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This is an experiment!

It’s the nature of these kinds of videoconferences that 

FAILURES ARE GUARANTEED TO HAPPEN!       

NO PROMISES!

So, please bear with us. Hopefully everything will work out 

well enough.

If you lose your connection, you can retry the same kind of 

connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone 

bridge to fall back on.
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H.323 (Polycom etc)

If you want to use H.323 videoconferencing – for example, 

Polycom – then:

 If you ARE already registered with the OneNet gatekeeper, 

dial 2500409.

 If you AREN’T registered with the OneNet gatekeeper 

(which is probably the case), then:

 Dial 164.58.250.47

 When asked for the conference ID, enter:

#0409#

Many thanks to Roger Holder and OneNet for providing this.



H.323 from Internet Explorer

From a Windows PC running Internet Explorer:

1. You MUST have the ability to install software on the PC (or have someone install it for 

you). 

2. Download and install the latest Java Runtime Environment (JRE) from here

(click on the Java Download icon, because that install package includes both the JRE and 

other components). 

3. Download and install this video decoder. 

4. Start Internet Explorer. 

5. Copy-and-paste this URL into your IE window: 

http://164.58.250.47/

6. When that webpage loads, in the upper left, click on "Streaming". 

7. In the textbox labeled Sign-in Name, type your name. 

8. In the textbox labeled Conference ID, type this: 

0409 

9. Click on "Stream this conference". 

10. When that webpage loads, you may see, at the very top, a bar offering you options. 

If so, click on it and choose "Install this add-on." 
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http://www.oracle.com/technetwork/java/javase/downloads/
http://164.58.250.47/codian_video_decoder.msi


NCSI Intro Parallel: Compilers

June 26 - July 1 2011 5

EVO

There’s a quick description of how to use EVO on the 

workshop logistics webpage.
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Phone Bridge

If all else fails, you can call into our toll free phone bridge:

1-800-832-0736

* 623 2874 #

Please mute yourself and use the phone to listen.

Don’t worry, we’ll call out slide numbers as we go.

Please use the phone bridge ONLY if you cannot connect any 

other way: the phone bridge is charged per connection per 

minute, so our preference is to minimize the number of 

connections.

Many thanks to OU Information Technology for providing the 

toll free phone bridge.
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Please Mute Yourself

No matter how you connect, please mute yourself, so that we 

cannot hear you.

At ISU and UW, we will turn off the sound on all conferencing 

technologies.

That way, we won’t have problems with echo cancellation.

Of course, that means we cannot hear questions.

So for questions, you’ll need to send some kind of text.
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Thanks for helping!

 OSCER operations staff (Brandon George, Dave Akin, Brett 
Zimmerman, Josh Alexander, Patrick Calhoun)

 Kevin Blake, OU IT (videographer)

 James Deaton and Roger Holder, OneNet

 Keith Weber, Abel Clark and Qifeng Wu, Idaho State U Pocatello

 Nancy Glenn, Idaho State U Boise

 Jeff Gardner and Marya Dominik, U Washington

 Ken Gamradt, South Dakota State U

 Jeff Rufinus, Widener U

 Scott Lathrop, SC11 General Chair

 Donna Cappo, ACM

 Bob Panoff, Jack Parkin and Joyce South, Shodor Education Foundation 
Inc

 ID, NM, NV EPSCoR (co-sponsors)

 SC11 conference  (co-sponsors)
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Questions via Text: Piazza

Ask questions via:

http://www.piazza.com/

All questions will be read out loud and then answered out loud.

NOTE: Because of image-and-likeness rules, people attending 

remotely offsite via videoconferencing CANNOT ask 

questions via voice.

http://www.piazza.com/
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This is an experiment!

It’s the nature of these kinds of videoconferences that 

FAILURES ARE GUARANTEED TO HAPPEN!       

NO PROMISES!

So, please bear with us. Hopefully everything will work out 

well enough.

If you lose your connection, you can retry the same kind of 

connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone 

bridge to fall back on.



Outline

 Dependency Analysis

 What is Dependency Analysis?

