
Preventing and Finding Bugs in Parallel Programs

Charlie Peck

Earlham College

Introduction to Parallel Programming and Distributed Computing

NCSI and Blue Waters

August, 2012 @ OU/OSCER in steaming Norman, OK

1



How Did We Get Here?

Debugging serial programs can be hard; debugging parallel programs is

usually about -np X times harder.

This material is as much about software engineering and debugging

generally as it is about techniques unique to debugging parallel

programs. This reflects the nature of the work at-hand.

2



Strategies for Preventing Bugs in Parallel Programs

• Practice defensive programming:

1. Check all return codes

2. Check all function arguments (--pedantic --Wall)

3. Initialize variables

4. Use parenthesis to disambiguate arithmetic and reference

statements

5. Use layout to infer structure

6. Choose meaningful variable names

• Build, run, and test your program incrementally as you go, this

usually reduces the amount of code you have to examine when

something does go pear-shaped (and it most likely will).

• Code deleted is code debugged, or put another way less is often

more in software engineering.

3



• Learn and use the features of the language that help prevent bugs,

e.g. in C use const variable declarations rather than the

pre-processor’s #define mechanism.

• Think carefully about how shared data elements are read and

written. All parallel programs are strong candidates to exhibit race

conditions.

• Make the program clear and correct, then make the program fast.

This does not apply to the design of the algorithm but rather to

the details of the implementation.

• Don’t discard your thinking just because it doesn’t work at first,

good code is re-written not written.

• Days of debugging can save you hours of design and planning.



Strategies for Finding Bugs in Parallel Programs

• The basic process:

1. Characterize the bug:

(a) If possible run the program serially, make sure it works

correctly in that mode.
(b) Run the program with 2-4 processes on a single core, make

sure it works correctly in that mode. In general the fewer

processes the easier it is to debug and on one core many race

conditions are prevented.
(c) Run the program with 2-4 processes on 2-4 cores. This

configuration begins to expose potential race conditions and

allows you to verify synchronization and timing in a simple

case.

2. Develop a script that automates the process of “activating” the

bug. Automation is key to making the debugging process as

effective and inoffensive as possible.
3. Fix the bug.
4. Test the fix using the script developed earlier.

4



• Characterizing bugs is hard, fixing bugs is easy. First figure-out

where it is breaking and then determine why.

• To characterize the bug change the input and then study the

output. Do not keep the input constant, change the code, and

then study the output. Changing the input exercises the whole

path, whereas changing the code only effects a limited portion,

and may introduce new bugs. An exception to this is the addition

of print statements to examine variables at runtime (see below).

• When you change the input do so in a methodical way, e.g.

repeatedly doubling one of the input values while observing the

pattern formed by the output. Find the pattern, it will lead you to

the problem. Some examples:

– Test boundary conditions - 0, 1, big value, small value, first day,

last day, etc.
– For each function a) are the inputs correct? b) are the

calculations correct? c) are the outputs correct?



• Common Errors

– Off by one, AKA fence post errors in e.g. loop constructs
– Unitialized variables
– Arithmetic overflow/underflow
– Data structure boundaries, e.g. arrays
– = vs ==
– Order of operation/operator precedence

• Look for the numerology

– The answers are always off by 720...
– It always looses the {first, fourth, odd, last} one...
– The answer is often a very, very, very large negative integer...

• Work with the smallest problem size possible which exercises all of
the functionality. This allows you to examine entire data
structures, all loop iterations, etc.

• Suspect that it’s a race condition, setup test scripts to prove that
the program doesn’t have any.

• The non-deterministic nature of parallel programs can lead to a
false impression of what’s actually going on. Remove as much of
the non-determinism as you can.



• If you are developing code on a 64 bit platform build and run it on

a 32 bit platform, or the obverse. This illuminates bugs related to

word size.

• Use guarded print statements (e.g. #ifdef DEBUG fprintf(stderr,

"var = ...) and leave them in the program when you are done,

you’ll probably need them again. Most bugs can found using this

approach.

• Make DEBUG a symbol that can easily be set from the command line

of your program at runtime.

• Beware of lost output when a program terminates abnormally, this

leads to false impressions about what is actually going on. Use

fflush(stdout), or write to stderr (which isn’t buffered) or use

setbuf(STREAM, 0) to prevent messages from being lost in a buffer

when the program crashes or deadlocks.

• Learn about the C constructs FILE , LINE , FUNCTION and

use them with a custom error handling routine (see below) to

improve the quality of your debugging output.



• Learn how to use gdb, it’s a powerful tool that can help find many

types of bugs.

• When you do start changing the code make one logical set of

changes at a time and then re-test. Keep your focus, don’t wander

off and start futzing with unrelated code while working on a

particular bug.

• Each time you go on a debugging tour document and preserve the

test script(s) that you develop. Add these to the regression testing

suite for that program.

• Don’t under-estimate the value of a second set of eyeballs.



