
Introduction to
Parallel Programming
& Cluster Computing
 GPGPU: Number Crunching

in Your Graphics Card

Josh Alexander, Henry Neeman - University of Oklahoma
Ivan Babic, Mobeen Ludin, Kristin Muterspaw, Charlie Peck - Earlham College

Michial Green, Tom Murphy - Contra Costa College

OSCER/OU - August, 2012

Friday, August 3, 12

NCSI Intro Parallel: GPGPU
August, 2012 2

Outline
 What is GPGPU?
 GPU Programming
 Digging Deeper: CUDA on NVIDIA
 CUDA Thread Hierarchy and Memory Hierarchy
 CUDA Example: Matrix-Matrix Multiply

Friday, August 3, 12

What is GPGPU?

Friday, August 3, 12

NCSI Intro Parallel: GPGPU
August, 2012 4

Accelerators
 In HPC, an accelerator is hardware component whose role is

to speed up some aspect of the computing workload.
 In the olden days (1980s), supercomputers sometimes had

array processors, which did vector operations on arrays, and
PCs sometimes had floating point accelerators: little chips
that did the floating point calculations in hardware rather than
software.

 More recently, Field Programmable Gate Arrays (FPGAs)
allow reprogramming deep into the hardware.

Friday, August 3, 12

NCSI Intro Parallel: GPGPU
August, 2012 5

Why Accelerators are Good
Accelerators are good because:
 they make your code run faster.

Friday, August 3, 12

NCSI Intro Parallel: GPGPU
August, 2012 6

Why Accelerators are Bad
Accelerators are bad because:
 they’re expensive (some);
 they’re hard to program (all, at least for now);
 your code on them may not be portable to other

accelerators, so the labor you invest in programming them
has a very short half-life.

Friday, August 3, 12

NCSI Intro Parallel: GPGPU
August, 2012 7

The King of the Accelerators
The undisputed champion of accelerators is:
 the graphics processing unit.

http://www.amd.com/us-en/assets/content_type/DigitalMedia/46928a_01_ATI-FirePro_V8700_angled_low_res.gif

http://images.nvidia.com/products/quadro_fx_5800/Quadro_FX5800_low_3qtr.png

http://www.gamecyte.com/wp-content/uploads/2009/01/ibm-sony-toshiba-cell.jpg

http://www.overclockers.ua/news/cpu/106612-Knights-Ferry.jpg

Friday, August 3, 12

http://www.amd.com/us-en/assets/content_type/DigitalMedia/46928a_01_ATI-FirePro_V8700_angled_low_res.gif
http://www.amd.com/us-en/assets/content_type/DigitalMedia/46928a_01_ATI-FirePro_V8700_angled_low_res.gif
http://images.nvidia.com/products/quadro_fx_5800/Quadro_FX5800_low_3qtr.png
http://images.nvidia.com/products/quadro_fx_5800/Quadro_FX5800_low_3qtr.png
http://www.gamecyte.com/wp-content/uploads/2009/01/ibm-sony-toshiba-cell.jpg
http://www.gamecyte.com/wp-content/uploads/2009/01/ibm-sony-toshiba-cell.jpg
http://www.overclockers.ua/news/cpu/106612-Knights-Ferry.jpg
http://www.overclockers.ua/news/cpu/106612-Knights-Ferry.jpg

NCSI Intro Parallel: GPGPU
August, 2012 8

Why GPU?
 Graphics Processing Units (GPUs) were originally designed

to accelerate graphics tasks like image rendering.
 They became very very popular with videogamers, because

they produce better and better images, and lightning fast.
 And, prices have been extremely good, ranging from three

figures at the low end to four figures at the high end.

Friday, August 3, 12

NCSI Intro Parallel: GPGPU
August, 2012 9

GPUs are Popular
 Chips are expensive to design (hundreds of millions of $$$),

expensive to build the factory for (billions of $$$), but cheap
to produce.

 For example, in 2006 – 2007, GPUs sold at a rate of about 80
million cards per year, generating about $20 billion per year
in revenue.
http://www.xbitlabs.com/news/video/display/

20080404234228_Shipments_of_Discrete_Graphics_Cards_on_the_Rise_but_Prices_Down_Jon_P
eddie_Research.html

 This means that the GPU companies have been able to recoup
the huge fixed costs.

