
Introduction to

Parallel Programming

& Cluster Computing

MPI Collective Communications
Josh Alexander, University of Oklahoma

Ivan Babic, Earlham College
Andrew Fitz Gibbon, Shodor Education Foundation Inc.

Henry Neeman, University of Oklahoma
Charlie Peck, Earlham College

Skylar Thompson, University of Washington
Aaron Weeden, Earlham College
Sunday June 26 – Friday July 1 2011

Co-sponsored

by SC11

Co-sponsored

by ID,NM,NV

EPSCoR

NCSI Intro Par: MPI Collectives

June 26 - July 1 2011 2

This is an experiment!

It’s the nature of these kinds of videoconferences that

FAILURES ARE GUARANTEED TO HAPPEN!

NO PROMISES!

So, please bear with us. Hopefully everything will work out

well enough.

If you lose your connection, you can retry the same kind of

connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone

bridge to fall back on.

NCSI Intro Par: MPI Collectives

June 26 - July 1 2011 3

H.323 (Polycom etc)

If you want to use H.323 videoconferencing – for example,

Polycom – then:

 If you ARE already registered with the OneNet gatekeeper,

dial 2500409.

 If you AREN’T registered with the OneNet gatekeeper

(which is probably the case), then:

 Dial 164.58.250.47

 When asked for the conference ID, enter:

#0409#

Many thanks to Roger Holder and OneNet for providing this.

H.323 from Internet Explorer

From a Windows PC running Internet Explorer:

1. You MUST have the ability to install software on the PC (or have someone install it for

you).

2. Download and install the latest Java Runtime Environment (JRE) from here

(click on the Java Download icon, because that install package includes both the JRE and

other components).

3. Download and install this video decoder.

4. Start Internet Explorer.

5. Copy-and-paste this URL into your IE window:

http://164.58.250.47/

6. When that webpage loads, in the upper left, click on "Streaming".

7. In the textbox labeled Sign-in Name, type your name.

8. In the textbox labeled Conference ID, type this:

0409

9. Click on "Stream this conference".

10. When that webpage loads, you may see, at the very top, a bar offering you options.

If so, click on it and choose "Install this add-on."

NCSI Intro Par: MPI Collectives

June 26 - July 1 2011 4

http://www.oracle.com/technetwork/java/javase/downloads/
http://164.58.250.47/codian_video_decoder.msi

NCSI Intro Par: MPI Collectives

June 26 - July 1 2011 5

EVO

There’s a quick description of how to use EVO on the

workshop logistics webpage.

NCSI Intro Par: MPI Collectives

June 26 - July 1 2011 6

Phone Bridge

If all else fails, you can call into our toll free phone bridge:

1-800-832-0736

* 623 2874 #

Please mute yourself and use the phone to listen.

Don’t worry, we’ll call out slide numbers as we go.

Please use the phone bridge ONLY if you cannot connect any

other way: the phone bridge is charged per connection per

minute, so our preference is to minimize the number of

connections.

Many thanks to OU Information Technology for providing the

toll free phone bridge.

NCSI Intro Par: MPI Collectives

June 26 - July 1 2011 7

Please Mute Yourself

No matter how you connect, please mute yourself, so that we

cannot hear you.

At ISU and UW, we will turn off the sound on all conferencing

technologies.

That way, we won’t have problems with echo cancellation.

Of course, that means we cannot hear questions.

So for questions, you’ll need to send some kind of text.

NCSI Intro Par: MPI Collectives

June 26 - July 1 2011 8

Thanks for helping!

 OSCER operations staff (Brandon George, Dave Akin, Brett
Zimmerman, Josh Alexander, Patrick Calhoun)

 Kevin Blake, OU IT (videographer)

 James Deaton and Roger Holder, OneNet

 Keith Weber, Abel Clark and Qifeng Wu, Idaho State U Pocatello

 Nancy Glenn, Idaho State U Boise

 Jeff Gardner and Marya Dominik, U Washington

 Ken Gamradt, South Dakota State U

 Jeff Rufinus, Widener U

 Scott Lathrop, SC11 General Chair

 Donna Cappo, ACM

 Bob Panoff, Jack Parkin and Joyce South, Shodor Education Foundation
Inc

 ID, NM, NV EPSCoR (co-sponsors)

 SC11 conference (co-sponsors)

NCSI Intro Par: MPI Collectives

June 26 - July 1 2011 9

Questions via Text: Piazza

Ask questions via:

http://www.piazza.com/

All questions will be read out loud and then answered out loud.

