
Introduction to

Parallel Programming

& Cluster Computing

Stupid Compiler Tricks
Josh Alexander, University of Oklahoma

Ivan Babic, Earlham College
Andrew Fitz Gibbon, Shodor Education Foundation Inc.

Henry Neeman, University of Oklahoma
Charlie Peck, Earlham College

Skylar Thompson, University of Washington
Aaron Weeden, Earlham College
Sunday June 26 – Friday July 1 2011

Co-sponsored 

by SC11

Co-sponsored 

by ID,NM,NV 

EPSCoR



NCSI Intro Parallel: Compilers

June 26 - July 1 2011 2

This is an experiment!

It’s the nature of these kinds of videoconferences that 

FAILURES ARE GUARANTEED TO HAPPEN!       

NO PROMISES!

So, please bear with us. Hopefully everything will work out 

well enough.

If you lose your connection, you can retry the same kind of 

connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone 

bridge to fall back on.



NCSI Intro Parallel: Compilers

June 26 - July 1 2011 3

H.323 (Polycom etc)

If you want to use H.323 videoconferencing – for example, 

Polycom – then:

 If you ARE already registered with the OneNet gatekeeper, 

dial 2500409.

 If you AREN’T registered with the OneNet gatekeeper 

(which is probably the case), then:

 Dial 164.58.250.47

 When asked for the conference ID, enter:

#0409#

Many thanks to Roger Holder and OneNet for providing this.



H.323 from Internet Explorer

From a Windows PC running Internet Explorer:

1. You MUST have the ability to install software on the PC (or have someone install it for 

you). 

2. Download and install the latest Java Runtime Environment (JRE) from here

(click on the Java Download icon, because that install package includes both the JRE and 

other components). 

3. Download and install this video decoder. 

4. Start Internet Explorer. 

5. Copy-and-paste this URL into your IE window: 

http://164.58.250.47/

6. When that webpage loads, in the upper left, click on "Streaming". 

7. In the textbox labeled Sign-in Name, type your name. 

8. In the textbox labeled Conference ID, type this: 

0409 

9. Click on "Stream this conference". 

10. When that webpage loads, you may see, at the very top, a bar offering you options. 

If so, click on it and choose "Install this add-on." 

NCSI Intro Parallel: Compilers

June 26 - July 1 2011 4

http://www.oracle.com/technetwork/java/javase/downloads/
http://164.58.250.47/codian_video_decoder.msi


NCSI Intro Parallel: Compilers

June 26 - July 1 2011 5

EVO

There’s a quick description of how to use EVO on the 

workshop logistics webpage.



NCSI Intro Parallel: Compilers

June 26 - July 1 2011 6

Phone Bridge

If all else fails, you can call into our toll free phone bridge:

1-800-832-0736

* 623 2874 #

Please mute yourself and use the phone to listen.

Don’t worry, we’ll call out slide numbers as we go.

Please use the phone bridge ONLY if you cannot connect any 

other way: the phone bridge is charged per connection per 

minute, so our preference is to minimize the number of 

connections.

Many thanks to OU Information Technology for providing the 

toll free phone bridge.



NCSI Intro Parallel: Compilers

June 26 - July 1 2011 7

Please Mute Yourself

No matter how you connect, please mute yourself, so that we 

cannot hear you.

At ISU and UW, we will turn off the sound on all conferencing 

technologies.

That way, we won’t have problems with echo cancellation.

Of course, that means we cannot hear questions.

So for questions, you’ll need to send some kind of text.



NCSI Intro Parallel: Compilers

June 26 - July 1 2011 8

Thanks for helping!

 OSCER operations staff (Brandon George, Dave Akin, Brett 
Zimmerman, Josh Alexander, Patrick Calhoun)

 Kevin Blake, OU IT (videographer)

 James Deaton and Roger Holder, OneNet

 Keith Weber, Abel Clark and Qifeng Wu, Idaho State U Pocatello

 Nancy Glenn, Idaho State U Boise

 Jeff Gardner and Marya Dominik, U Washington

 Ken Gamradt, South Dakota State U

 Jeff Rufinus, Widener U

 Scott Lathrop, SC11 General Chair

 Donna Cappo, ACM

 Bob Panoff, Jack Parkin and Joyce South, Shodor Education Foundation 
Inc

 ID, NM, NV EPSCoR (co-sponsors)

 SC11 conference  (co-sponsors)



NCSI Intro Parallel: Compilers

June 26 - July 1 2011 9

Questions via Text: Piazza

Ask questions via:

http://www.piazza.com/

All questions will be read out loud and then answered out loud.

NOTE: Because of image-and-likeness rules, people attending 

remotely offsite via videoconferencing CANNOT ask 

questions via voice.

http://www.piazza.com/


NCSI Intro Parallel: Compilers

June 26 - July 1 2011 10

This is an experiment!

