doesn’t care about order of Send/Receive
n  Doesn’t care about any hidden internal buffer

n  May have high synchronization overhead

6

no buffer

MPI Send/Receive Blocked/Unblocked
U Oklahoma, July 29 - Aug 4 2012

Buffered

n  MPI_Bsend
n  Send can complete, before Receive even starts
n  Explicit buffer allocation, via MPI_Buffer_attach
n  Error, if buffer overflow
n  Eliminates synchronization overhead, at cost of extra copy

7

explicit user defined buffer

MPI Send/Receive Blocked/Unblocked
U Oklahoma, July 29 - Aug 4 2012

Ready

n  MPI_Rsend
n  Receive must initiate, before Send starts
n  Minimum idle Sender, at expense of Receiver
n  Lowest sender overhead

n  No Sender/Receiver handshake
 As with Synchronous

n  No extra copy to buffer
 As with Buffered and Standard

8

no buffer - no synchronization

MPI Send/Receive Blocked/Unblocked
U Oklahoma, July 29 - Aug 4 2012

Standard

n  MPI_Send
n  Buffer may be on send side, receive side, or both
n  Could be Synchronous, but users expect Buffered
n  Goes Synchronous, if you exceed hidden buffer size
n  Potential for unexpected timing behavior

9

mysterious internal buffer

MPI Send/Receive Blocked/Unblocked
U Oklahoma, July 29 - Aug 4 2012

Non-Blocking Send/Receive

n  Call returns immediately, which allows for
overlapping other work

n  User must worry about whether …
n  Data to be sent is out of the send buffer
n  Data to be received has finished arriving

n  For sends and receives in flight
n  MPI_Wait – blocking - you go synchronous
n  MPI_Test – non-blocking - Status Check
n  Check for existence of data to receive
n  Blocking: MPI_Probe

Non-blocking: MPI_Iprobe

10

basically asynchronous communication

MPI Send/Receive Blocked/Unblocked
U Oklahoma, July 29 - Aug 4 2012

Non-Blocking Call Sequence

11

Restricts other work you can do

Don’t use data
till receive completes

Don’t write to send buffer
till send completes

requestID -> MPI_Wait

MPI_Irecv ->requestID
requestID ->MPI_Wait

MPI_Isend ->requestID
Receiver Sender

MPI Send/Receive Blocked/Unblocked
U Oklahoma, July 29 - Aug 4 2012

Non-blocking Send/Receive

n  MPI_Isend( 
"void *buf, int count, MPI_Datatype datatype,  
"int dest,int tag, MPI_Comm comm,
 MPI_Request *request)

n  MPI_Irecv( 
"void *buf, int count, MPI_Datatype datatype,
"int source, int tag, MPI_Comm comm,  
"MPI_Request *request)"

12

request ID for status checks

MPI Send/Receive Blocked/Unblocked
U Oklahoma, July 29 - Aug 4 2012

Return to blocking

n  Waiting on a single send"
n  MPI_Wait(MPI_Request *request, MPI_Status *status)"

n  Waiting on multiple sends (get status of all)"
n  Till all complete, as a barrier"

n  MPI_Waitall(int count, MPI_Request *requests,  
MPI_Status *statuses)  
"

n  Till at least one completes"
n  MPI_Waitany(int count, MPI_Request *requests,  
int *index, MPI_Status *status)"

n  Helps manage progressive completions"
n  int MPI_Waitsome(int incount, MPI_Request *requests,  
int *outcount, int *indices, MPI_Status *statuses)  
"

13

waiting for send/receive to complete

MPI Send/Receive Blocked/Unblocked
U Oklahoma, July 29 - Aug 4 2012

Tests don’t block

n  Flag true means completed"
n  MPI_Test(MPI_Request *request,  

int *flag, MPI_Status *status)"
n  MPI_Testall(int count, MPI_Request *requests,  

int *flag, MPI_Status *statuses)"
n  int MPI_Testany(int count, MPI_Request *requests,  

int *index, int *flag, MPI_Status *status)  
"

n  Like a non blocking MPI_Waitsome"
n  MPI_Testsome(int incount, MPI_Request *requests,  

int *outcount, int *indices, MPI_Status *statuses)  