 Control Dependencies

 Data Dependencies

 Stupid Compiler Tricks

 Tricks the Compiler Plays

 Tricks You Play With the Compiler

 Profiling
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Dependency Analysis



What Is Dependency Analysis?

Dependency analysis describes of how different parts of a 

program affect one another, and how various parts require 

other parts in order to operate correctly.

A control dependency governs how different sequences of 

instructions affect each other.

A data dependency governs how different pieces of data affect 

each other.
Much of this discussion is from references [1] and [6].
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Control Dependencies

Every program has a well-defined flow of control that moves 

from instruction to instruction to instruction.

This flow can be affected by several kinds of operations:

 Loops

 Branches (if, select case/switch)

 Function/subroutine calls

 I/O (typically implemented as calls)

Dependencies affect parallelization!
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Branch Dependency (F90)

y = 7

IF (x /= 0) THEN

y = 1.0 / x

END IF

Note that (x /= 0) means “x not equal to zero.”

The value of y depends on what the condition (x /= 0)
evaluates to:

 If the condition (x /= 0) evaluates to .TRUE., 
then y is set to 1.0 / x. (1 divided by x).

 Otherwise, y remains 7.
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Branch Dependency (C)

y = 7;

if (x != 0) {

y = 1.0 / x;

}

Note that (x != 0) means “x not equal to zero.”

The value of y depends on what the condition (x != 0)
evaluates to:

 If the condition (x != 0) evaluates to true,     
then y is set to 1.0 / x (1 divided by x).

 Otherwise, y remains 7.
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Loop Carried Dependency (F90)

DO i = 2, length

a(i) = a(i-1) + b(i)

END DO

Here, each iteration of the loop depends on the previous:
iteration i=3 depends on iteration i=2,                         
iteration i=4 depends on iteration i=3,                         
iteration i=5 depends on iteration i=4, etc.

This is sometimes called a loop carried dependency.

There is no way to execute iteration i until after iteration i-1 has 
completed, so this loop can’t be parallelized. 
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Loop Carried Dependency (C)

for (i = 1; i < length; i++) {

a[i] = a[i-1] + b[i];

}

Here, each iteration of the loop depends on the previous:
iteration i=3 depends on iteration i=2,                         
iteration i=4 depends on iteration i=3,                         
iteration i=5 depends on iteration i=4, etc.

This is sometimes called a loop carried dependency.

There is no way to execute iteration i until after iteration i-1 has 
completed, so this loop can’t be parallelized. 
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Why Do We Care?

Loops are the favorite control structures of High Performance 

Computing, because compilers know how to optimize their 

performance using instruction-level parallelism:  

superscalar, pipelining and vectorization can give excellent 

speedup.

Loop carried dependencies affect whether a loop can be 

parallelized, and how much.
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Loop or Branch Dependency? (F)

Is this a loop carried dependency or a

branch dependency?

DO i = 1, length

IF (x(i) /= 0) THEN

y(i) = 1.0 / x(i)

END IF

END DO
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Loop or Branch Dependency? (C)

Is this a loop carried dependency or a

branch dependency?

for (i = 0; i < length; i++) {

if (x[i] != 0) {

y[i] = 1.0 / x[i];

}

}
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Call Dependency Example (F90)

x = 5

y = myfunction(7)

z = 22

The flow of the program is interrupted by the call to 

myfunction, which takes the execution to somewhere 

else in the program.

It’s similar to a branch dependency.
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Call Dependency Example (C)

x = 5;

y = myfunction(7);

z = 22;

The flow of the program is interrupted by the call to 

myfunction, which takes the execution to somewhere 

else in the program.

It’s similar to a branch dependency.
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I/O Dependency (F90)

x = a + b

PRINT *, x

y = c + d

Typically, I/O is implemented by hidden subroutine calls, so 
we can think of this as equivalent to a call dependency.
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I/O Dependency (C)

x = a + b;

printf("%f", x);

y = c + d;

Typically, I/O is implemented by hidden subroutine calls, so 
we can think of this as equivalent to a call dependency.
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Reductions Aren’t Dependencies

array_sum = 0
DO i = 1, length

array_sum = array_sum + array(i)

END DO

A reduction is an operation that converts an array to a scalar.