Strategies for Preventing Bugs in MPI Programs

• Synchronization

– Problem - Not all processes in a communicator call a collective
communication function, e.g. MPI Reduce or MPI Bcast

– Solution - Do not put collective calls inside conditionally
executed code.

– Problem - Two or more processes are trying to exchange data
but all call a blocking receive function before any calls a send
function.

– Solution - Always call send before you call receive; use
MPI Sendrecv; use non-blocking send and receive calls.

– Problem - A process tries to receive data from a process that
will never send it, or send it to a process that will never receive
it.

– Solution - Use collective communications functions whenever
possible; if you need point-to-point communications keep the
communication pattern as simple as possible.

5



– Problem - A process tries to receive data from itself.

– Solution - Carefully examine your source code.

– NOTE - Only some MPI bindings will hang in this case, as of

the most recent version of this presentation MPICH will hang

but OpenMPI will not.

– Problem - Deadlock.

– Solution - Perform operations in the same order in each place

they are done, e.g. send/receive pairs (but not receives),

collective calls, and locking.

• Incorrect Results

– Problem - Data type mismatch between send and receive, e.g.

MPI INT on the send and MPI CHAR on the receive.

– Solution - Make it easy to match-up your sends and receives,

check the message length and type.



– Problem - Mis-ordered or incorrect parameters to MPI function

calls.

– Solution - Check them closely and use a man page or another

MPI reference when coding.

• In general there are more opportunities for bugs with point-to-point

communications than with collective communications.



Strategies for Finding Bugs in MPI Programs

• For point-to-point messages print the data elements before the

send and after the receive to make sure you are sending and

receiving what you think you are.

• Don’t assume the order of received messages when they come

from more than one process.

• Explore MPI’s support for custom error handlers. A ready-to-use

example of one can be found in mpi-error-handler-example.c.

• Use the MPI functions MPI <type> set name and

MPI <type> get name, where <type> can be: Comm, Win, or Type.

These give human readable names to MPI’s structures which can

make debugging much easier.

• Always use fprintf(stderr, "rank=%d, ...", my rank, ...) or cout

statements, guarded with conditionals (see above), so that it’s

easy to identify where particular output is coming from.

6



• Build and run your code with a different MPI binding. This often

illuminates bugs, and you want your code to work in as many

different environments as possible.

• Explore the debugging options supported by the MPI binding you

are using. Many bindings have linkages between mpirun and

debuggers that automagically invoke the debugger when an error is

encountered.



Strategies for Preventing Bugs in OpenMP Programs

• Avoid loop carried dependencies and other constructs which lead
to race conditions. Shared memory parallel programs like those
built with OpenMP are particularly vulnerable to race conditions.
Missing private and critical clauses can also lead to race
conditions.

• Use critical, master, single sections as appropriate to ensure
deterministic behavior when necessary.

• Variables not explicitly made private are shared among all threads,
check to make sure this is reasonable.

• Make sure that any barrier calls are executed by all threads.

• Make sure that any library and function calls made inside parallel
regions are thread safe.

• Beware global variables, they are not thread safe.

• Carefully examine all locking constructs to prevent deadlock.
Always lock and release objects in the same order.

7



Strategies for Finding Bugs in OpenMP Programs

• Vary the number of threads (using OMP NUM THREADS so you don’t
have to recompile) and observe the results for changes in behavior.
Start with OMP NUM THREADS == 1 to ensure that the serial version
works correctly.

• Learn and use GDB’s thread capabilities:

1. Automatic notification when threads are created and destroyed.
2. info threads
3. Thread specific breakpoints, break linespec thread threadnum
4. Conditional breakpoints, break buffer.c:15 thread 3 if bob ==

green
5. Switch between threads, thread threadnum

• Remove any compiler optimizations, with gcc use -O0.
• Selectively enable and disable parallel directives on specific sections

of code to isolate where the error is happening, think binary
searching.

• If you suspect a race condition increase the number of threads
greatly. More threads increases the likelyhood of illuminating race
conditions.

8



Strategies for Preventing Bugs in Hybrid Programs

• Architect the code so that you can disable each of the different

parallel paradigms, this will make it easier to isolate where the bug

is.

9



Strategies for Finding Bugs in Hybrid Programs

• Disable each of the parallel paradigms one at a time to isolate

where the bug is.

10



Resources

1. Appendix C of Quinn’s Parallel Programming in C with MPI and

OpenMP

2. Barbara Chapman, Gabriele Jost, et. al., Using OpenMP: portable

shared memory parallel programming

3. Chapter 5 of Kernighan and Pike’s The Practice of Programming

4. http://www.open-mpi.org/faq/?category=debugging

5. http://www.hlrs.de/organization/av/amt/research/marmot - Marmot,

an MPI call syntax and behavior analyzer

6. Geist, et al., Debugging Parallel Programs, 1994

7. Electric Fence

8. Valgrind

11