Friday, August 3, 12

http://www.xbitlabs.com/news/video/display/20080404234228_Shipments_of_Discrete_Graphics_Cards_on_the_Rise_but_Prices_Down_Jon_Peddie_Research.html
http://www.xbitlabs.com/news/video/display/20080404234228_Shipments_of_Discrete_Graphics_Cards_on_the_Rise_but_Prices_Down_Jon_Peddie_Research.html
http://www.xbitlabs.com/news/video/display/20080404234228_Shipments_of_Discrete_Graphics_Cards_on_the_Rise_but_Prices_Down_Jon_Peddie_Research.html
http://www.xbitlabs.com/news/video/display/20080404234228_Shipments_of_Discrete_Graphics_Cards_on_the_Rise_but_Prices_Down_Jon_Peddie_Research.html
http://www.xbitlabs.com/news/video/display/20080404234228_Shipments_of_Discrete_Graphics_Cards_on_the_Rise_but_Prices_Down_Jon_Peddie_Research.html
http://www.xbitlabs.com/news/video/display/20080404234228_Shipments_of_Discrete_Graphics_Cards_on_the_Rise_but_Prices_Down_Jon_Peddie_Research.html

NCSI Intro Parallel: GPGPU
August, 2012 10

GPUs Do Arithmetic
 GPUs mostly do stuff like rendering images.
 This is done through mostly floating point arithmetic – the

same stuff people use supercomputing for!

Friday, August 3, 12

NCSI Intro Parallel: GPGPU
August, 2012

Why Bother?

11

Source: NVIDIA

Friday, August 3, 12

NCSI Intro Parallel: GPGPU
August, 2012

What’s Different?

12

Hampton University-logo

GPU H/W
µ-processor structure

Figure: nvidia.com

Stephen V. Providence Ph.D. High Performance Computing Modernization Program

Friday, August 3, 12

NCSI Intro Parallel: GPGPU
August, 2012

Memory Hierarchy? You Bet!

13

Source: NVIDIA

© 2008 NVIDIA Corporation.

Managing Memory

CPU and GPU have separate memory spaces

Host (CPU) code manages device (GPU) memory:
Allocate / free

Copy data to and from device

Applies to global device memory (DRAM)

Multiprocessor

Host

CPU

ChipsetDRAM

Device

DRAM

Local
Memory

Global
Memory

GPU

Multiprocessor

Multiprocessor

Registers

Shared Memory

Friday, August 3, 12

GPU Programming

Friday, August 3, 12

NCSI Intro Parallel: GPGPU
August, 2012 15

Hard to Program?
 In the olden days – that is, until just the last few years –

programming GPUs meant either:
 using a graphics standard like OpenGL (which is mostly meant

for rendering), or
 getting fairly deep into the graphics rendering pipeline.

 To use a GPU to do general purpose number crunching, you
had to make your number crunching pretend to be graphics.

 This was hard. So most people didn’t bother.

Friday, August 3, 12

NCSI Intro Parallel: GPGPU
August, 2012 16

Easy to Program?
More recently, GPU manufacturers have worked hard to make

GPUs easier to use for general purpose computing.
This is known as General Purpose Graphics Processing Units.

Friday, August 3, 12

NCSI Intro Parallel: GPGPU
August, 2012 17

How to Program a GPU
 Proprietary programming language or extensions

 NVIDIA: CUDA (C/C++)
 AMD/ATI: StreamSDK/Brook+ (C/C++)

 OpenCL (Open Computing Language): an industry standard
for doing number crunching on GPUs.

 Portland Group Inc (PGI) Fortran and C compilers with
accelerator directives; PGI CUDA Fortran (Fortran 90
equivalent of NVIDIA’s CUDA C).

 OpenMP version 4.0 may include directives for accelerators.
 Others are popping up or in development now ….

Friday, August 3, 12

NCSI Intro Parallel: GPGPU
August, 2012 18

NVIDIA CUDA
 NVIDIA proprietary
 Formerly known as “Compute Unified Device Architecture”
 Extensions to C to allow better control of GPU capabilities
 Modest extensions but major rewriting of the code
 Portland Group Inc (PGI) has released a Fortran

implementation of CUDA available in their Fortran compiler.

Friday, August 3, 12

NCSI Intro Parallel: GPGPU
August, 2012

CPU - GPGPU Interaction

19

© 2008 NVIDIA Corporation.