Other kinds of reductions:  product, .AND., .OR., minimum, 
maximum, index of minimum, index of maximum, number of 
occurrences of a particular value, etc.

Reductions are so common that hardware and compilers are 
optimized to handle them.

Also, they aren’t really dependencies, because the order in 
which the individual operations are performed doesn’t matter.
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Reductions Aren’t Dependencies

array_sum = 0;
for (i = 0; i < length; i++) {

array_sum = array_sum + array[i];

}

A reduction is an operation that converts an array to a scalar.

Other kinds of reductions:  product, &&, ||, minimum, 
maximum, index of minimum, index of maximum, number of 
occurrences of a particular value, etc.

Reductions are so common that hardware and compilers are 
optimized to handle them.

Also, they aren’t really dependencies, because the order in 
which the individual operations are performed doesn’t matter.
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Data Dependencies (F90)

“A data dependence occurs when an instruction is dependent 

on data from a previous instruction and therefore cannot be 

moved before the earlier instruction [or executed in 

parallel].” [7]

a = x + y + cos(z)

b = a * c

The value of  b depends on the value of a, so these two 

statements must be executed in order.
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Data Dependencies (C)

“A data dependence occurs when an instruction is dependent 

on data from a previous instruction and therefore cannot be 

moved before the earlier instruction [or executed in 

parallel].” [7]

a = x + y + cos(z);

b = a * c;

The value of  b depends on the value of a, so these two 

statements must be executed in order.
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Output Dependencies (F90)

x = a / b

y = x + 2

x = d – e

NCSI Intro Par: Compilers

June 26 - July 1 2011 30

Notice that x is assigned two different values, but only one 

of them is retained after these statements are done executing.  

In this context, the final value of x is the “output.”

Again, we are forced to execute in order.



Output Dependencies (C)

x = a / b;

y = x + 2;

x = d – e;
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Notice that x is assigned two different values, but only one 

of them is retained after these statements are done executing.  

In this context, the final value of x is the “output.”

Again, we are forced to execute in order.



Why Does Order Matter?

 Dependencies can affect whether we can execute a 

particular part of the program in parallel.

 If we cannot execute that part of the program in parallel, 

then it’ll be SLOW. 
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Loop Dependency Example

if ((dst == src1) && (dst == src2)) {
for (index = 1; index < length; index++) {

dst[index] = dst[index-1] + dst[index];
}

}
else if (dst == src1) {

for (index = 1; index < length; index++) {

dst[index] = dst[index-1] + src2[index];
}

}
else if (dst == src2) {

for (index = 1; index < length; index++) {

dst[index] = src1[index-1] + dst[index];
}

}
else if (src1 == src2) {

for (index = 1; index < length; index++) {

dst[index = src1[index-1] + src1[index];
}

}
else {

for (index = 1; index < length; index++) {
dst[index] = src1[index-1] + src2[index];

}
}

NCSI Intro Par: Compilers

June 26 - July 1 2011 33



Loop Dep Example (cont’d)
if ((dst == src1) && (dst == src2)) {
for (index = 1; index < length; index++) {

dst[index] = dst[index-1] + dst[index];
}

}
else if (dst == src1) {
for (index = 1; index < length; index++) {

dst[index] = dst[index-1] + src2[index];
}

}
else if (dst == src2) {

for (index = 1; index < length; index++) {

dst[index] = src1[index-1] + dst[index];
}

}
else if (src1 == src2) {

for (index = 1; index < length; index++) {

dst[index] = src1[index-1] + src1[index];
}

}
else {
for (index = 1; index < length; index++) {

dst[index] = src1[index-1] + src2[index];
}

}

The various versions of the loop either:
 do      have loop carried dependencies, or
 don’t have loop carried dependencies.
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Loop Dependency Performance

