Introduction to **Parallel Programming** & Cluster Computing **Scientific Libraries** and I/O Libraries

Josh Alexander, University of Oklahoma Ivan Babic, Earlham College Andrew Fitz Gibbon, Shodor Education Foundation Inc. Henry Neeman, University of Oklahoma **Charlie Peck, Earlham College** HAM **Skylar Thompson, University of Washington** COLLEGE Aaron Weeden, Earlham College Sunday June 26 – Friday July 1 2011

EARI

This is an experiment!

It's the nature of these kinds of videoconferences that FAILURES ARE GUARANTEED TO HAPPEN! NO PROMISES!

- So, please bear with us. Hopefully everything will work out well enough.
- If you lose your connection, you can retry the same kind of connection, or try connecting another way.
- Remember, if all else fails, you always have the toll free phone bridge to fall back on.

- If you want to use H.323 videoconferencing for example, Polycom – then:
- If you ARE already registered with the OneNet gatekeeper, dial 2500409.
- If you AREN'T registered with the OneNet gatekeeper (which is probably the case), then:
 - Dial 164.58.250.47
 - When asked for the conference ID, enter:
 #0409#

Many thanks to Roger Holder and OneNet for providing this.

H.323 from Internet Explorer

From a Windows PC running Internet Explorer:

- 1. You **MUST** have the ability to install software on the PC (or have someone install it for you).
- 2. Download and install the latest Java Runtime Environment (JRE) from <u>here</u> (click on the Java Download icon, because that install package includes both the JRE and other components).
- 3. Download and install this <u>video decoder</u>.
- 4. Start Internet Explorer.
- 5. Copy-and-paste this URL into your IE window: http://164.58.250.47/
- 6. When that webpage loads, in the upper left, click on "Streaming".
- 7. In the textbox labeled Sign-in Name, type your name.
- 8. In the textbox labeled Conference ID, type this: 0409
- 9. Click on "Stream this conference".
- 10. When that webpage loads, you may see, at the very top, a bar offering you options. If so, click on it and choose "Install this add-on."

There's a quick description of how to use EVO on the workshop logistics webpage.

Phone Bridge

If all else fails, you can call into our toll free phone bridge: 1-800-832-0736 * 623 2874 #

Please mute yourself and use the phone to listen.

Don't worry, we'll call out slide numbers as we go.

Please use the phone bridge <u>ONLY</u> if you cannot connect any other way: the phone bridge is charged per connection per minute, so our preference is to minimize the number of connections.

Many thanks to OU Information Technology for providing the toll free phone bridge.

No matter how you connect, please mute yourself, so that we cannot hear you.

- At ISU and UW, we will turn off the sound on all conferencing technologies.
- That way, we won't have problems with echo cancellation.
- Of course, that means we cannot hear questions.
- So for questions, you'll need to send some kind of text.

Thanks for helping!

- OSCER operations staff (Brandon George, Dave Akin, Brett Zimmerman, Josh Alexander, Patrick Calhoun)
- Kevin Blake, OU IT (videographer)
- James Deaton and Roger Holder, OneNet
- Keith Weber, Abel Clark and Qifeng Wu, Idaho State U Pocatello
- Nancy Glenn, Idaho State U Boise
- Jeff Gardner and Marya Dominik, U Washington
- Ken Gamradt, South Dakota State U
- Jeff Rufinus, Widener U
- Scott Lathrop, SC11 General Chair
- Donna Cappo, ACM
- Bob Panoff, Jack Parkin and Joyce South, Shodor Education Foundation Inc
- ID, NM, NV EPSCoR (co-sponsors)
- SC11 conference (co-sponsors)

Questions via Text: Piazza

Ask questions via: http://www.piazza.com/

All questions will be read out loud and then answered out loud.

<u>NOTE</u>: Because of image-and-likeness rules, people attending remotely offsite via videoconferencing <u>CANNOT</u> ask questions via voice.

This is an experiment!

It's the nature of these kinds of videoconferences that FAILURES ARE GUARANTEED TO HAPPEN! NO PROMISES!

- So, please bear with us. Hopefully everything will work out well enough.
- If you lose your connection, you can retry the same kind of connection, or try connecting another way.
- Remember, if all else fails, you always have the toll free phone bridge to fall back on.