NOTE: Because of image-and-likeness rules, people attending

remotely offsite via videoconferencing CANNOT ask

questions via voice.

http://www.piazza.com/

NCSI Intro Par: MPI Collectives

June 26 - July 1 2011 10

This is an experiment!

It’s the nature of these kinds of videoconferences that

FAILURES ARE GUARANTEED TO HAPPEN!

NO PROMISES!

So, please bear with us. Hopefully everything will work out

well enough.

If you lose your connection, you can retry the same kind of

connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone

bridge to fall back on.

Collective

Communications

Point to Point Always Works

 MPI_Send and MPI_Recv are known as “point to

point” communications: they communicate from one MPI

process to another MPI process.

 But, what if you want to communicate like one of these?

 one to many

 many to one

 many to many

 These are known as collective communications.

 MPI_Send and MPI_Recv can accomplish any and all

of these – but should you use them that way?

NCSI Intro Par: MPI Collectives

June 26 - July 1 2011 12

Point to Point Isn’t Always Good

 We’re interested in collective communications:

 one to many

 many to one

 many to many

 In principle, MPI_Send and MPI_Recv can

accomplish any and all of these.

 But that may be:

 inefficient;

 inconvenient and cumbersome to code.

 So, the designers of MPI came up with routines that perform

these collective communications for you.

NCSI Intro Par: MPI Collectives

June 26 - July 1 2011 13

Collective Communications

 MPI_Bcast

 MPI_Reduce, MPI_Allreduce

 MPI_Gather, MPI_Gatherv,

MPI_Allgather, MPI_Allgatherv

 MPI_Scatter, MPI_Scatterv

 MPI_Alltoall, MPI_Alltoallv

NCSI Intro Par: MPI Collectives

June 26 - July 1 2011 14

15

MPI_Bcast (C)

What happens if one process has data that everyone else needs
to know?

For example, what if the server process needs to send a value
that it input from standard input to the other processes?
mpi_error_code =

MPI_Bcast(&length, 1, MPI_INTEGER,

source, MPI_COMM_WORLD);

Notice:

 MPI_Bcast doesn’t use a tag.

 The call is the same for both the sender and all of the
receivers (COUNTERINTUITIVE!).

All processes have to call MPI_Bcast at the same time;
everyone waits until everyone is done.

NCSI Intro Par: MPI Collectives

June 26 - July 1 2011

16

MPI_Bcast (F90)

What happens if one process has data that everyone else needs
to know?

For example, what if the server process needs to send a value
that it input from standard input to the other processes?
CALL MPI_Bcast(length, 1, MPI_INTEGER, &

& source, MPI_COMM_WORLD, &

& mpi_error_code)

Notice:

 MPI_Bcast doesn’t use a tag.

 The call is the same for both the sender and all of the
receivers (COUNTERINTUITIVE!).

All processes have to call MPI_Bcast at the same time;
everyone waits until everyone is done.

NCSI Intro Par: MPI Collectives

June 26 - July 1 2011

17

Broadcast Example Part 1 (C)
#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <mpi.h>

int main (int argc, char** argv)

{ /* main */

const int server = 0;

const int source = server;

float* array = (float*)NULL;

int length, index;

int number_of_processes, my_rank, mpi_error_code;

mpi_error_code = MPI_Init(&argc, &argv);

mpi_error_code = MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

mpi_error_code = MPI_Comm_size(MPI_COMM_WORLD,

&number_of_processes);

NCSI Intro Par: MPI Collectives

June 26 - July 1 2011

18

Broadcast Example Part 2 (C)
if (my_rank == source) {

scanf("%d", &length);

} /* if (my_rank == source) */

fprintf(stderr, "%d: before MPI_Bcast, length = %d\n",

my_rank, length);

mpi_error_code =

MPI_Bcast(&length, 1, MPI_INTEGER, source, MPI_COMM_WORLD);

fprintf(stderr, "%d: after MPI_Bcast, length = %d\n",

my_rank, length);

array = (float*)malloc(sizeof(float) * length);

if (my_rank == source) {

for (index = 0; index < length; index++) {

array[index] = sqrt(index * 1.0); /* Or whatever you want */

} /* for index */

} /* if (my_rank == source) */

mpi_error_code =

MPI_Bcast(array, length, MPI_FLOAT, source, MPI_COMM_WORLD);

mpi_error_code = MPI_Finalize();