NCSI Intro Par: Compilers

June 26 - July 1 2011 35

Loop Carried Dependency Performance
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Stupid Compiler Tricks

 Tricks Compilers Play

 Scalar Optimizations

 Loop Optimizations

 Inlining

 Tricks You Can Play with Compilers

 Profiling

 Hardware counters
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Compiler Design

The people who design compilers have a lot of experience 

working with the languages commonly used in High 

Performance Computing:

 Fortran: 50ish years

 C:          40ish years

 C++:     25ish years, plus C experience

So, they’ve come up with clever ways to make programs 

run faster.
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Tricks Compilers Play



Scalar Optimizations

 Copy Propagation

 Constant Folding

 Dead Code Removal

 Strength Reduction

 Common Subexpression Elimination

 Variable Renaming

 Loop Optimizations

Not every compiler does all of these, so it sometimes can be 
worth doing these by hand.

Much of this discussion is from [2] and [6].
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Copy Propagation (F90)

x = y

z = 1 + x
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x = y

z = 1 + y

Has data dependency

No data dependency

Compile

Before

After



Copy Propagation (C)

x = y;

z = 1 + x;
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x = y;

z = 1 + y;

Has data dependency

No data dependency

Compile

Before

After



Constant Folding (F90)

add = 100

aug = 200

sum = add + aug

NCSI Intro Par: Compilers

June 26 - July 1 2011 43

Notice that sum is actually the sum of two constants, so the 

compiler can precalculate it, eliminating the addition that 

otherwise would be performed at runtime.

sum = 300

Before After



Constant Folding (C)

add = 100;

aug = 200;

sum = add + aug;
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Notice that sum is actually the sum of two constants, so the 

compiler can precalculate it, eliminating the addition that 

otherwise would be performed at runtime.

sum = 300;

Before After



Dead Code Removal (F90)

var = 5

PRINT *, var

STOP

PRINT *, var * 2
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Since the last statement never executes, the compiler can 

eliminate it.

var = 5

PRINT *, var

STOP

Before After



Dead Code Removal (C)

var = 5;

printf("%d", var);

exit(-1);

printf("%d", var * 2);
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Since the last statement never executes, the compiler can 

eliminate it.

var = 5;

printf("%d", var);

exit(-1);

Before After



Strength Reduction (F90)

x = y ** 2.0

a = c / 2.0
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x = y * y

a = c * 0.5

Before After

Raising one value to the power of another, or dividing, is more 

expensive than multiplying.  If the compiler can tell that the 

power is a small integer, or that the denominator is a constant, 

it’ll use multiplication instead.

Note: In Fortran, “y ** 2.0” means “y to the power 2.”



Strength Reduction (C)

x = pow(y, 2.0);

a = c / 2.0;
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x = y * y;

a = c * 0.5;

Before After

Raising one value to the power of another, or dividing, is more 

expensive than multiplying.  If the compiler can tell that the 

power is a small integer, or that the denominator is a constant, 

it’ll use multiplication instead.

Note: In C, “pow(y, 2.0)” means “y to the power 2.”



Common Subexpression Elimination (F90)

d = c * (a / b)

e = (a / b) * 2.0
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adivb = a / b

d = c * adivb

e = adivb * 2.0

Before After

The subexpression (a / b) occurs in both assignment 

statements, so there’s no point in calculating it twice.

This is typically only worth doing if the common 

subexpression is expensive to calculate.



Common Subexpression Elimination (C)

d = c * (a / b);

e = (a / b) * 2.0;
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adivb = a / b;

d = c * adivb;

e = adivb * 2.0;

Before After

The subexpression (a / b) occurs in both assignment 

statements, so there’s no point in calculating it twice.

This is typically only worth doing if the common 

subexpression is expensive to calculate.



Variable Renaming (F90)

x = y * z

q = r + x * 2

x = a + b
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x0 = y * z

q = r + x0 * 2

x = a + b

Before After

The original code has an output dependency, while the new 

code doesn’t – but the final value of x is still correct.