It’s the nature of these kinds of videoconferences that 

FAILURES ARE GUARANTEED TO HAPPEN!       

NO PROMISES!

So, please bear with us. Hopefully everything will work out 

well enough.

If you lose your connection, you can retry the same kind of 

connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone 

bridge to fall back on.



Outline

 Dependency Analysis

 What is Dependency Analysis?

 Control Dependencies

 Data Dependencies

 Stupid Compiler Tricks

 Tricks the Compiler Plays

 Tricks You Play With the Compiler

 Profiling

NCSI Intro Par: Compilers

June 26 - July 1 2011 11



Dependency Analysis



What Is Dependency Analysis?

Dependency analysis describes of how different parts of a 

program affect one another, and how various parts require 

other parts in order to operate correctly.

A control dependency governs how different sequences of 

instructions affect each other.

A data dependency governs how different pieces of data affect 

each other.
Much of this discussion is from references [1] and [6].

NCSI Intro Par: Compilers

June 26 - July 1 2011 13



Control Dependencies

Every program has a well-defined flow of control that moves 

from instruction to instruction to instruction.

This flow can be affected by several kinds of operations:

 Loops

 Branches (if, select case/switch)

 Function/subroutine calls

 I/O (typically implemented as calls)

Dependencies affect parallelization!

NCSI Intro Par: Compilers

June 26 - July 1 2011 14



Branch Dependency (F90)

y = 7

IF (x /= 0) THEN

y = 1.0 / x

END IF

Note that (x /= 0) means “x not equal to zero.”

The value of y depends on what the condition (x /= 0)
evaluates to:

 If the condition (x /= 0) evaluates to .TRUE., 
then y is set to 1.0 / x. (1 divided by x).

 Otherwise, y remains 7.

NCSI Intro Par: Compilers

June 26 - July 1 2011 15



Branch Dependency (C)

y = 7;

if (x != 0) {

y = 1.0 / x;

}

Note that (x != 0) means “x not equal to zero.”

The value of y depends on what the condition (x != 0)
evaluates to:

 If the condition (x != 0) evaluates to true,     
then y is set to 1.0 / x (1 divided by x).

 Otherwise, y remains 7.

NCSI Intro Par: Compilers

June 26 - July 1 2011 16



Loop Carried Dependency (F90)

DO i = 2, length

a(i) = a(i-1) + b(i)

END DO

Here, each iteration of the loop depends on the previous:
iteration i=3 depends on iteration i=2,                         
iteration i=4 depends on iteration i=3,                         
iteration i=5 depends on iteration i=4, etc.

This is sometimes called a loop carried dependency.

There is no way to execute iteration i until after iteration i-1 has 
completed, so this loop can’t be parallelized. 

NCSI Intro Par: Compilers

June 26 - July 1 2011 17



Loop Carried Dependency (C)

for (i = 1; i < length; i++) {

a[i] = a[i-1] + b[i];

}

Here, each iteration of the loop depends on the previous:
iteration i=3 depends on iteration i=2,                         
iteration i=4 depends on iteration i=3,                         
iteration i=5 depends on iteration i=4, etc.

This is sometimes called a loop carried dependency.

There is no way to execute iteration i until after iteration i-1 has 
completed, so this loop can’t be parallelized. 

NCSI Intro Par: Compilers

June 26 - July 1 2011 18



Why Do We Care?

Loops are the favorite control structures of High Performance 

Computing, because compilers know how to optimize their 

performance using instruction-level parallelism:  

superscalar, pipelining and vectorization can give excellent 

speedup.

Loop carried dependencies affect whether a loop can be 

parallelized, and how much.

NCSI Intro Par: Compilers

June 26 - July 1 2011 19



Loop or Branch Dependency? (F)

Is this a loop carried dependency or a

branch dependency?

DO i = 1, length

IF (x(i) /= 0) THEN

y(i) = 1.0 / x(i)

END IF

END DO

NCSI Intro Par: Compilers

June 26 - July 1 2011 20



Loop or Branch Dependency? (C)

Is this a loop carried dependency or a

branch dependency?

for (i = 0; i < length; i++) {

if (x[i] != 0) {

y[i] = 1.0 / x[i];

}

}

NCSI Intro Par: Compilers

June 26 - July 1 2011 21



Call Dependency Example (F90)

x = 5

y = myfunction(7)

z = 22

The flow of the program is interrupted by the call to 

myfunction, which takes the execution to somewhere 

else in the program.

It’s similar to a branch dependency.

NCSI Intro Par: Compilers

June 26 - July 1 2011 22



Call Dependency Example (C)

x = 5;

y = myfunction(7);

z = 22;

The flow of the program is interrupted by the call to 

myfunction, which takes the execution to somewhere 

else in the program.