Data Movement Example

int main(void)

{

 float *a_h, *b_h; // host data

 float *a_d, *b_d; // device data

 int N = 14, nBytes, i ;

 nBytes = N*sizeof(float);

 a_h = (float *)malloc(nBytes);

 b_h = (float *)malloc(nBytes);

 cudaMalloc((void **) &a_d, nBytes);

 cudaMalloc((void **) &b_d, nBytes);

 for (i=0, i<N; i++) a_h[i] = 100.f + i;

 cudaMemcpy(a_d, a_h, nBytes, cudaMemcpyHostToDevice);

 cudaMemcpy(b_d, a_d, nBytes, cudaMemcpyDeviceToDevice);

 cudaMemcpy(b_h, b_d, nBytes, cudaMemcpyDeviceToHost);

 for (i=0; i< N; i++) assert(a_h[i] == b_h[i]);

 free(a_h); free(b_h); cudaFree(a_d); cudaFree(b_d);

 return 0;

}

Host Device

a_h

b_h

a_d

b_d

Source: NVIDIA

Friday, August 3, 12

NCSI Intro Parallel: GPGPU
August, 2012

CUDA Programming
 Create kernel that will execute on the card
 Allocate memory on the CPU and populate
 Allocate memory on the card and copy data from CPU to it
 Determine how the kernel will lay down on the card
 Execute the kernel on the card
 Copy the results from the card’s memory to the CPU’s

20

Friday, August 3, 12

NCSI Intro Parallel: GPGPU
August, 2012 21

CUDA Example Part 1
// example1.cpp : Defines the entry point for the console application

.
//

#include "stdafx.h"

#include <stdio.h>
#include <cuda.h>

// Kernel that executes on the CUDA device
__global__ void square_array(float *a, int N)
{
 int idx = blockIdx.x * blockDim.x + threadIdx.x;
 if (idx<N) a[idx] = a[idx] * a[idx];
}

http://llpanorama.wordpress.com/2008/05/21/my-first-cuda-program/

Friday, August 3, 12

http://llpanorama.wordpress.com/2008/05/21/my-first-cuda-program/
http://llpanorama.wordpress.com/2008/05/21/my-first-cuda-program/

NCSI Intro Parallel: GPGPU
August, 2012 22

CUDA Example Part 2
// main routine that executes on the host
int main(void)
{
 float *a_h, *a_d; // Pointer to host & device arrays
 const int N = 10; // Number of elements in arrays
 size_t size = N * sizeof(float);
 a_h = (float *)malloc(size); // Allocate array on host
 cudaMalloc((void **) &a_d, size); // Allocate array on device
 // Initialize host array and copy it to CUDA device
 for (int i=0; i<N; i++) a_h[i] = (float)i;
 cudaMemcpy(a_d, a_h, size, cudaMemcpyHostToDevice);
 // Do calculation on device:
 int block_size = 4;
 int n_blocks = N/block_size + (N%block_size == 0 ? 0:1);
 square_array <<< n_blocks, block_size >>> (a_d, N);
 // Retrieve result from device and store it in host array
 cudaMemcpy(a_h, a_d, sizeof(float)*N, cudaMemcpyDeviceToHost);
 // Print results
 for (int i=0; i<N; i++) printf("%d %f\n", i, a_h[i]);
 // Cleanup
 free(a_h); cudaFree(a_d);
}

Friday, August 3, 12

NCSI Intro Parallel: GPGPU
August, 2012

OpenMP 4.0 Accelerator Directives
 OpenMP’s 4.0 standard is very much in discussion (and flux).
 It may end up with accelerator directives.
 It’s too soon to say what the details will be, if it happens at all.
 But, if it happens, then codes amenable to accelerator

directives will be able to get substantial speedups with very
modest coding effort.

23

Friday, August 3, 12

NCSI Intro Parallel: GPGPU
August, 2012 24

OpenMP 4.0 Accelerator Example
!$omp acc_region
 do k = 1,n1
 do i = 1,n3
 c(i,k) = 0.0
 do j = 1,n2
 c(i,k) = c(i,k) +
& a(i,j) * b(j,k)
 enddo
 enddo
 enddo
!$omp end acc_region

http://www.pgroup.com/resources/accel.htm http://www.cse.scitech.ac.uk/events/GPU_2010/12_Hart.pdf

Friday, August 3, 12

http://www.pgroup.com/resources/accel.htm
http://www.pgroup.com/resources/accel.htm
http://www.cse.scitech.ac.uk/events/GPU_2010/12_Hart.pdf
http://www.cse.scitech.ac.uk/events/GPU_2010/12_Hart.pdf

Digging Deeper:
CUDA on NVIDIA

Friday, August 3, 12

NCSI Intro Parallel: GPGPU
August, 2012 26

NVIDIA Tesla C2050 Card Specs
 448 GPU cores
 1.15 GHz
 Single precision floating point performance: 1030.4