Variable Renaming (C)

x = y * z;

q = r + x * 2;

x = a + b;
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x0 = y * z;

q = r + x0 * 2;

x = a + b;

Before After

The original code has an output dependency, while the new 

code doesn’t – but the final value of x is still correct.



Loop Optimizations

 Hoisting Loop Invariant Code

 Unswitching

 Iteration Peeling

 Index Set Splitting

 Loop Interchange

 Unrolling

 Loop Fusion

 Loop Fission

Not every compiler does all of these, so it sometimes can be 

worth doing some of these by hand.
Much of this discussion is from [3] and [6].

NCSI Intro Par: Compilers

June 26 - July 1 2011 53



Hoisting Loop Invariant Code (F90)

DO i = 1, n

a(i) = b(i) + c * d

e = g(n)

END DO
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Before

temp = c * d

DO i = 1, n

a(i) = b(i) + temp

END DO

e = g(n)

After

Code that 

doesn’t change 

inside the loop is 

known as      

loop invariant. 

It doesn’t need 

to be calculated 

over and over.



Hoisting Loop Invariant Code (C)

for (i = 0; i < n; i++) {

a[i] = b[i] + c * d;

e = g(n);

}
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Before

temp = c * d;

for (i = 0; i < n; i++) {

a[i] = b[i] + temp;

}

e = g(n);

After

Code that 

doesn’t change 

inside the loop is 

known as      

loop invariant. 

It doesn’t need 

to be calculated 

over and over.



Unswitching (F90)

DO i = 1, n
DO j = 2, n
IF (t(i) > 0) THEN
a(i,j) = a(i,j) * t(i) + b(j)

ELSE
a(i,j) = 0.0

END IF
END DO

END DO

DO i = 1, n
IF (t(i) > 0) THEN
DO j = 2, n
a(i,j) = a(i,j) * t(i) + b(j)

END DO
ELSE
DO j = 2, n
a(i,j) = 0.0

END DO
END IF

END DO
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Before

After

The condition is 
j-independent.

So, it can migrate 
outside the j loop.



Unswitching (C)
for (i = 0; i < n; i++) {

for (j = 1; j < n; j++) {
if (t[i] > 0)
a[i][j] = a[i][j] * t[i] + b[j];

}

else {
a[i][j] = 0.0;

}
}

}

for (i = 0; i < n; i++) {
if (t[i] > 0) {
for (j = 1; j < n; j++) {
a[i][j] = a[i][j] * t[i] + b[j];

}
}

else {
for (j = 1; j < n; j++) {
a[i][j] = 0.0;

}
}

}
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Before

After

The condition is 
j-independent.

So, it can migrate 
outside the j loop.



Iteration Peeling (F90)
DO i = 1, n

IF ((i == 1) .OR. (i == n)) THEN

x(i) = y(i)

ELSE

x(i) = y(i + 1) + y(i – 1)

END IF

END DO
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x(1) = y(1)

DO i = 2, n - 1

x(i) = y(i + 1) + y(i – 1)

END DO

x(n) = y(n)

Before

After

We can eliminate the IF by peeling the weird iterations.



Iteration Peeling (C)
for (i = 0; i < n; i++) {

if ((i == 0) || (i == (n – 1))) {

x[i] = y[i];

}

else {

x[i] = y[i + 1] + y[i – 1];

}

}
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x[0] = y[0];

for (i = 1; i < n – 1; i++) {

x[i] = y[i + 1] + y[i – 1];

}

x[n-1] = y[n-1];

Before

After

We can eliminate the if by peeling the weird iterations.



Index Set Splitting (F90)

DO i = 1, n
a(i) = b(i) + c(i)
IF (i > 10) THEN
d(i) = a(i) + b(i – 10)

END IF
END DO

DO i = 1, 10
a(i) = b(i) + c(i)

END DO
DO i = 11, n
a(i) = b(i) + c(i)
d(i) = a(i) + b(i – 10)

END DO
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Before

After

Note that this is a generalization of peeling.