} /* main */

NCSI Intro Par: MPI Collectives

June 26 - July 1 2011

19

Broadcast Example Part 1 (F90)
PROGRAM broadcast

IMPLICIT NONE

INCLUDE "mpif.h"

INTEGER,PARAMETER :: server = 0

INTEGER,PARAMETER :: source = server

INTEGER,PARAMETER :: memory_success = 0

REAL,DIMENSION(:),ALLOCATABLE :: array

INTEGER :: length, index

INTEGER :: number_of_processes, my_rank, mpi_error_code

INTEGER :: memory_status

CALL MPI_Init(mpi_error_code)

CALL MPI_Comm_rank(MPI_COMM_WORLD, my_rank, mpi_error_code)

CALL MPI_Comm_size(MPI_COMM_WORLD, number_of_processes, &

& mpi_error_code);

NCSI Intro Par: MPI Collectives

June 26 - July 1 2011

20

Broadcast Example Part 2 (F90)
IF (my_rank == source) THEN

READ *, length

END IF !! (my_rank == source)

WRITE (0,*) my_rank, ": before MPI_Bcast, length = ", length

CALL MPI_Bcast(length, 1, MPI_INTEGER, source, MPI_COMM_WORLD, &

& mpi_error_code)

WRITE (0,*) my_rank, ": after MPI_Bcast, length = ", length

ALLOCATE(array(length), STAT=memory_status)

IF (memory_status /= memory_success) THEN

WRITE (0,*) "ERROR: cannot allocate array of length ", length

CALL MPI_Abort(MPI_COMM_WORLD, mpi_error_code, mpi_error_code)

END IF (memory_status /= memory_success)

IF (my_rank == source) THEN

DO index = 1, length

array(index) = SQRT(index * 1.0); /* Or whatever you want */

END DO !! index

END IF !! (my_rank == source)

CALL MPI_Bcast(array, length, MPI_FLOAT, source, &

& MPI_COMM_WORLD, mpi_error_code)

CALL MPI_Finalize(mpi_error_code)

END PROGRAM broadcast

NCSI Intro Par: MPI Collectives

June 26 - July 1 2011

21

Broadcast Compile & Run

% mpicc -o mpibroadcast mpibroadcast.c -lm

% mpirun -np 8 mpibroadcast

4: before MPI_Bcast, length = 0

7: before MPI_Bcast, length = 0

3: before MPI_Bcast, length = 0

5: before MPI_Bcast, length = 0

6: before MPI_Bcast, length = 0

2: before MPI_Bcast, length = 0

0: before MPI_Bcast, length = 1000000

0: after MPI_Bcast, length = 1000000

2: after MPI_Bcast, length = 1000000

4: after MPI_Bcast, length = 1000000

5: after MPI_Bcast, length = 1000000

7: after MPI_Bcast, length = 1000000

6: after MPI_Bcast, length = 1000000

3: after MPI_Bcast, length = 1000000

1: before MPI_Bcast, length = 0

1: after MPI_Bcast, length = 1000000

NCSI Intro Par: MPI Collectives

June 26 - July 1 2011

22

Reductions

A reduction converts an array to a scalar: for example,

sum, product, minimum value, maximum value, Boolean

AND, Boolean OR, etc.

Reductions are so common, and so important, that MPI has two

routines to handle them:

MPI_Reduce: sends result to a single specified process

MPI_Allreduce: sends result to all processes (and therefore

takes longer)

NCSI Intro Par: MPI Collectives

June 26 - July 1 2011

23

Reduction Example Part 1 (C)
#include <stdio.h>

#include <stdlib.h>

#include <mpi.h>

int main (int argc, char** argv)

{ /* main */

const int server = 0;

const int destination = server;

float value, value_sum;

int number_of_processes, my_rank, mpi_error_code;

mpi_error_code = MPI_Init(&argc, &argv);

mpi_error_code = MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

mpi_error_code = MPI_Comm_size(MPI_COMM_WORLD,

&number_of_processes);

