
1

Exercise: Calling LAPACK

In this exercise, we’ll use the same conventions and commands as in the batch computing exercise. You

should refer back to the batch computing exercise description for details on various Unix commands.

You’ll be editing a simple code that will need to use a certain LAPACK routine.

Here are the steps for this exercise:

1. Log in to the Linux cluster supercomputer (sooner.oscer.ou.edu).

2. Confirm that you’re in your home directory:

pwd

/home/yourusername

3. Check that you have a NCSIPARII2011_exercises subdirectory inside your home directory:

ls

NCSIPARII2011_exercises

4. Copy the LAPACK directory into your NCSIIPARII2011_exercises directory:

cp -r ~hneeman/NCSIPARII2011_exercises/LAPACK/ ~/NCSIPARII2011_exercises/

5. Go into your NCSIPARII2011_exercises subdirectory:

cd NCSIPARII2011_exercises

6. Confirm that you’re in your NCSIPARII2011_exercises subdirectory:

pwd

/home/yourusername/NCSIPARII2011_exercises

7. See what files or subdirectories (if any) are in the current working directory:

ls

8. Go into your LAPACK subdirectory:

cd LAPACK

9. Confirm that you’re in your LAPACK subdirectory:

pwd

/home/yourusername/NCSIPARII2011_exercises/LAPACK

10. See what files or subdirectories (if any) are in the current working directory:

ls

11. Choose which language you want to use (C or Fortran90), and cd into the appropriate directory:

cd C

OR:

cd Fortran90

12. Confirm that you’re in your C or Fortran90 subdirectory:

pwd

/home/yourusername/NCSIPARII2011_exercises/LAPACK/C

2

13. See what files or subdirectories (if any) are in the current working directory:

ls

14. Edit the batch script lapack_test.bsub to use your username and e-mail address.

15. If you haven’t already examined lapack_test.c (or lapack_test.f90), do so now.

16. Edit the source file with your favorite text editor (for example, nano, vi, emacs etc):

nano lapack_test.c

OR:

nano lapack_test.f90

17. Look for the line in the source file that says:

/* Call to LAPACK routine goes here. */

OR

!... Call to LAPACK routine goes here.

This is where you will write a call to the appropriate LAPACK routine.

18. To find the appropriate LAPACK routine:

a. Open your favorite web browser (for example, Internet Explorer, Firefox, Safari).

b. Go to:

http://www.netlib.org/lapack/

c. When that webpage loads, find:

single precision real

and click on that link.

d. When that webpage loads, in the webpage find:

solve

In particular, you’re looking for the solver for a general system of linear equations.

19. When you find that solver, click on the link for its Fortran source code – the file whose extension is

.f (dot f). (Ignore the link for the source file plus its dependencies.)

20. Using the Fortran subroutine header

SUBROUTINE subroutinename (argument1, argument2, ...)

and the comments immediately below the header that describe the subroutine’s arguments, determine

how to call that subroutine from either lapack_test.c or lapack_test.f90.

3

21. Modify either lapack_test.c or lapack_test.f90 to call that LAPACK routine.

NOTES

a. In this exercise, we’re intentionally using statically allocated arrays. (If you don’t know what that

means, then don’t worry about it.)

b. If you’re calling the subroutine from lapack_test.c, bear in mind the following:

In Fortran (all versions), ALL arguments are pass-by-reference, meaning that the routine that you

call is using the same memory location for each argument as the calling routine.

For example:

SUBROUTINE caller ()

 IMPLICIT NONE

 INTEGER :: actual_argument !! local variable inside caller

 actual_argument = 5

 PRINT *, “caller: before calling, actual_argument = “, actual_argument

 CALL callee(actual_argument)

 PRINT *, “caller: after calling, actual_argument = “, actual_argument

END SUBROUTINE caller

SUBROUTINE callee (formal_argument)

 IMPLICIT NONE

 INTEGER :: formal_argument !! argument passed to callee from caller

 PRINT *, “callee: before, formal_argument = “, formal_argument

 formal_argument = formal_argument + 1

 PRINT *, “callee: after, formal_argument = “, formal_argument

END SUBROUTINE callee

The output of this code fragment is:

caller: before calling, actual_argument = 5

callee: before, formal_argument = 5

callee: after, formal_argument = 6

caller: after calling, actual_argument = 6 NOTICE!!!