Index Set Splitting (C)

for (i = 0; i < n; i++) {
a[i] = b[i] + c[i];
if (i >= 10) {
d[i] = a[i] + b[i – 10];

}
}

for (i = 0; i < 10; i++) {
a[i] = b[i] + c[i];

}
for (i = 10; i < n; i++) {
a[i] = b[i] + c[i];
d[i] = a[i] + b[i – 10];

}
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Before

After

Note that this is a generalization of peeling.



Loop Interchange (F90)

DO i = 1, ni

DO j = 1, nj

a(i,j) = b(i,j)

END DO

END DO
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DO j = 1, nj

DO i = 1, ni

a(i,j) = b(i,j)

END DO

END DO

Array elements a(i,j) and a(i+1,j) are near each 

other in memory, while a(i,j+1) may be far, so it makes 

sense to make the i loop be the inner loop. (This is 

reversed in C, C++ and Java.)

Before After



Loop Interchange (C)

for (j = 0; j < nj; j++) {

for (i = 0; i < ni; i++) {

a[i][j] = b[i][j];

}

}
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for (i = 0; i < ni; i++) 

{

for (j = 0; j < nj; 

j++) {

a[i][j] = b[i][j];

}

}

Array elements a[i][j] and a[i][j+1] are near each 

other in memory, while a[i+1][j] may be far, so it makes 

sense to make the j loop be the inner loop. (This is 

reversed in Fortran.)

Before After



Unrolling (F90)

DO i = 1, n

a(i) = a(i)+b(i)

END DO

NCSI Intro Par: Compilers

June 26 - July 1 2011 64

DO i = 1, n, 4

a(i)   = a(i)   + b(i)

a(i+1) = a(i+1) + b(i+1)

a(i+2) = a(i+2) + b(i+2)

a(i+3) = a(i+3) + b(i+3)

END DO

Before

After

You generally shouldn’t unroll by hand.



Unrolling (C)

for (i = 0; i < n; i++) {

a[i] = a[i] + b[i];

}
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for (i = 0; i < n; i += 4) {

a[i]   = a[i]   + b[i];

a[i+1] = a[i+1] + b[i+1];

a[i+2] = a[i+2] + b[i+2];

a[i+3] = a[i+3] + b[i+3];

}

Before

After

You generally shouldn’t unroll by hand.



Why Do Compilers Unroll?
We saw last time that a loop with a lot of operations gets 

better performance (up to some point), especially if there 
are lots of arithmetic operations but few main memory 
loads and stores.

Unrolling creates multiple operations that typically load from 
the same, or adjacent, cache lines.

So, an unrolled loop has more operations without increasing 
the memory accesses by much.

Also, unrolling decreases the number of comparisons on the 
loop counter variable, and the number of branches to the 
top of the loop.
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Loop Fusion (F90)

DO i = 1, n

a(i) = b(i) + 1
END DO

DO i = 1, n
c(i) = a(i) / 2

END DO

DO i = 1, n
d(i) = 1 / c(i)

END DO

DO i = 1, n
a(i) = b(i) + 1
c(i) = a(i) / 2
d(i) = 1 / c(i)

END DO

As with unrolling, this has fewer branches. It also has fewer 
total memory references.
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Before

After



Loop Fusion (C)

for (i = 0; i < n; i++) {

a[i] = b[i] + 1;
}

for (i = 0; i < n; i++) {
c[i] = a[i] / 2;

}

for (i = 0; i < n; i++) {
d[i] = 1 / c[i];

}

for (i = 0; i < n; i++) {
a[i] = b[i] + 1;
c[i] = a[i] / 2;
d[i] = 1 / c[i];

}

As with unrolling, this has fewer branches. It also has fewer 
total memory references.
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Before

After



Loop Fission (F90)

DO i = 1, n
a(i) = b(i) + 1
c(i) = a(i) / 2
d(i) = 1 / c(i)

END DO

DO i = 1, n
a(i) = b(i) + 1

END DO

DO i = 1, n
c(i) = a(i) / 2

END DO

DO i = 1, n
d(i) = 1 / c(i)

END DO

Fission reduces the cache footprint and the number of 
operations per iteration.
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Before

After



Loop Fission (C)

for (i = 0; i < n; i++) {
a[i] = b[i] + 1;
c[i] = a[i] / 2;
d[i] = 1 / c[i];

}

for (i = 0; i < n; i++) {

a[i] = b[i] + 1;
}

for (i = 0; i < n; i++) {
c[i] = a[i] / 2;

}

for (i = 0; i < n; i++) {
d[i] = 1 / c[i];

}

Fission reduces the cache footprint and the number of 
operations per iteration.
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Before

After



To Fuse or to Fizz?