GFLOPs (2 single precision flops per clock per core)
 Double precision floating point performance:

515.2 GFLOPs (1 double precision flop per clock per core)
 Internal RAM: 3 GB DDR5
 Internal RAM speed: 144 GB/sec (compared 21-25 GB/sec

for regular RAM)
 Has to be plugged into a PCIe slot (at most 8 GB/sec per GPU

card)

Friday, August 3, 12

NCSI Intro Parallel: GPGPU
August, 2012 27

NVIDIA Tesla S2050 Server Specs
 4 C2050 cards inside a 1U server (looks like a Sooner node)
 1.15 GHz
 Single Precision (SP) floating point performance:

4121.6 GFLOPs
 Double Precision (DP) floating point performance:

2060.8 GFLOPs
 Internal RAM: 12 GB total (3 GB per GPU card)
 Internal RAM speed: 576 GB/sec aggregate
 Has to be plugged into two PCIe slots (at

most 16 GB/sec for 4 GPU cards)

Friday, August 3, 12

NCSI Intro Parallel: GPGPU
August, 2012 28

Compare x86 vs S2050
Let’s compare the best dual socket x86 server today vs S2050.

Dual socket, AMD
2.3 GHz 12-core

NVIDIA Tesla S2050

Peak DP FLOPs 220.8 GFLOPs DP 2060.8 GFLOPs DP (9.3x)

Peak SP FLOPS 441.6 GFLOPs SP 4121.6 GFLOPs SP (9.3x)
Peak RAM BW 25 GB/sec 576 GB/sec (23x)

Peak PCIe BW N/A 16 GB/sec

Needs x86 server to
attach to?

No Yes

Power/Heat ~450 W ~900 W + ~400 W (~2.9x)

Code portable? Yes No (CUDA)
Yes (PGI, OpenCL)

Friday, August 3, 12

NCSI Intro Parallel: GPGPU
August, 2012 29

Compare x86 vs S2050
Here are some interesting measures:

Dual socket, AMD
2.3 GHz 12-core

NVIDIA Tesla S2050

DP GFLOPs/Watt ~0.5 GFLOPs/Watt ~1.6 GFLOPs/Watt (~3x)

SP GFLOPS/Watt ~1 GFLOPs/Watt ~3.2 GFLOPs/Watt (~3x)

DP GFLOPs/sq ft ~590 GFLOPs/sq ft ~2750 GFLOPs/sq ft (4.7x)

SP GFLOPs/sq ft ~1180 GFLOPs/sq ft ~5500 GFLOPs/sq ft (4.7x)

Racks per PFLOP DP 142 racks/PFLOP DP 32 racks/PFLOP DP (23%)

Racks per PFLOP SP 71 racks/PFLOP SP 16 racks/PFLOP SP (23%)

Friday, August 3, 12

NCSI Intro Parallel: GPGPU
August, 2012 30

What Are the Downsides?
 You have to rewrite your code into CUDA or OpenCL or PGI

accelerator directives (or someday maybe OpenMP).
 CUDA: Proprietary, but maybe portable soon
 OpenCL: portable but cumbersome
 PGI accelerator directives: not clear whether you can have

most of the code live inside the GPUs.
 BUT: Many groups are coming out with GPGPU code

development tools that may help a lot, such as:
 Fortran-to-CUDA-C converter (NCAR)
 CUDA C automatic optimizer (memory, threading etc)
 OpenMP-to-CUDA converter
 CUDA-to-x86 converter (CUDA code on non-CUDA system)

Friday, August 3, 12

NCSI Intro Parallel: GPGPU
August, 2012 31

Programming for Performance
The biggest single performance bottleneck on GPU cards today

is the PCIe slot:
 PCIe 2.0 x16: 8 GB/sec
 1600 MHz Front Side Bus: 25 GB/sec
 GDDR5 GPU card RAM: 144 GB/sec per card
Your goal:
 At startup, move the data from x86 server RAM into GPU

RAM.
 Do almost all the work inside the GPU.
 Use the x86 server only for I/O and message passing, to

minimize the amount of data moved through the PCIe slot.

Friday, August 3, 12

NCSI Intro Parallel: GPGPU
August, 2012 32

Does CUDA Help?

http://www.nvidia.com/object/IO_43499.html

Friday, August 3, 12

http://www.nvidia.com/object/IO_43499.html
http://www.nvidia.com/object/IO_43499.html

NCSI Intro Parallel: GPGPU
August, 2012

Under the Hood

33

© 2008 NVIDIA Corporation.

