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Accelerators
 In HPC, an accelerator is hardware component whose role is 

to speed up some aspect of the computing workload.
 In the olden days (1980s), supercomputers sometimes had 

array processors, which did vector operations on arrays, and 
PCs sometimes had floating point accelerators: little chips 
that did the floating point calculations in hardware rather than 
software.

 More recently, Field Programmable Gate Arrays (FPGAs) 
allow reprogramming deep into the hardware.
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Why Accelerators are Good
Accelerators are good because:
 they make your code run faster.
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Why Accelerators are Bad
Accelerators are bad because:
 they’re expensive (some);
 they’re hard to program (all, at least for now);
 your code on them may not be portable to other 

accelerators, so the labor you invest in programming them 
has a very short half-life.
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The King of the Accelerators
The undisputed champion of accelerators is:
 the graphics processing unit.

http://www.amd.com/us-en/assets/content_type/DigitalMedia/46928a_01_ATI-FirePro_V8700_angled_low_res.gif

http://images.nvidia.com/products/quadro_fx_5800/Quadro_FX5800_low_3qtr.png

http://www.gamecyte.com/wp-content/uploads/2009/01/ibm-sony-toshiba-cell.jpg

http://www.overclockers.ua/news/cpu/106612-Knights-Ferry.jpg
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Why GPU?
 Graphics Processing Units (GPUs) were originally designed 

to accelerate graphics tasks like image rendering.
 They became very very popular with videogamers, because 

they produce better and better images, and lightning fast.
 And, prices have been extremely good, ranging from three 

figures at the low end to four figures at the high end.
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GPUs are Popular
 Chips are expensive to design (hundreds of millions of $$$), 

expensive to build the factory for (billions of $$$), but cheap 
to produce.

 For example, in 2006 – 2007, GPUs sold at a rate of about 80 
million cards per year, generating about $20 billion per year 
in revenue.
http://www.xbitlabs.com/news/video/display/

20080404234228_Shipments_of_Discrete_Graphics_Cards_on_the_Rise_but_Prices_Down_Jon_P
eddie_Research.html

 This means that the GPU companies have been able to recoup 
the huge fixed costs.
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GPUs Do Arithmetic
 GPUs mostly do stuff like rendering images.
 This is done through mostly floating point arithmetic – the 

same stuff people use supercomputing for!
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Why Bother?

11

Source: NVIDIA
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What’s Different?

12

Hampton University-logo

GPU H/W
µ-processor structure

Figure: nvidia.com

Stephen V. Providence Ph.D. High Performance Computing Modernization Program
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Memory Hierarchy?  You Bet!

13

Source: NVIDIA

© 2008 NVIDIA Corporation.

Managing Memory

CPU and GPU have separate memory spaces

Host (CPU) code manages device (GPU) memory:
Allocate / free

Copy data to and from device

Applies to global device memory (DRAM)

Multiprocessor

Host

CPU

ChipsetDRAM

Device

DRAM

Local 
Memory

Global
Memory

GPU

Multiprocessor

Multiprocessor

Registers

Shared Memory
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Hard to Program?
 In the olden days – that is, until just the last few years – 

programming GPUs meant either:
 using a graphics standard like OpenGL (which is mostly meant 

for rendering), or
 getting fairly deep into the graphics rendering pipeline.

 To use a GPU to do general purpose number crunching, you 
had to make your number crunching pretend to be graphics.

 This was hard. So most people didn’t bother.
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Easy to Program?
More recently, GPU manufacturers have worked hard to make 

GPUs easier to use for general purpose computing.
This is known as General Purpose Graphics Processing Units.
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How to Program a GPU
 Proprietary programming language or extensions

 NVIDIA: CUDA (C/C++)
 AMD/ATI: StreamSDK/Brook+ (C/C++)

 OpenCL (Open Computing Language): an industry standard 
for doing number crunching on GPUs.

 Portland Group Inc (PGI) Fortran and C compilers with 
accelerator directives; PGI CUDA Fortran (Fortran 90 
equivalent of NVIDIA’s CUDA C).