It’s similar to a branch dependency.

NCSI Intro Par: Compilers

June 26 - July 1 2011 23



I/O Dependency (F90)

x = a + b

PRINT *, x

y = c + d

Typically, I/O is implemented by hidden subroutine calls, so 
we can think of this as equivalent to a call dependency.

NCSI Intro Par: Compilers

June 26 - July 1 2011 24



I/O Dependency (C)

x = a + b;

printf("%f", x);

y = c + d;

Typically, I/O is implemented by hidden subroutine calls, so 
we can think of this as equivalent to a call dependency.

NCSI Intro Par: Compilers

June 26 - July 1 2011 25



Reductions Aren’t Dependencies

array_sum = 0
DO i = 1, length

array_sum = array_sum + array(i)

END DO

A reduction is an operation that converts an array to a scalar.

Other kinds of reductions:  product, .AND., .OR., minimum, 
maximum, index of minimum, index of maximum, number of 
occurrences of a particular value, etc.

Reductions are so common that hardware and compilers are 
optimized to handle them.

Also, they aren’t really dependencies, because the order in 
which the individual operations are performed doesn’t matter.

NCSI Intro Par: Compilers

June 26 - July 1 2011 26



Reductions Aren’t Dependencies

array_sum = 0;
for (i = 0; i < length; i++) {

array_sum = array_sum + array[i];

}

A reduction is an operation that converts an array to a scalar.

Other kinds of reductions:  product, &&, ||, minimum, 
maximum, index of minimum, index of maximum, number of 
occurrences of a particular value, etc.

Reductions are so common that hardware and compilers are 
optimized to handle them.

Also, they aren’t really dependencies, because the order in 
which the individual operations are performed doesn’t matter.

NCSI Intro Par: Compilers

June 26 - July 1 2011 27



Data Dependencies (F90)

“A data dependence occurs when an instruction is dependent 

on data from a previous instruction and therefore cannot be 

moved before the earlier instruction [or executed in 

parallel].” [7]

a = x + y + cos(z)

b = a * c

The value of  b depends on the value of a, so these two 

statements must be executed in order.

NCSI Intro Par: Compilers

June 26 - July 1 2011 28



Data Dependencies (C)

“A data dependence occurs when an instruction is dependent 

on data from a previous instruction and therefore cannot be 

moved before the earlier instruction [or executed in 

parallel].” [7]

a = x + y + cos(z);

b = a * c;

The value of  b depends on the value of a, so these two 

statements must be executed in order.

NCSI Intro Par: Compilers

June 26 - July 1 2011 29



Output Dependencies (F90)

x = a / b

y = x + 2

x = d – e

NCSI Intro Par: Compilers

June 26 - July 1 2011 30

Notice that x is assigned two different values, but only one 

of them is retained after these statements are done executing.  

In this context, the final value of x is the “output.”

Again, we are forced to execute in order.



Output Dependencies (C)

x = a / b;

y = x + 2;

x = d – e;

NCSI Intro Par: Compilers

June 26 - July 1 2011 31

Notice that x is assigned two different values, but only one 

of them is retained after these statements are done executing.  

In this context, the final value of x is the “output.”

Again, we are forced to execute in order.



Why Does Order Matter?

 Dependencies can affect whether we can execute a 

particular part of the program in parallel.

 If we cannot execute that part of the program in parallel, 

then it’ll be SLOW. 

NCSI Intro Par: Compilers

June 26 - July 1 2011 32



Loop Dependency Example

if ((dst == src1) && (dst == src2)) {
for (index = 1; index < length; index++) {

dst[index] = dst[index-1] + dst[index];
}

}
else if (dst == src1) {

for (index = 1; index < length; index++) {

dst[index] = dst[index-1] + src2[index];
}

}
else if (dst == src2) {

for (index = 1; index < length; index++) {

dst[index] = src1[index-1] + dst[index];
}

}
else if (src1 == src2) {

for (index = 1; index < length; index++) {

dst[index = src1[index-1] + src1[index];
}

}
else {

for (index = 1; index < length; index++) {
dst[index] = src1[index-1] + src2[index];

}
}

NCSI Intro Par: Compilers

June 26 - July 1 2011 33



Loop Dep Example (cont’d)
if ((dst == src1) && (dst == src2)) {
for (index = 1; index < length; index++) {

dst[index] = dst[index-1] + dst[index];
}

}
else if (dst == src1) {
for (index = 1; index < length; index++) {

dst[index] = dst[index-1] + src2[index];
}

}
else if (dst == src2) {

for (index = 1; index < length; index++) {

dst[index] = src1[index-1] + dst[index];
}

}
else if (src1 == src2) {

for (index = 1; index < length; index++) {

dst[index] = src1[index-1] + src1[index];
}

}
else {
for (index = 1; index < length; index++) {

dst[index] = src1[index-1] + src2[index];
}

}

The various versions of the loop either:
 do      have loop carried dependencies, or
 don’t have loop carried dependencies.