10-Series Architecture

240 thread processors execute kernel threads

30 multiprocessors, each contains

8 thread processors

One double-precision unit

Shared memory enables thread cooperation

Thread
Processors

Multiprocessor

Shared
Memory

Double

Text

Source: NVIDIA

Friday, August 3, 12

NCSI Intro Parallel: GPGPU
August, 2012 34

Buzzword: Kernel
In CUDA, a kernel is code (typically a function) that can be run

inside the GPU.
Typically, the kernel code operates in lock-step on the stream

processors inside the GPU.

Friday, August 3, 12

NCSI Intro Parallel: GPGPU
August, 2012 35

Buzzword: Thread
In CUDA, a thread is an execution of a kernel with a given

index.
Each thread uses its index to access a specific subset of the

elements of a target array, such that the collection of all
threads cooperatively processes the entire data set.

So these are very much like threads in the OpenMP or pthreads
sense – they even have shared variables and private variables.

Friday, August 3, 12

NCSI Intro Parallel: GPGPU
August, 2012 36

Buzzword: Block
In CUDA, a block is a group of threads.
 Just like OpenMP threads, these could execute concurrently

or independently, and in no particular order.
 Threads can be coordinated somewhat, using the
_syncthreads() function as a barrier, making all threads
stop at a certain point in the kernel before moving on en mass.
(This is like what happens at the end of an OpenMP loop.)

Friday, August 3, 12

NCSI Intro Parallel: GPGPU
August, 2012 37

Buzzword: Grid
In CUDA, a grid is a group of (thread) blocks, with no

synchronization at all among the blocks.

Friday, August 3, 12

NCSI Intro Parallel: GPGPU
August, 2012

 Grids map to GPUs
 Blocks map to the

MultiProcessors (MP)
 Blocks are never split across

MPs, but an MP can have
multiple blocks

 Threads map to Stream
Processors (SP)

 Warps are groups of (32)
threads that execute
simultaneously

Image Source:
NVIDIA CUDA Programming Guide

NVIDIA GPU Hierarchy

Friday, August 3, 12

NCSI Intro Parallel: GPGPU
August, 2012

 blockIdx.x, blockIdx.y, blockIdx.z are built-in
variables that returns the block ID in the x-axis, y-axis and z-
axis of the block that is executing the given block of code.

 threadIdx.x, threadIdx.y, threadidx.z are
built-in variables that return the thread ID in the x-axis, y-axis
and z-axis of the thread that is being executed by this stream
processor in this particular block.

So, you can express your collection of blocks, and your
collection of threads within a block, as a 1D array, a 2D array
or a 3D array.

These can be helpful when thinking of your data as 2D or 3D.

CUDA Built-in Variables

Friday, August 3, 12

NCSI Intro Parallel: GPGPU
August, 2012 40

__global__ Keyword
In CUDA, if a function is declared with the __global__

keyword, that means that it’s intended to be executed inside a
GPU.

In CUDA, the term for the GPU is device, and the term for the
x86 server is host.

So, a kernel runs on a device, while the main function, and
so on, run on the host.

Note that a host can play host to multiple devices; for example,
an S2050 server contains 4 C2050 GPU cards, and if a single
host has two PCIe slots, then both of the PCIe plugs of the
S2050 can be plugged into that same host.

Friday, August 3, 12

NCSI Intro Parallel: GPGPU
August, 2012 41

Copying Data from Host to Device
If data need to move from the host (where presumably the data

are initially input or generated), then a copy has to exist in
both places.

Typically, what’s copied are arrays, though of course you can
also copy a scalar (the address of which is treated as an array
of length 1).

Friday, August 3, 12

NCSI Intro Parallel: GPGPU
August, 2012 42

CUDA Memory Hierarchy #1
CUDA has a hierarchy of several

kinds of memory:
 Host memory (x86 server)
 Device memory (GPU)

 Global: visible to all threads
in all blocks – largest,
slowest

 Shared: visible to all threads
in a particular block –
medium size, medium speed

 Local: visible only to a
particular thread – smallest,
fastest

Friday, August 3, 12

NCSI Intro Parallel: GPGPU
August, 2012 43

CUDA Memory Hierarchy #2
CUDA has a hierarchy of several

kinds of memory:
 Host memory (x86 server)
 Device memory (GPU)

 Constant: visible to all
threads in all blocks; read
only

 Texture: visible to all threads
in all blocks; read only

Friday, August 3, 12

Thanks for your
attention!

Questions?
Friday, August 3, 12