Outline

- Scientific Computing Pipeline
- Scientific Libraries
- I/O Libraries
- Scientific Visualization

Scientific Computing Pipeline

Real World Physics Mathematical Representation (continuous) Numerical Representation (discrete) Algorithm Implementation (program) Port (to a specific platform) Result (run) Analysis Verification Thanks to Julia Mullen of MIT Lincoln Lab for this concept.

Five Rules of Scientific Computing

- 1. Know the physics.
- 2. Control the software.
- 3. Understand the numerics.
- 4. Achieve expected behavior.
- 5. Question unexpected behavior.

Thanks to Robert E. Peterkin for these.

Scientific Libraries

Preinvented Wheels

Many simulations perform fairly common tasks; for example, solving systems of equations: Ax = b

where **A** is the matrix of coefficients, **x** is the vector of unknowns and **b** is the vector of knowns.

$$\begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & a_{2,3} & \cdots & a_{2,n} \\ a_{3,1} & a_{3,2} & a_{3,3} & \cdots & a_{3,n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & a_{n,3} & \cdots & a_{n,n} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_n \end{bmatrix}$$

Scientific Libraries

Because some tasks are quite common across many science and engineering applications, groups of researchers have put a lot of effort into writing <u>scientific libraries</u>: collections of routines for performing these commonly-used tasks (for example, linear algebra solvers).

- The people who write these libraries know a lot more about these things than we do.
- So, a good strategy is to use their libraries, rather than trying to write our own.

Solver Libraries

Probably the most common scientific computing task is solving a system of equations Ax = b

where **A** is a matrix of coefficients, **x** is a vector of unknowns, and **b** is a vector of knowns.

The goal is to solve for **x**.



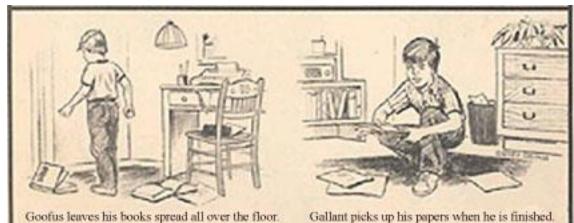
V

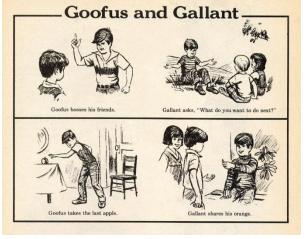
Solving Systems of Equations

Don'ts:

- Don't invert the matrix (x = A⁻¹b). That's much more costly than solving directly, and much more prone to numerical error.
- <u>Don't</u> write your own solver code. There are people who devote their whole careers to writing solvers. They know a lot more about writing solvers than we do.

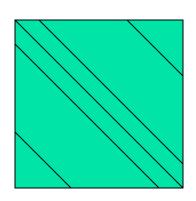
NCSI Intro Parallel: Libraries June 26 - July 1 2011


18

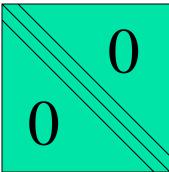


Do's:

- **Do** use standard, portable solver libraries.
- <u>Do</u> use a version that's tuned for the platform you're running on, if available.
- <u>Do</u> use the information that you have about your system of equations to pick the most efficient solver.



All About Your Matrix

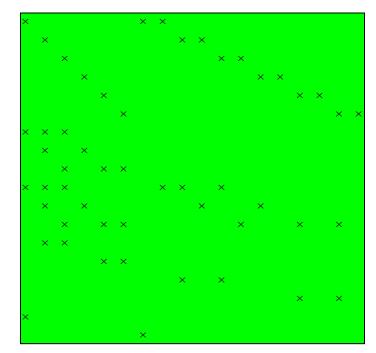

If you know things about your matrix, you maybe can use a more efficient solver.

- Symmetric: $a_{i,j} = a_{j,i}$
- Positive definite: $\mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x} > 0$ for all $\mathbf{x} \neq 0$ (for example, if all eigenvalues are positive)
- Banded:

zero except on the bands

Tridiagonal:

and ...



Sparse Matrices

A <u>sparse matrix</u> is a matrix that has mostly zeros in it. "Mostly" is vaguely defined, but a good rule of thumb is that a matrix is sparse if more than, say, 90-95% of its entries are zero. (A non-sparse matrix is <u>dense</u>.)