NCSI Intro Par: Compilers

June 26 - July 1 2011 34



Loop Dependency Performance

NCSI Intro Par: Compilers

June 26 - July 1 2011 35

Loop Carried Dependency Performance

0

20

40

60

80

100

120

140

160

180

200

dst
=sr

c1
+sr

c2

dst
=sr

c1
+sr

c1

dst
=dst

+sr
c2

dst
=sr

c1
+dst

dst
=dst

+dst

M
F

L
O

P
s

Pentium3 500 MHz

POWER4

Pentium4 2GHz

EM64T 3.2 GHz

Better



Stupid Compiler 
Tricks



Stupid Compiler Tricks

 Tricks Compilers Play

 Scalar Optimizations

 Loop Optimizations

 Inlining

 Tricks You Can Play with Compilers

 Profiling

 Hardware counters

NCSI Intro Par: Compilers

June 26 - July 1 2011 37



Compiler Design

The people who design compilers have a lot of experience 

working with the languages commonly used in High 

Performance Computing:

 Fortran: 50ish years

 C:          40ish years

 C++:     25ish years, plus C experience

So, they’ve come up with clever ways to make programs 

run faster.

NCSI Intro Par: Compilers

June 26 - July 1 2011 38



Tricks Compilers Play



Scalar Optimizations

 Copy Propagation

 Constant Folding

 Dead Code Removal

 Strength Reduction

 Common Subexpression Elimination

 Variable Renaming

 Loop Optimizations

Not every compiler does all of these, so it sometimes can be 
worth doing these by hand.

Much of this discussion is from [2] and [6].

NCSI Intro Par: Compilers

June 26 - July 1 2011 40



Copy Propagation (F90)

x = y

z = 1 + x

NCSI Intro Par: Compilers

June 26 - July 1 2011 41

x = y

z = 1 + y

Has data dependency

No data dependency

Compile

Before

After



Copy Propagation (C)

x = y;

z = 1 + x;

NCSI Intro Par: Compilers

June 26 - July 1 2011 42

x = y;

z = 1 + y;

Has data dependency

No data dependency

Compile

Before

After



Constant Folding (F90)

add = 100

aug = 200

sum = add + aug

NCSI Intro Par: Compilers

June 26 - July 1 2011 43

Notice that sum is actually the sum of two constants, so the 

compiler can precalculate it, eliminating the addition that 

otherwise would be performed at runtime.

sum = 300

Before After



Constant Folding (C)

add = 100;

aug = 200;

sum = add + aug;

NCSI Intro Par: Compilers

June 26 - July 1 2011 44

Notice that sum is actually the sum of two constants, so the 

compiler can precalculate it, eliminating the addition that 

otherwise would be performed at runtime.

sum = 300;

Before After



Dead Code Removal (F90)

var = 5

PRINT *, var

STOP

PRINT *, var * 2

NCSI Intro Par: Compilers

June 26 - July 1 2011 45

Since the last statement never executes, the compiler can 

eliminate it.

var = 5

PRINT *, var

STOP

Before After



Dead Code Removal (C)

var = 5;

printf("%d", var);

exit(-1);

printf("%d", var * 2);

NCSI Intro Par: Compilers

June 26 - July 1 2011 46

Since the last statement never executes, the compiler can 

eliminate it.

var = 5;

printf("%d", var);

exit(-1);

Before After



Strength Reduction (F90)

x = y ** 2.0

a = c / 2.0

NCSI Intro Par: Compilers

June 26 - July 1 2011 47

x = y * y

a = c * 0.5

Before After

Raising one value to the power of another, or dividing, is more 

expensive than multiplying.  If the compiler can tell that the 

power is a small integer, or that the denominator is a constant, 

it’ll use multiplication instead.

Note: In Fortran, “y ** 2.0” means “y to the power 2.”



Strength Reduction (C)

x = pow(y, 2.0);

a = c / 2.0;

NCSI Intro Par: Compilers

June 26 - July 1 2011 48

x = y * y;

a = c * 0.5;

Before After

Raising one value to the power of another, or dividing, is more 

expensive than multiplying.  If the compiler can tell that the 

power is a small integer, or that the denominator is a constant, 

it’ll use multiplication instead.

Note: In C, “pow(y, 2.0)” means “y to the power 2.”



Common Subexpression Elimination (F90)

d = c * (a / b)

e = (a / b) * 2.0

NCSI Intro Par: Compilers

June 26 - July 1 2011 49

adivb = a / b

d = c * adivb

e = adivb * 2.0

Before After

The subexpression (a / b) occurs in both assignment 

statements, so there’s no point in calculating it twice.

