
 1

Exercise: Tiling

In this exercise, we’ll use the same conventions and commands as in the previous exercises. You should

refer back to the previous exercise description for details on various Unix commands.

In the exercise, you’ll benchmark matrix-matrix multiplication algorithms, choosing various matrix sizes

and various ways of performing the multiplication. Benchmark means to run timing tests.

Specifically, you’ll benchmark the following methods:

 a naïve algorithm that performs the matrix-matrix multiplication the way you would normally do it by

hand, which you’ll run on various matrix sizes;

 a tiling algorithm, for which you’ll be selecting not only various matrix sizes, but also various tile

sizes;

 if you’re running the Fortran90 version, the Fortran90 intrinsic routine MATMUL, for various matrix

sizes.

1. If you aren’t currently logged in to boomer.oscer.ou.edu, then log in; otherwise, change

directory to your home directory:

cd ~yourusername

OR

cd ~

2. Check to make sure that you’re in your home directory:

pwd

/home/yourusername

where yourusername will be replaced with your user name.

3. You should already have your own copy of the PPCC2012 directory, as a subdirectory of your

home directory. Check to make sure that you do:

ls

PPCC2012

You should see a list of one or more files and subdirectories, including PPCC2012.

4. Change directory into your PPCC2012 directory, like this:

cd PPCC2012

5. Make sure that you’re in your PPCC2012 directory, like this:

pwd

/home/yourusername/PPCC2012

6. List the contents of your PPCC2012 subdirectory:

ls

Intro

7. Copy the subdirectory named Tiling from Henry’s PPCC2012 directory into your

PPCC2012 directory:

cp -r ~hneeman/PPCC2012/Tiling/ ~/PPCC2012/

 2

8. Confirm that the Tiling subdirectory was copied into your PPCC2012 directory:

ls

Intro Tiling

9. Change directory into your PPCC2012 directory, like this:

cd Tiling

10. Confirm that you’re in your Tiling subdirectory:

pwd

/home/yourusername/PPCC2012/Tiling

11. See what files or subdirectories (if any) are in the current working directory (Tiling):

ls

C Fortran90

12. Change directory into either your C subdirectory or your Fortran90 subdirectory:

cd C

OR

cd Fortran90

13. Confirm that you’re in your C or Fortran90 subdirectory:

pwd

/home/yourusername/PPCC2012/Tiling/C

OR the output of the pwd command might be:

/home/yourusername/PPCC2012/Tiling/Fortran90

14. See what files or subdirectories (if any) are in the current working directory:

ls

makefile matmatmult.c second_cpu.c second_wall.c

matmatmult.bsub matmatmult_input.txt second.h

OR the output of the ls command might be:

makefile matmatmult.f90 second_cpu.c second_wall.c timings.h

matmatmult.bsub matmatmult_input.txt second_cpu.f timings.f

15. Make (compile) your executables. The command to compile will be:

make

16. Edit the batch script matmatmult.bsub so that it contains your username and your e-mail

address. (If you’ve forgotten how, see “Introduction to Using OSCER’s Linux Cluster

Supercomputer,” section IV, pages 8-9.)

 3

17. Edit the input file matmatmult_input.txt so that it contains your preferred problem size and

type:

a. The first three numbers are, respectively:

i. the number of rows in the product matrix;

ii. the number of columns in the product matrix;

iii. the number of columns of the first matrix to multiply by, which is also the number of rows of

the second matrix to multiply by.

b. The next number is the preferred matrix-matrix multiplication algorithm:

i. choose 1 for the naïve algorithm;

ii. choose 2 for the tiling algorithm;

iii. for Fortran90 only, choose 3 for the Fortran90 intrinsic routine MATMUL.

c. If you’ve chosen the tiling algorithm, then the last three numbers are the dimensions of the tiles,

which correspond to the dimensions of the matrices. (For other algorithms, the last three numbers

are ignored.)

18. Submit the batch job:

bsub < matmatmult.bsub

19. Once the batch job completes, examine the standard output file to see the timing for your run.

20. Run many more runs, on each of the available algorithms, each for several different problem sizes:

a. Start by finding the largest problem that reports a runtime of zero seconds (that is, immeasurably

small runtime).

b. Work your way up in problem size to as big as you want, but the biggest problem you should do

should be at most about 12 GB total. (Beyond that, your timings will become extremely long,

because you’ll spend most of your runtime swapping in and out of virtual memory swap disk,

which would be very very bad).

c. For the tiling algorithm, also try many different tile sizes, from very small up to the same size as

the matrices.

21. When you’ve completed enough runs to satisfy yourself, use your favorite graphing program (for

example, Microsoft Excel) to create a graph (or graphs) of your various runs, so that you can compare

the various methods visually.

22. If you’re feeling especially adventuresome, you can edit your makefile to incorporate the –r8

option in the CFLAGS or FFLAGS macros, which means to do all real (floating point) variables in

double precision instead of single precision. Then do:

make clean

Then compile again:

make

23. Repeat the same timing experiments. (Be careful not to run problems that are too large, which will be

easier to do in double precision, because you’ll consume twice as many bytes for the same matrix

dimensions.) Compare these new double precision runs against the original single precision runs.

24. You can also try running these experiments using the various compilers available on the Linux cluster

supercomputer.