 OpenMP version 4.0 may include directives for accelerators.
 Others are popping up or in development now ….
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NVIDIA CUDA
 NVIDIA proprietary
 Formerly known as “Compute Unified Device Architecture”
 Extensions to C to allow better control of GPU capabilities
 Modest extensions but major rewriting of the code
 Portland Group Inc (PGI) has released a Fortran 

implementation of CUDA available in their Fortran compiler.
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CPU - GPGPU Interaction

19

© 2008 NVIDIA Corporation.

Data Movement Example  

int main(void)

{

   float *a_h, *b_h;  // host data

   float *a_d, *b_d;  // device data

   int N = 14, nBytes, i ;

   nBytes = N*sizeof(float);

   a_h = (float *)malloc(nBytes);

   b_h = (float *)malloc(nBytes);

   cudaMalloc((void **) &a_d, nBytes);

   cudaMalloc((void **) &b_d, nBytes);

   for (i=0, i<N; i++) a_h[i] = 100.f + i;

   cudaMemcpy(a_d, a_h, nBytes, cudaMemcpyHostToDevice);

   cudaMemcpy(b_d, a_d, nBytes, cudaMemcpyDeviceToDevice);

   cudaMemcpy(b_h, b_d, nBytes, cudaMemcpyDeviceToHost);

   for (i=0; i< N; i++) assert( a_h[i] == b_h[i] );

   free(a_h); free(b_h); cudaFree(a_d); cudaFree(b_d);

   return 0;

}

Host Device

a_h

b_h

a_d

b_d

Source: NVIDIA
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CUDA Programming
 Create kernel that will execute on the card
 Allocate memory on the CPU and populate
 Allocate memory on the card and copy data from CPU to it
 Determine how the kernel will lay down on the card
 Execute the kernel on the card
 Copy the results from the card’s memory to the CPU’s

20
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CUDA Example Part 1
// example1.cpp : Defines the entry point for the console application

.  
//  
  
#include "stdafx.h"  
  
#include <stdio.h>  
#include <cuda.h>  
  
// Kernel that executes on the CUDA device  
__global__ void square_array(float *a, int N)  
{  
  int idx = blockIdx.x * blockDim.x + threadIdx.x;  
  if (idx<N) a[idx] = a[idx] * a[idx];  
} 

http://llpanorama.wordpress.com/2008/05/21/my-first-cuda-program/
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CUDA Example Part 2
// main routine that executes on the host  
int main(void)
{  
  float *a_h, *a_d;  // Pointer to host & device arrays  
  const int N = 10;  // Number of elements in arrays  
  size_t size = N * sizeof(float);  
  a_h = (float *)malloc(size);        // Allocate array on host  
  cudaMalloc((void **) &a_d, size);   // Allocate array on device  
  // Initialize host array and copy it to CUDA device  
  for (int i=0; i<N; i++) a_h[i] = (float)i;  
  cudaMemcpy(a_d, a_h, size, cudaMemcpyHostToDevice);  
  // Do calculation on device:  
  int block_size = 4;  
  int n_blocks = N/block_size + (N%block_size == 0 ? 0:1);  
  square_array <<< n_blocks, block_size >>> (a_d, N);  
  // Retrieve result from device and store it in host array  
  cudaMemcpy(a_h, a_d, sizeof(float)*N, cudaMemcpyDeviceToHost);  
  // Print results  
  for (int i=0; i<N; i++) printf("%d %f\n", i, a_h[i]);  
  // Cleanup  
  free(a_h); cudaFree(a_d);  
}
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OpenMP 4.0 Accelerator Directives
 OpenMP’s 4.0 standard is very much in discussion (and flux).
 It may end up with accelerator directives.
 It’s too soon to say what the details will be, if it happens at all.
 But, if it happens, then codes amenable to accelerator 

directives will be able to get substantial speedups with very 
modest coding effort.