This is typically only worth doing if the common 

subexpression is expensive to calculate.



Common Subexpression Elimination (C)

d = c * (a / b);

e = (a / b) * 2.0;

NCSI Intro Par: Compilers

June 26 - July 1 2011 50

adivb = a / b;

d = c * adivb;

e = adivb * 2.0;

Before After

The subexpression (a / b) occurs in both assignment 

statements, so there’s no point in calculating it twice.

This is typically only worth doing if the common 

subexpression is expensive to calculate.



Variable Renaming (F90)

x = y * z

q = r + x * 2

x = a + b

NCSI Intro Par: Compilers

June 26 - July 1 2011 51

x0 = y * z

q = r + x0 * 2

x = a + b

Before After

The original code has an output dependency, while the new 

code doesn’t – but the final value of x is still correct.



Variable Renaming (C)

x = y * z;

q = r + x * 2;

x = a + b;

NCSI Intro Par: Compilers

June 26 - July 1 2011 52

x0 = y * z;

q = r + x0 * 2;

x = a + b;

Before After

The original code has an output dependency, while the new 

code doesn’t – but the final value of x is still correct.



Loop Optimizations

 Hoisting Loop Invariant Code

 Unswitching

 Iteration Peeling

 Index Set Splitting

 Loop Interchange

 Unrolling

 Loop Fusion

 Loop Fission

Not every compiler does all of these, so it sometimes can be 

worth doing some of these by hand.
Much of this discussion is from [3] and [6].

NCSI Intro Par: Compilers

June 26 - July 1 2011 53



Hoisting Loop Invariant Code (F90)

DO i = 1, n

a(i) = b(i) + c * d

e = g(n)

END DO

NCSI Intro Par: Compilers

June 26 - July 1 2011 54

Before

temp = c * d

DO i = 1, n

a(i) = b(i) + temp

END DO

e = g(n)

After

Code that 

doesn’t change 

inside the loop is 

known as      

loop invariant. 

It doesn’t need 

to be calculated 

over and over.



Hoisting Loop Invariant Code (C)

for (i = 0; i < n; i++) {

a[i] = b[i] + c * d;

e = g(n);

}

NCSI Intro Par: Compilers

June 26 - July 1 2011 55

Before

temp = c * d;

for (i = 0; i < n; i++) {

a[i] = b[i] + temp;

}

e = g(n);

After

Code that 

doesn’t change 

inside the loop is 

known as      

loop invariant. 

It doesn’t need 

to be calculated 

over and over.



Unswitching (F90)

DO i = 1, n
DO j = 2, n
IF (t(i) > 0) THEN
a(i,j) = a(i,j) * t(i) + b(j)

ELSE
a(i,j) = 0.0

END IF
END DO

END DO

DO i = 1, n
IF (t(i) > 0) THEN
DO j = 2, n
a(i,j) = a(i,j) * t(i) + b(j)

END DO
ELSE
DO j = 2, n
a(i,j) = 0.0

END DO
END IF

END DO

NCSI Intro Par: Compilers

June 26 - July 1 2011 56

Before

After

The condition is 
j-independent.

So, it can migrate 
outside the j loop.



Unswitching (C)
for (i = 0; i < n; i++) {

for (j = 1; j < n; j++) {
if (t[i] > 0)
a[i][j] = a[i][j] * t[i] + b[j];

}

else {
a[i][j] = 0.0;

}
}

}

for (i = 0; i < n; i++) {
if (t[i] > 0) {
for (j = 1; j < n; j++) {
a[i][j] = a[i][j] * t[i] + b[j];

}
}

else {
for (j = 1; j < n; j++) {
a[i][j] = 0.0;

}
}

}

NCSI Intro Par: Compilers

June 26 - July 1 2011 57

Before

After

The condition is 
j-independent.

So, it can migrate 
outside the j loop.



Iteration Peeling (F90)
DO i = 1, n

IF ((i == 1) .OR. (i == n)) THEN

x(i) = y(i)

ELSE

x(i) = y(i + 1) + y(i – 1)

END IF

END DO

NCSI Intro Par: Compilers

June 26 - July 1 2011 58

x(1) = y(1)

DO i = 2, n - 1

x(i) = y(i + 1) + y(i – 1)

END DO

x(n) = y(n)

Before

After

We can eliminate the IF by peeling the weird iterations.



Iteration Peeling (C)
for (i = 0; i < n; i++) {

if ((i == 0) || (i == (n – 1))) {

x[i] = y[i];

}

else {

x[i] = y[i + 1] + y[i – 1];

}

}

NCSI Intro Par: Compilers

June 26 - July 1 2011 59

x[0] = y[0];

for (i = 1; i < n – 1; i++) {

x[i] = y[i + 1] + y[i – 1];

}

x[n-1] = y[n-1];

Before

After

We can eliminate the if by peeling the weird iterations.