Linear Algebra Libraries

- BLAS [1],[2]
- ATLAS^[3]
- LAPACK^[4]
- ScaLAPACK^[5]
- PETSc^{[6],[7],[8]}

The **Basic Linear Algebra Subprograms** (BLAS) are a set of low level linear algebra routines:

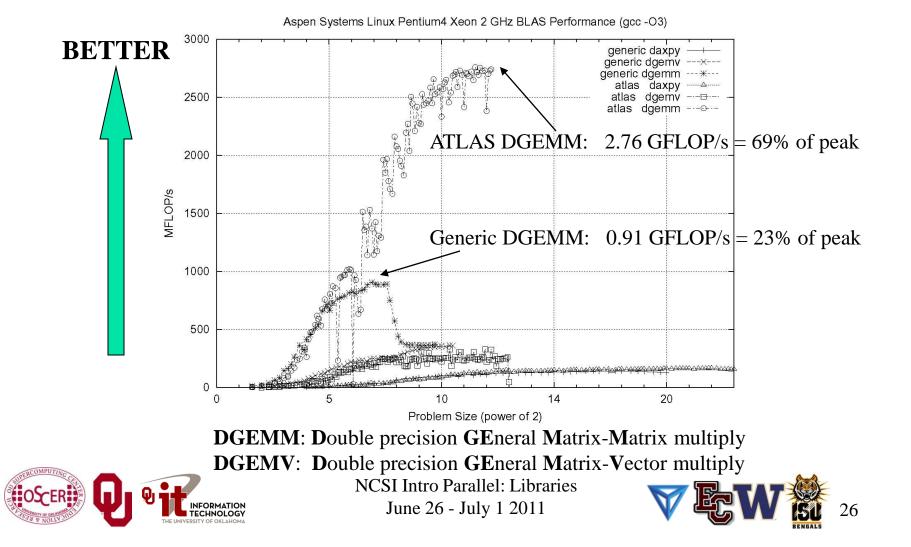
- Level 1: Vector-vector (for example, dot product)
- Level 2: Matrix-vector (for example, matrix-vector multiply)
- Level 3: Matrix-matrix (for example, matrix-matrix multiply)
- Many linear algebra packages, including LAPACK, ScaLAPACK and PETSc, are built on top of BLAS.
- Most supercomputer vendors have versions of BLAS that are highly tuned for their platforms.

The <u>Automatically Tuned Linear Algebra Software</u> package (ATLAS) is a self-tuned version of BLAS (it also includes a few LAPACK routines).

- When it's installed, it tests and times a variety of approaches to each routine, and selects the version that runs the fastest.
- ATLAS is substantially faster than the generic version of BLAS.

And, it's **FREE**!

Goto BLAS


- In the past several years, a new version of BLAS has been released, developed by Kazushige Goto (currently at UT Austin).
- This version is unusual, because instead of optimizing for cache, it optimizes for the *Translation Lookaside Buffer* (TLB), which is a special little cache that often is ignored by software developers.
- Goto realized that optimizing for the TLB would be more efficient than optimizing for cache.

ATLAS vs. Generic BLAS

V

LAPACK

LAPACK (Linear Algebra PACKage) solves dense or specialcase sparse systems of equations depending on matrix properties such as:

- Precision: single, double
- Data type: real, complex
- Shape: diagonal, bidiagonal, tridiagonal, banded, triangular, trapezoidal, Hesenberg, general dense
- Properties: orthogonal, positive definite, Hermetian (complex), symmetric, general
- LAPACK is built on top of BLAS, which means it can benefit from ATLAS.

LAPACK Example

```
REAL, DIMENSION (numrows, numcols) :: A
REAL, DIMENSION (numrows)
                                   :: B
                                    : X
REAL, DIMENSION (numcols)
INTEGER, DIMENSION (numrows)
                                   :: pivot
INTEGER :: row, col, info, numrhs = 1
DO row = 1, numrows
  B(row) = \dots
END DO
DO col = 1, numcols
  DO row = 1, numrows
    A(row, col) = ...
  END DO
END DO
CALL sgesv(numrows, numrhs, A, numrows, pivot, &
           B, numrows, info)
&
DO col = 1, numcols
  X(col) = B(col)
END DO
```


V

LAPACK: A Library and an API

LAPACK is a library that you can download for free from the Web:

www.netlib.org

- But, it's also an Application Programming Interface (API): a definition of a set of routines, their arguments, and their behaviors.
- So, anyone can write an implementation of LAPACK.

It's Good to Be Popular

LAPACK is a good choice for non-parallelized solving, because its popularity has convinced many supercomputer vendors to write their own, highly tuned versions.