23
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OpenMP 4.0 Accelerator Example
!$omp acc_region
    do k = 1,n1
        do i = 1,n3
            c(i,k) = 0.0
            do j = 1,n2
                c(i,k) = c(i,k) + 
&                        a(i,j) * b(j,k)
            enddo
        enddo
    enddo
!$omp end acc_region 

http://www.pgroup.com/resources/accel.htm http://www.cse.scitech.ac.uk/events/GPU_2010/12_Hart.pdf
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NVIDIA Tesla C2050 Card Specs
 448 GPU cores
 1.15 GHz
 Single precision floating point performance:                1030.4 

GFLOPs (2 single precision flops per clock per core)
 Double precision floating point performance:                   

515.2   GFLOPs (1 double precision flop per clock per core)
 Internal RAM: 3 GB DDR5
 Internal RAM speed: 144 GB/sec (compared 21-25 GB/sec 

for regular RAM)
 Has to be plugged into a PCIe slot (at most 8 GB/sec per GPU 

card)
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NVIDIA Tesla S2050 Server Specs
 4 C2050 cards inside a 1U server (looks like a Sooner node)
 1.15 GHz
 Single Precision (SP) floating point performance:                   

4121.6 GFLOPs
 Double Precision (DP) floating point performance:                     

2060.8 GFLOPs
 Internal RAM: 12 GB total (3 GB per GPU card)
 Internal RAM speed: 576 GB/sec aggregate
 Has to be plugged into two PCIe slots                                 (at 

most 16 GB/sec for 4 GPU cards)
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Compare x86 vs S2050
Let’s compare the best dual socket x86 server today vs S2050.

Dual socket, AMD 
2.3 GHz 12-core

NVIDIA Tesla S2050

Peak DP FLOPs 220.8 GFLOPs DP 2060.8 GFLOPs DP (9.3x)

Peak SP FLOPS 441.6 GFLOPs SP 4121.6 GFLOPs SP (9.3x)
Peak RAM BW 25 GB/sec 576 GB/sec (23x)

Peak PCIe BW N/A 16 GB/sec

Needs x86 server to 
attach to?

No Yes

Power/Heat ~450 W ~900 W + ~400 W (~2.9x)

Code portable? Yes No (CUDA)
Yes (PGI, OpenCL)

Friday, August 3, 12



NCSI Intro Parallel: GPGPU
August, 2012 29

Compare x86 vs S2050
Here are some interesting measures:

Dual socket, AMD 
2.3 GHz 12-core

NVIDIA Tesla S2050

DP GFLOPs/Watt ~0.5 GFLOPs/Watt ~1.6 GFLOPs/Watt (~3x)

SP GFLOPS/Watt ~1 GFLOPs/Watt ~3.2 GFLOPs/Watt (~3x)

DP GFLOPs/sq ft ~590 GFLOPs/sq ft ~2750 GFLOPs/sq ft (4.7x)

SP GFLOPs/sq ft ~1180 GFLOPs/sq ft ~5500 GFLOPs/sq ft (4.7x)

Racks per PFLOP DP 142 racks/PFLOP DP 32 racks/PFLOP DP (23%)

Racks per PFLOP SP 71 racks/PFLOP SP 16 racks/PFLOP SP (23%)
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What Are the Downsides?
 You have to rewrite your code into CUDA or OpenCL or PGI 

accelerator directives (or someday maybe OpenMP).
 CUDA: Proprietary, but maybe portable soon
 OpenCL: portable but cumbersome
 PGI accelerator directives: not clear whether you can have 

most of the code live inside the GPUs.
 BUT: Many groups are coming out with GPGPU code 

development tools that may help a lot, such as:
 Fortran-to-CUDA-C converter (NCAR)
 CUDA C automatic optimizer (memory, threading etc)
 OpenMP-to-CUDA converter
 CUDA-to-x86 converter (CUDA code on non-CUDA system)
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Programming for Performance
The biggest single performance bottleneck on GPU cards today 

is the PCIe slot:
 PCIe 2.0 x16: 8 GB/sec
 1600 MHz Front Side Bus: 25 GB/sec
 GDDR5 GPU card RAM: 144 GB/sec per card
Your goal:
 At startup, move the data from x86 server RAM into GPU 

RAM.
 Do almost all the work inside the GPU.
 Use the x86 server only for I/O and message passing, to 

minimize the amount of data moved through the PCIe slot.
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Does CUDA Help?

http://www.nvidia.com/object/IO_43499.html
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Under the Hood

33

© 2008 NVIDIA Corporation.