Index Set Splitting (F90)

DO i = 1, n
a(i) = b(i) + c(i)
IF (i > 10) THEN
d(i) = a(i) + b(i – 10)

END IF
END DO

DO i = 1, 10
a(i) = b(i) + c(i)

END DO
DO i = 11, n
a(i) = b(i) + c(i)
d(i) = a(i) + b(i – 10)

END DO

NCSI Intro Par: Compilers

June 26 - July 1 2011 60

Before

After

Note that this is a generalization of peeling.



Index Set Splitting (C)

for (i = 0; i < n; i++) {
a[i] = b[i] + c[i];
if (i >= 10) {
d[i] = a[i] + b[i – 10];

}
}

for (i = 0; i < 10; i++) {
a[i] = b[i] + c[i];

}
for (i = 10; i < n; i++) {
a[i] = b[i] + c[i];
d[i] = a[i] + b[i – 10];

}

NCSI Intro Par: Compilers

June 26 - July 1 2011 61

Before

After

Note that this is a generalization of peeling.



Loop Interchange (F90)

DO i = 1, ni

DO j = 1, nj

a(i,j) = b(i,j)

END DO

END DO

NCSI Intro Par: Compilers

June 26 - July 1 2011 62

DO j = 1, nj

DO i = 1, ni

a(i,j) = b(i,j)

END DO

END DO

Array elements a(i,j) and a(i+1,j) are near each 

other in memory, while a(i,j+1) may be far, so it makes 

sense to make the i loop be the inner loop. (This is 

reversed in C, C++ and Java.)

Before After



Loop Interchange (C)

for (j = 0; j < nj; j++) {

for (i = 0; i < ni; i++) {

a[i][j] = b[i][j];

}

}

NCSI Intro Par: Compilers

June 26 - July 1 2011 63

for (i = 0; i < ni; i++) 

{

for (j = 0; j < nj; 

j++) {

a[i][j] = b[i][j];

}

}

Array elements a[i][j] and a[i][j+1] are near each 

other in memory, while a[i+1][j] may be far, so it makes 

sense to make the j loop be the inner loop. (This is 

reversed in Fortran.)

Before After



Unrolling (F90)

DO i = 1, n

a(i) = a(i)+b(i)

END DO

NCSI Intro Par: Compilers

June 26 - July 1 2011 64

DO i = 1, n, 4

a(i)   = a(i)   + b(i)

a(i+1) = a(i+1) + b(i+1)

a(i+2) = a(i+2) + b(i+2)

a(i+3) = a(i+3) + b(i+3)

END DO

Before

After

You generally shouldn’t unroll by hand.



Unrolling (C)

for (i = 0; i < n; i++) {

a[i] = a[i] + b[i];

}

NCSI Intro Par: Compilers

June 26 - July 1 2011 65

for (i = 0; i < n; i += 4) {

a[i]   = a[i]   + b[i];

a[i+1] = a[i+1] + b[i+1];

a[i+2] = a[i+2] + b[i+2];

a[i+3] = a[i+3] + b[i+3];

}

Before

After

You generally shouldn’t unroll by hand.



Why Do Compilers Unroll?
We saw last time that a loop with a lot of operations gets 

better performance (up to some point), especially if there 
are lots of arithmetic operations but few main memory 
loads and stores.

Unrolling creates multiple operations that typically load from 
the same, or adjacent, cache lines.

So, an unrolled loop has more operations without increasing 
the memory accesses by much.

Also, unrolling decreases the number of comparisons on the 
loop counter variable, and the number of branches to the 
top of the loop.

NCSI Intro Par: Compilers

June 26 - July 1 2011 66



Loop Fusion (F90)

DO i = 1, n

a(i) = b(i) + 1
END DO

DO i = 1, n
c(i) = a(i) / 2

END DO

DO i = 1, n
d(i) = 1 / c(i)

END DO

DO i = 1, n
a(i) = b(i) + 1
c(i) = a(i) / 2
d(i) = 1 / c(i)

END DO

As with unrolling, this has fewer branches. It also has fewer 
total memory references.

NCSI Intro Par: Compilers

June 26 - July 1 2011 67

Before

After



Loop Fusion (C)

for (i = 0; i < n; i++) {

a[i] = b[i] + 1;
}

for (i = 0; i < n; i++) {
c[i] = a[i] / 2;

}

for (i = 0; i < n; i++) {
d[i] = 1 / c[i];

}

for (i = 0; i < n; i++) {
a[i] = b[i] + 1;
c[i] = a[i] / 2;
d[i] = 1 / c[i];

}

As with unrolling, this has fewer branches. It also has fewer 
total memory references.