14

but give you same info as a wait

MPI Send/Receive Blocked/Unblocked
U Oklahoma, July 29 - Aug 4 2012

Probe to Receive

n  Probes yield incoming size "
n  Blocking Probe,  
wait til match"

n  MPI_Probe(int source, int tag, MPI_Comm comm,  
 MPI_Status *status)"

n  Non Blocking Probe,  
flag true if ready"

n  MPI_Iprobe(int source, int tag, MPI_Comm comm,  
 int *flag, MPI_Status *status)"

15

you can know something's there

MPI Send/Receive Blocked/Unblocked
U Oklahoma, July 29 - Aug 4 2012

Non-Blocking Advantages

n  Avoids Deadlock
n  Decreases Synchronization Overhead
n  Best to

n  Post non-blocking sends and receives
 as early as possible

n  Do waits as late as possible
n  Otherwise consider using blocking calls

16

fine-tuning your send and receives

MPI Send/Receive Blocked/Unblocked
U Oklahoma, July 29 - Aug 4 2012

Illustrative sample code

n  “deadlock” facilitates test of the four blocking send modes
n  Also serves as example code using these modes
n  How to use it:

n  Two processors are each going to each do a send and receive
n  First parameter specifies whether both send(S) first, or both receive first(R),

or one first sends and the other first receives (A)
n  Second parameter specifies how many bytes of data to send
n  Third parameter specified which send mode to use:

MPI_Ssend(S), MPI_Bsend (B), MPI_Rsend (R), or MPI_Send(S)

n  mpirun command line
n  mpirun -np 2 deadlock [SRA] mesg_len [SBRV]

17

sometimes causing deadlock

MPI Send/Receive Blocked/Unblocked
U Oklahoma, July 29 - Aug 4 2012

MPI Hello World

n  Fire up a qsub interactive shell on AC
n  ssh <account>@ac.ncsa.uiuc.edu
n  cp ~tra5/deadlock.c
n  qsub –I
n  mpdstartup
n  mpicc –o deadlock deadlock.c
n  mpirun -np 4 ./deadlock

18

Lets explore some code

MPI Send/Receive Blocked/Unblocked
U Oklahoma, July 29 - Aug 4 2012

Exploring Blocking Send/Receive

n  Commands to execute
n  mpicc -o deadlock deadlock.c
n  mpirun -np 2 deadlock order msgLen mode

n  order is R(receive first), S(send first), or A(alternate)
n  mode is B(Buffered), R(Ready), S(Synchronous), or V(Standard)

19

deadlock.c

MPI Send/Receive Blocked/Unblocked
U Oklahoma, July 29 - Aug 4 2012

Lab exercise using “deadlock” code

n  Parameter study
n  Which parameters result is a successful run?
n  If a parameter set fails, why does it fail?
n  Is there a message length such that ½ the length and twice the length

have two different behaviors?
n  For what modes does this happen?

n  Code change questions
n  What happens if you make the code non-blocking?
n  What happens if you modify the code so sends block, but receives

are non blocking? Vice-versa?
n  What about MPI_Sendrecv?

20

explore by using/changing code

MPI Send/Receive Blocked/Unblocked
U Oklahoma, July 29 - Aug 4 2012

MPI_Sendrecv

n  MPI_Sendrecv( 
void *sendbuf, int sendcount, MPI_Datatype sendtype, 

"int dest, int sendtag,
 void *recvbuf, int recvcount, MPI_Datatype recvtype,

 int source, int recvtag,
 MPI_Comm comm, MPI_Status *status)

21

send/receive smooshed together