10-Series Architecture

240 thread processors execute kernel threads

30 multiprocessors, each contains

8 thread processors

One double-precision unit

Shared memory enables thread cooperation

Thread
Processors

Multiprocessor

Shared
Memory

Double

Text

Source: NVIDIA
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Buzzword: Kernel
In CUDA, a kernel is code (typically a function) that can be run 

inside the GPU.
Typically, the kernel code operates in lock-step on the stream 

processors inside the GPU.
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Buzzword: Thread
In CUDA, a thread is an execution of a kernel with a given 

index.
Each thread uses its index to access a specific subset of the 

elements of a target array, such that the collection of all 
threads cooperatively processes the entire data set.

So these are very much like threads in the OpenMP or pthreads 
sense – they even have shared variables and private variables.
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Buzzword: Block
In CUDA, a block is a group of threads.
 Just like OpenMP threads, these could execute concurrently 

or independently, and in no particular order.
 Threads can be coordinated somewhat, using the 
_syncthreads() function as a barrier, making all threads 
stop at a certain point in the kernel before moving on en mass. 
(This is like what happens at the end of an OpenMP loop.)
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Buzzword: Grid
In CUDA, a grid is a group of (thread) blocks, with no 

synchronization at all among the blocks.
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 Grids map to GPUs
 Blocks map to the 

MultiProcessors (MP)
 Blocks are never split across 

MPs, but an MP can have 
multiple blocks

 Threads map to Stream 
Processors (SP)

 Warps are groups of (32) 
threads that execute 
simultaneously

Image Source:
NVIDIA CUDA Programming Guide

NVIDIA GPU Hierarchy
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 blockIdx.x, blockIdx.y, blockIdx.z are built-in 
variables that returns the block ID in the x-axis, y-axis and z-
axis of the block that is executing the given block of code.

  threadIdx.x, threadIdx.y, threadidx.z are   
built-in variables that return the thread ID in the x-axis, y-axis 
and z-axis of the thread that is being executed by this stream 
processor in this particular block.

So, you can express your collection of blocks, and your 
collection of threads within a block, as a 1D array, a 2D array 
or a 3D array.

These can be helpful when thinking of your data as 2D or 3D.

CUDA Built-in Variables
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__global__ Keyword
In CUDA, if a function is declared with the __global__ 

keyword, that means that it’s intended to be executed inside a 
GPU.

In CUDA, the term for the GPU is device, and the term for the 
x86 server is host.

So, a kernel runs on a device, while the main function,         and 
so on, run on the host.

Note that a host can play host to multiple devices; for example, 
an S2050 server contains 4 C2050 GPU cards, and if a single 
host has two PCIe slots, then both of the PCIe plugs of the 
S2050 can be plugged into that same host.
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Copying Data from Host to Device
If data need to move from the host (where presumably the data 

are initially input or generated), then a copy has to exist in 
both places.

Typically, what’s copied are arrays, though of course you can 
also copy a scalar (the address of which is treated as an array 
of length 1).
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CUDA Memory Hierarchy #1
CUDA has a hierarchy of several 

kinds of memory:
 Host memory (x86 server)
 Device memory (GPU)

 Global: visible to all threads 
in all blocks –              largest, 
slowest

 Shared: visible to all threads 
in a particular block – 
medium size, medium speed

 Local: visible only to a 
particular thread –    smallest, 
fastest
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CUDA Memory Hierarchy #2
CUDA has a hierarchy of several 

kinds of memory:
 Host memory (x86 server)
 Device memory (GPU)

 Constant: visible to all 
threads in all blocks;       read 
only

 Texture: visible to all threads 
in all blocks;       read only
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attention!

Questions?
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