NCSI Intro Par: Compilers

June 26 - July 1 2011 68

Before

After



Loop Fission (F90)

DO i = 1, n
a(i) = b(i) + 1
c(i) = a(i) / 2
d(i) = 1 / c(i)

END DO

DO i = 1, n
a(i) = b(i) + 1

END DO

DO i = 1, n
c(i) = a(i) / 2

END DO

DO i = 1, n
d(i) = 1 / c(i)

END DO

Fission reduces the cache footprint and the number of 
operations per iteration.

NCSI Intro Par: Compilers

June 26 - July 1 2011 69

Before

After



Loop Fission (C)

for (i = 0; i < n; i++) {
a[i] = b[i] + 1;
c[i] = a[i] / 2;
d[i] = 1 / c[i];

}

for (i = 0; i < n; i++) {

a[i] = b[i] + 1;
}

for (i = 0; i < n; i++) {
c[i] = a[i] / 2;

}

for (i = 0; i < n; i++) {
d[i] = 1 / c[i];

}

Fission reduces the cache footprint and the number of 
operations per iteration.

NCSI Intro Par: Compilers

June 26 - July 1 2011 70

Before

After



To Fuse or to Fizz?

The question of when to perform fusion versus when to 

perform fission, like many many optimization questions, is 

highly dependent on the application, the platform and a lot 

of other issues that get very, very complicated.

Compilers don’t always make the right choices.

That’s why it’s important to examine the actual behavior of the 

executable.

NCSI Intro Par: Compilers

June 26 - July 1 2011 71



Inlining (F90)

DO i = 1, n

a(i) = func(i)

END DO
…

REAL FUNCTION func (x)
…

func = x * 3

END FUNCTION func

NCSI Intro Par: Compilers

June 26 - July 1 2011 72

DO i = 1, n

a(i) = i * 3

END DO

Before After

When a function or subroutine is inlined, its contents are 

transferred directly into the calling routine, eliminating the 

overhead of making the call.



Inlining (C)

for (i = 0;

i < n; i++) {
a[i] = func(i+1);

}
…
float func (x) {

…
return x * 3;

}

NCSI Intro Par: Compilers

June 26 - July 1 2011 73

for (i = 0;

i < n; i++) {
a[i] = (i+1) * 3;

}

Before After

When a function or subroutine is inlined, its contents are 

transferred directly into the calling routine, eliminating the 

overhead of making the call.



Tricks You Can Play 

with Compilers



The Joy of Compiler Options

Every compiler has a different set of options that you can set.

Among these are options that control single processor 

optimization:  superscalar, pipelining, vectorization, scalar 

optimizations, loop optimizations, inlining and so on.

NCSI Intro Par: Compilers

June 26 - July 1 2011 75



Example Compile Lines

 IBM XL
xlf90 –O –qmaxmem=-1 –qarch=auto
–qtune=auto –qcache=auto –qhot

 Intel
ifort –O –march=core2 –mtune=core2

 Portland Group f90
pgf90 –O3 -fastsse –tp core2-64

 NAG f95
f95 –O4 –Ounsafe –ieee=nonstd

NCSI Intro Par: Compilers

June 26 - July 1 2011 76



What Does the Compiler Do? #1

Example: NAG f95 compiler [4]

f95 –O<level> source.f90

Possible levels are –O0, -O1, -O2, -O3, -O4:
-O0    No optimisation. …

-O1    Minimal quick optimisation.

-O2    Normal optimisation.

-O3    Further optimisation.

-O4    Maximal optimisation.

The man page is pretty cryptic.

NCSI Intro Par: Compilers

June 26 - July 1 2011 77



What Does the Compiler Do? #2

Example: Intel ifort compiler [5]

ifort –O<level> source.f90

Possible levels are  –O0, -O1, -O2, -O3:
-O0    Disables all -O<n> optimizations. …

-O1    ... [E]nables optimizations for speed. …

-O2    …

Inlining of intrinsics.

Intra-file interprocedural optimizations, which include: 
inlining, constant propagation, forward substitution, routine 
attribute propagation, variable address-taken analysis, dead 
static function elimination, and removal of unreferenced 
variables.