NCSI Intro Par: MPI Collectives

June 26 - July 1 2011

24

Reduction Example Part 2 (C)
value = 1.5 * my_rank * number_of_processes;

fprintf(stderr, "%d: reduce value = %f\n",

my_rank, value);

mpi_error_code =

MPI_Reduce (&value, &value_sum, 1, MPI_FLOAT, MPI_SUM,

destination, MPI_COMM_WORLD);

fprintf(stderr, "%d: reduce value_sum = %f\n",

my_rank, value_sum);

mpi_error_code =

MPI_Allreduce(&value, &value_sum, 1, MPI_FLOAT, MPI_SUM,

MPI_COMM_WORLD);

fprintf(stderr, "%d: allreduce value_sum = %f\n",

my_rank, value_sum);

mpi_error_code = MPI_Finalize();

} /* main */

NCSI Intro Par: MPI Collectives

June 26 - July 1 2011

25

Reduction Example Part 1 (F90)
PROGRAM reduction

IMPLICIT NONE

INCLUDE "mpif.h"

INTEGER,PARAMETER :: server = 0

INTEGER,PARAMETER :: destination = server

REAL :: value, value_sum

INTEGER :: number_of_processes, my_rank, mpi_error_code

CALL MPI_Init(mpi_error_code)

CALL MPI_Comm_rank(MPI_COMM_WORLD, my_rank, mpi_error_code)

CALL MPI_Comm_size(MPI_COMM_WORLD, number_of_processes, &

& mpi_error_code)

NCSI Intro Par: MPI Collectives

June 26 - July 1 2011

26

Reduction Example Part 2 (F90)
value = 1.5 * my_rank * number_of_processes

WRITE (0,*) my_rank, ": reduce value = ", value

CALL MPI_Reduce (value, value_sum, 1, &

& MPI_FLOAT, MPI_SUM, &

& destination, MPI_COMM_WORLD, &

& mpi_error_code

WRITE (0,*) my_rank, ": reduce value_sum = ", value_sum

CALL MPI_Allreduce(value, value_sum, 1, &

& MPI_FLOAT, MPI_SUM, &

& MPI_COMM_WORLD, &

& mpi_error_code)

WRITE (0,*) my_rank, ": allreduce value_sum = ", value_sum

CALL MPI_Finalize(mpi_error_code)

END PROGRAM reduction

NCSI Intro Par: MPI Collectives

June 26 - July 1 2011

Reduce: Compiling and Running

% mpicc -o mpireduce mpireduce.c

% mpirun -np 8 mpireduce

0: reduce value = 0.0

4: reduce value = 48.0

6: reduce value = 72.0

7: reduce value = 84.0

3: reduce value = 36.0

2: reduce value = 24.0

5: reduce value = 60.0

1: reduce value = 12.0

7: reduce value_sum = -9120.0

3: reduce value_sum = -9120.0

2: reduce value_sum = -9120.0

5: reduce value_sum = -9120.0

0: reduce value_sum = 336.0

1: reduce value_sum = -9120.0

6: reduce value_sum = -9120.0

4: reduce value_sum = -9120.0

2: allreduce value_sum = 336.0

7: allreduce value_sum = 336.0

4: allreduce value_sum = 336.0

3: allreduce value_sum = 336.0

1: allreduce value_sum = 336.0

5: allreduce value_sum = 336.0

0: allreduce value_sum = 336.0

6: allreduce value_sum = 336.0

NCSI Intro Par: MPI Collectives

June 26 - July 1 2011 27

28

Why Two Reduction Routines?

MPI has two reduction routines because of the high cost of

each communication.

If only one process needs the result, then it doesn’t make sense

to pay the cost of sending the result to all processes.

But if all processes need the result, then it may be cheaper to

reduce to all processes than to reduce to a single process and

then broadcast to all.

You can think of MPI_Allreduce as

MPI_Reduce followed by MPI_Bcast

(though it doesn’t have to be implemented that way).