In C, ALL arguments are pass-by-copy, meaning that the routine that you call is using a different

memory location containing the same value for each argument as the calling routine – except for

arrays, which are always passed by reference (don’t ask).

void caller ()

{

 int actual_argument; /* local variable inside caller */

 actual_argument = 5;

 printf(“caller: before calling, actual_argument = %d\n“, actual_argument);

 callee(actual_argument);

 printf(“caller: after calling, actual_argument = %d\n“, actual_argument);

}

void callee (int formal_argument)

{

 printf(“callee: before, formal_argument = %d\n“, formal_argument);

 formal_argument = formal_argument + 1;

 printf(“callee: after, formal_argument = %d\n“, formal_argument);

}

The output of this code fragment is:

caller: before calling, actual_argument = 5

callee: before, formal_argument = 5

callee: after, formal_argument = 6

caller: after calling, actual_argument = 5 NOTICE!!!

4

Why is this relevant?

As you can see from the LAPACK routine source file, LAPACK is written in Fortran. So if

you’re working in Fortran, you’re fine, and you don’t have to worry about this.

But if you’re working in C, then when you call the LAPACK Fortran routine, for your scalar

(non-array) arguments, you have to accomplish pass-by-reference via fakery, by passing a pointer

to (that is, the address of) each scalar argument.

For example:

void caller2 ()

{

 int actual_argument; /* local variable inside caller */

 actual_argument = 5;

 printf(“caller2: before calling, actual_argument = %d\n“, actual_argument);

 callee2(&actual_argument);

 printf(“caller2: after calling, actual_argument = %d\n“, actual_argument);

}

void callee2 (int* formal_argument)

{

 printf(“callee2: before, *formal_argument = %d\n“, *formal_argument);

 *formal_argument = *formal_argument + 1;

 printf(“callee2: after, *formal_argument = %d\n“, *formal_argument);

}

The output of this code fragment is:

caller2: before calling, actual_argument = 5

callee2: before, formal_argument = 5

callee2: after, formal_argument = 6

caller2: after calling, actual_argument = 6 NOTICE!!!

On the other hand:

 YOU DON’T HAVE TO DO THIS FOR ARRAY ARGUMENTS;

 YOU DON’T HAVE TO WORRY ABOUT THIS IN FORTRAN.

c. The LAPACK implementation you’ll be linking to is part of Intel’s Math Kernel Library (MKL),

rather than a hand-compiled version of an implementation from Netlib or a similar open source

provider. We have no specific bias in favor of or against MKL, but we don’t have time to build

the relevant libraries from source code.

22. Save the source file and close your favorite text editor.

23. Compile using the make command:

make

24. If the program doesn’t compile, edit the source file and try again. Continue to do this until the

compilation succeeds.

25. Submit the batch script file lapack_test.bsub to the batch scheduler:

bsub < lapack_test.bsub

NOTICE the less than symbol < which is EXTREMELY IMPORTANT.

You should get back output something like this:

Job <######> is submitted to queue <parii_q>.

where ###### is replaced by the batch job ID for the batch job that you’ve just submitted.

5

26. Check the status of your batch job:

bjobs

You’ll get one of the following outputs, either:

No unfinished job found

(if you get this right after the bjobs command, try it several more times, because sometimes

there’s a pause just before the batch job starts showing up, as shown below):

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

4081250 yourusername PEND parii_q sooner1 lapack_test Oct 17 14:58

where ###### is replaced by a batch job ID number, and yourusername is replaced by your

user name, and where PEND is short for “pending,” meaning that your job is waiting to start,

OR:

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

4081250 yourusername RUN parii_q sooner1 c127 lapack_test Oct 17 14:58

27. You may need to check the status of your batch job repeatedly, using the bjobs command, until it

runs to completion. This may take several minutes (occasionally much longer).

You’ll know that the batch job has finished when it no longer appears in the list of your batch jobs:

No unfinished job found

28. Once your job has finished running, find the standard output and standard error files from your job:

ls -ltr

Using this command, you should see files named

lapack_test_######_stdout.txt

and

lapack_test_######_stderr.txt

(where ###### is replaced by the batch job ID).

These files should contain the output of lapack_test. Ideally, the stderr file should have

length zero.

29. Look at the contents of the standard output file:

cat lapack_test_######_stdout.txt

(where ###### is replaced by the batch job ID). You may also want to look at the stderr file:

cat lapack_test_######_stdout.txt

30. If this run had ANY problems, then send e-mail to:

support@oscer.ou.edu

which reaches all OSCER staff (including Henry), and attach the following files:

makefile

lapack_test.c

lapack_test.bsub

lapack_test_######_stdout.txt

lapack_test_######_stderr.txt

mailto:support@oscer.ou.edu