-O3    Enables -O2 optimizations plus more aggressive 
optimizations, such as prefetching, scalar replacement, and  
loop  transformations. Enables optimizations for maximum 
speed, but does not guarantee higher performance unless loop 
and memory access transformations take place. …

NCSI Intro Par: Compilers

June 26 - July 1 2011 78



Arithmetic Operation Speeds
Ordered Arithmetic Operations

0

100

200

300

400

500

600

ra
d
d

ia
d
d

rs
u
m

is
u
m

rs
u
b

is
u
b

rm
u
l

im
u
l

rm
am

im
am

rm
ad

im
ad

rd
iv

id
iv

rp
o
w

im
o
d

rs
q
rt

rc
o
s

re
x
p

rl
o
g

i2
r

r2
i

M
F

L
O

P
/s

Intel/Xeon PGI/Xeon NAG/Xeon xl/POWER4

NCSI Intro Par: Compilers

June 26 - July 1 2011 79

Better



Optimization Performance

NCSI Intro Par: Compilers

June 26 - July 1 2011 80

 Performance

0

10

20

30

40

50

60

70

80

ra
d

d

ia
d

d

rs
u

m

is
u

m

rs
u

b

is
u

b

rm
u
l

im
u
l

rd
iv

id
iv

Operation

M
F

L
O

P
/s

Pentium3 NAG O0 Pentium3 NAG O4 Pentium3 Vast no opt Pentium3 Vast opt

Better



More Optimized Performance

NCSI Intro Par: Compilers

June 26 - July 1 2011 81

Performance

0

50

100

150

200

250
rm

am

im
am

rm
ad

im
ad

rd
o

t

re
u

c

rl
o

t8

rl
o

t1
0

rl
o

t1
2

rl
o

t1
6

rl
o

t2
0

rl
o

t2
4

Operation

M
F

L
O

P
/s

Pentium3 NAG O0 Pentium3 NAG 04

Pentium3 VAST no opt Pentium3 VAST opt

Better



Profiling



Profiling

Profiling means collecting data about how a program executes.

The two major kinds of profiling are:

 Subroutine profiling

 Hardware timing

NCSI Intro Par: Compilers

June 26 - July 1 2011 83



Subroutine Profiling

Subroutine profiling means finding out how much time is 

spent in each routine.

The 90-10 Rule: Typically, a program spends 90% of its 

runtime in 10% of the code.

Subroutine profiling tells you what parts of the program to 

spend time optimizing and what parts you can ignore.

Specifically, at regular intervals (e.g., every millisecond), the 

program takes note of what instruction it’s currently on.

NCSI Intro Par: Compilers

June 26 - July 1 2011 84



Profiling Example

On GNU compilers systems:

gcc –O –g -pg …

The –g -pg options tell the compiler to set the executable up 

to collect profiling information.

Running the executable generates a file named gmon.out, 

which contains the profiling information.

NCSI Intro Par: Compilers

June 26 - July 1 2011 85



Profiling Example (cont’d)

When the run has completed, a file named gmon.out has 

been generated.

Then:

gprof executable

produces a list of all of the routines and how much time was 

spent in each.

NCSI Intro Par: Compilers

June 26 - July 1 2011 86



Profiling Result

%   cumulative   self              self     total

time   seconds   seconds    calls  ms/call  ms/call  name

27.6      52.72    52.72   480000     0.11     0.11  longwave_ [5]

24.3      99.06    46.35      897    51.67    51.67  mpdata3_ [8]

7.9     114.19    15.13      300    50.43    50.43  turb_ [9]

7.2     127.94    13.75      299    45.98    45.98  turb_scalar_ [10]

4.7     136.91     8.96      300    29.88    29.88  advect2_z_ [12]

4.1     144.79     7.88      300    26.27    31.52  cloud_ [11]

3.9     152.22     7.43      300    24.77   212.36  radiation_ [3]

2.3     156.65     4.43      897     4.94    56.61  smlr_ [7]

2.2     160.77     4.12      300    13.73    24.39  tke_full_ [13]

1.7     163.97     3.20      300    10.66    10.66  shear_prod_ [15]

1.5     166.79     2.82      300     9.40     9.40  rhs_ [16]

1.4     169.53     2.74      300     9.13     9.13  advect2_xy_ [17]

1.3     172.00     2.47      300     8.23    15.33  poisson_ [14]

1.2     174.27     2.27   480000     0.00     0.12  long_wave_ [4]

1.0     176.13     1.86      299     6.22   177.45  advect_scalar_ [6]

0.9     177.94     1.81      300     6.04     6.04  buoy_ [19]

...

NCSI Intro Par: Compilers

June 26 - July 1 2011 87



Thanks for your 
attention!

Questions?



References

NCSI Intro Par: Compilers

June 26 - July 1 2011 89

[1]  Kevin Dowd and Charles Severance, High Performance Computing,

2nd ed. O’Reilly, 1998, p. 173-191.

[2]  Ibid, p. 91-99.

[3]  Ibid, p. 146-157.
[4]  NAG f95 man page, version 5.1.

[5] Intel ifort man page, version 10.1.

[6]  Michael Wolfe, High Performance Compilers for Parallel Computing, 

Addison-Wesley Publishing Co., 1996.

[7] Kevin R. Wadleigh and Isom L. Crawford, Software Optimization for High 

Performance Computing, Prentice Hall PTR, 2000, pp. 14-15.