NCSI Intro Par: MPI Collectives

June 26 - July 1 2011

Reduction on Arrays Part 1 (C)

MPI_Reduce and MPI_Allreduce are actually designed

to work on arrays, where the corresponding elements of each

source array are reduced into the corresponding element of

the destination array (all of the same length):

MPI_Allreduce(source_array,

destination_array,

number_of_array_elements,

MPI_DATATYPE, MPI_OPERATION,

MPI_COMMUNICATOR);

MPI_Allreduce(local_force_on_particle,

global_force_on_particle,

number_of_particles,

MPI_FLOAT, MPI_SUM,

MPI_COMM_WORLD);

NCSI Intro Par: MPI Collectives

June 26 - July 1 2011 29

Example

General

Reduction on Arrays Part 2 (C)

MPI_Allreduce(local_force_on_particle,

global_force_on_particle,

number_of_particles,

MPI_FLOAT, MPI_SUM,

MPI_COMM_WORLD);

global_force_on_particle[p] =

local_force_on_particle[p] on Rank 0 +

local_force_on_particle[p] on Rank 1 +

local_force_on_particle[p] on Rank 2 +

...

local_force_on_particle[p] on Rank np–1;

NCSI Intro Par: MPI Collectives

June 26 - July 1 2011 30

Scatter and Gather

 To scatter is to send data from one place to many places.

 To gather is to receive data from many places into one

place.

 MPI has a variety of scatter and gather routines:

 MPI_Scatter, MPI_Scatterv

 MPI_Gather, MPI_Gatherv,

MPI_Allgather, MPI_Allgatherv

 The scatter routines split up a single larger array into

smaller subarrays, one per MPI process, and send each

subarray to an MPI process.

 The gather routines receive many smaller subarrays, one per

MPI process, and assemble them into a single larger array.
NCSI Intro Par: MPI Collectives

June 26 - July 1 2011 31

MPI_Scatter

MPI_Scatter takes an array whose length is divisible by the

number of MPI processes, and splits it up into subarrays of

equal length, then sends one subarray to each MPI process.

MPI_Scatter(large_array, small_array_length,

MPI_DATATYPE,

small_subarray, small_subarray_length,

MPI_DATATYPE, source, MPI_COMMUNICATOR);

So, for a large array of length 100 on 5 MPI processes:

 each smaller subarray has length 20;

 large_array[0] .. large_array[19] go to small_array on Rank 0;

 large_array[20]..large_array[39] go to small_array on Rank 1;

 etc

NCSI Intro Par: MPI Collectives

June 26 - July 1 2011 32

MPI_Scatterv

MPI_Scatterv is just like MPI_Scatter, except that the

subarray lengths don’t have to be the same (and therefore the

length of the large array doesn’t have to be divisible by the

number of MPI processes).

MPI_Scatterv(large_array, small_array_length,

displacements,

MPI_DATATYPE,

small_subarray, small_subarray_lengths,

MPI_DATATYPE, source, MPI_COMMUNICATOR);

The displacements array says where each small subarray

begins within the large array.

NCSI Intro Par: MPI Collectives

June 26 - July 1 2011 33

MPI_Gather

MPI_Gather receives a small array on each of the MPI

processes, all subarrays of equal length, and joins them into a

single large array on the destination MPI process.
MPI_Gather(small_subarray, small_subarray_length,

MPI_DATATYPE,

large_array, large_array_length,

MPI_DATATYPE, destination, MPI_COMMUNICATOR);

So, for a small subarray of length 20 on each of 5 MPI processes:

 the large array on the destination process has length 100;

 large_array[0] .. large_array[19] come from small_array on

Rank 0;

 large_array[20]..large_array[39] come from small_array on

Rank 1;

 etc
NCSI Intro Par: MPI Collectives

June 26 - July 1 2011 34

MPI_Gatherv

MPI_Gatherv is just like MPI_Gather, except that the

subarray lengths don’t have to be the same (and therefore the

length of the large array doesn’t have to be divisible by the

number of MPI processes).
MPI_Gatherv(small_subarray, small_subarray_length,

MPI_DATATYPE,

large_array, small_subarray_lengths,

displacements,

MPI_DATATYPE, destination, MPI_COMMUNICATOR);

The displacements array says where each small subarray

begins within the large array.

NCSI Intro Par: MPI Collectives

June 26 - July 1 2011 35

MPI_Allgather & MPI_Allgatherv

MPI_Allgather and MPI_Allgatherv are the same

as MPI_Gather and MPI_Gatherv, except that the

large array gets filled on every MPI process, so no

destination process argument is needed.

NCSI Intro Par: MPI Collectives

June 26 - July 1 2011 36

Thanks for your
attention!

Questions?

Thanks for your
attention!

Questions?