- The API for the LAPACK routines is the same as the portable version from NetLib, but the performance can be much better, via either ATLAS or proprietary vendor-tuned versions.
- Also, some vendors have shared memory parallel versions of LAPACK.

LAPACK Performance

Because LAPACK uses BLAS, it's about as fast as BLAS.

- For example, DGESV (Double precision General SolVer) on a 2 GHz Pentium4 using ATLAS gets 65% of peak, compared to 69% of peak for Matrix-Matrix multiply.
- In fact, an older version of LAPACK, called LINPACK, is used to determine the top 500 supercomputers in the world.

ScaLAPACK

ScaLAPACK is the distributed parallel (MPI) version of LAPACK. It actually contains only a subset of the LAPACK routines, and has a somewhat awkward Application Programming Interface (API).

Like LAPACK, ScaLAPACK is also available from

www.netlib.org.

<u>PETSc</u> (Portable, Extensible Toolkit for Scientific Computation) is a solver library for sparse matrices that uses distributed parallelism (MPI).

- PETSc is designed for general sparse matrices with no special properties, but it also works well for sparse matrices with simple properties like banding and symmetry.
- It has a simpler, more intuitive Application Programming Interface than ScaLAPACK.

Pick Your Solver Package

- Dense Matrix
 - Serial: LAPACK
 - Shared Memory Parallel: threaded LAPACK
 - Distributed Parallel: ScaLAPACK
- Sparse Matrix: PETSc

I/O Libraries

I/O Challenges

I/O presents two important challenges to scientific computing:

- Performance
- Portability
- The performance issue arises because I/O is much more timeconsuming than computation, as we saw in the "Storage Hierarchy" session.
- The portability issue arises because different kinds of computers can have different ways of representing real (floating point) numbers.

When you use a **PRINT** statement in Fortran or a **printf** in C or output to **cout** in C++, you are asking the program to output data in human-readable form:

 $\mathbf{x} = 5$

PRINT *, x

But what if the value that you want to output is a real number with lots of significant digits?

1.3456789E+23

Data Output as Text

1.3456789E+23

When you output data as text, each character takes 1 byte.

- So if you output a number with lots of digits, then you're outputting lots of bytes.
- For example, the above number takes 13 bytes to output as text.
- Jargon: Text is sometimes called <u>ASCII</u> (American Standard Code for Information Interchange).

Output Data in Binary

Inside the computer, a single precision real number (Fortran REAL, C/C++ float) typically requires 4 bytes, and a double precision number (DOUBLE PRECISION or double) typically requires 8.

That's less than 13.

- Since I/O is very expensive, it's better to output 4 or 8 bytes than 13 or more.
- Happily, Fortran, C and C++ allow you to output data as **binary** (internal representation) rather than as text.

Binary Output Problems

When you output data as **<u>binary</u>** rather than as text, you output substantially <u>**fewer bytes**</u>, so you save time (since I/O is very expensive) and you save disk space.

But, you pay two prices:

- **<u>Readability</u>**: Humans can't read binary.
- **<u>Portability</u>**: Different kinds of computers have different ways of internally representing numbers.

Binary Readability: No Problem

<u>Readability</u> of binary data **<u>isn't a problem</u>** in scientific computing, because:

- You can always write a little program to read in the binary data and display its text equivalent.
- If you have lots and lots of data (that is, MBs or GBs), you wouldn't want to look at all of it anyway.

Binary Portability: Big Problem

- **Binary data portability** is a **very big problem** in scientific computing, because data that's output on one kind of computer may not be readable on another, and so:
- You can't output the data on one kind of computer and then use them (for example, visualize, analyze) on another kind.
- Some day the kind of computer that output the data will be obsolete, so there may be no computer in the world that can input it, and thus the data are lost.

Portable Binary Data

The HPC community noticed this problem some years ago, and so a number of portable binary data formats were developed. The two most popular are:

• <u>**HDF**</u> (Hierarchical Data Format) from the National Center for Supercomputing Applications:

http://www.hdfgroup.org/

<u>NetCDF</u> (Network Common Data Form) from Unidata:
 <u>http://www.unidata.ucar.edu/software/netcdf</u>

Advantages of Portable I/O

Portable binary I/O packages:

- give you portable binary I/O;
- have simple, clear APIs;
- are available for <u>free;</u>
- run on most platforms;
- allow you to <u>annotate</u> your data (for example, put into the file the variable names, units, experiment name, grid description, etc).

Also, both HDF and netCDF support distributed parallel I/O.

Thanks for your attention!

Questions?