The question of when to perform fusion versus when to 

perform fission, like many many optimization questions, is 

highly dependent on the application, the platform and a lot 

of other issues that get very, very complicated.

Compilers don’t always make the right choices.

That’s why it’s important to examine the actual behavior of the 

executable.

NCSI Intro Par: Compilers

June 26 - July 1 2011 71



Inlining (F90)

DO i = 1, n

a(i) = func(i)

END DO
…

REAL FUNCTION func (x)
…

func = x * 3

END FUNCTION func
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DO i = 1, n

a(i) = i * 3

END DO

Before After

When a function or subroutine is inlined, its contents are 

transferred directly into the calling routine, eliminating the 

overhead of making the call.



Inlining (C)

for (i = 0;

i < n; i++) {
a[i] = func(i+1);

}
…
float func (x) {

…
return x * 3;

}
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for (i = 0;

i < n; i++) {
a[i] = (i+1) * 3;

}

Before After

When a function or subroutine is inlined, its contents are 

transferred directly into the calling routine, eliminating the 

overhead of making the call.



Tricks You Can Play 

with Compilers



The Joy of Compiler Options

Every compiler has a different set of options that you can set.

Among these are options that control single processor 

optimization:  superscalar, pipelining, vectorization, scalar 

optimizations, loop optimizations, inlining and so on.
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Example Compile Lines

 IBM XL
xlf90 –O –qmaxmem=-1 –qarch=auto
–qtune=auto –qcache=auto –qhot

 Intel
ifort –O –march=core2 –mtune=core2

 Portland Group f90
pgf90 –O3 -fastsse –tp core2-64

 NAG f95
f95 –O4 –Ounsafe –ieee=nonstd
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What Does the Compiler Do? #1

Example: NAG f95 compiler [4]

f95 –O<level> source.f90

Possible levels are –O0, -O1, -O2, -O3, -O4:
-O0    No optimisation. …

-O1    Minimal quick optimisation.

-O2    Normal optimisation.

-O3    Further optimisation.

-O4    Maximal optimisation.

The man page is pretty cryptic.
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What Does the Compiler Do? #2

Example: Intel ifort compiler [5]

ifort –O<level> source.f90

Possible levels are  –O0, -O1, -O2, -O3:
-O0    Disables all -O<n> optimizations. …

-O1    ... [E]nables optimizations for speed. …

-O2    …

Inlining of intrinsics.

Intra-file interprocedural optimizations, which include: 
inlining, constant propagation, forward substitution, routine 
attribute propagation, variable address-taken analysis, dead 
static function elimination, and removal of unreferenced 
variables.

-O3    Enables -O2 optimizations plus more aggressive 
optimizations, such as prefetching, scalar replacement, and  
loop  transformations. Enables optimizations for maximum 
speed, but does not guarantee higher performance unless loop 
and memory access transformations take place. …
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Arithmetic Operation Speeds
Ordered Arithmetic Operations
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Better



Optimization Performance
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 Performance

0

10

20

30

40

50

60

70

80

ra
d

d

ia
d

d

rs
u

m

is
u

m

rs
u

b

is
u

b

rm
u
l

im
u
l

rd
iv

id
iv

Operation

M
F

L
O

P
/s

Pentium3 NAG O0 Pentium3 NAG O4 Pentium3 Vast no opt Pentium3 Vast opt

Better



More Optimized Performance
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Profiling



Profiling

Profiling means collecting data about how a program executes.

The two major kinds of profiling are:

 Subroutine profiling

 Hardware timing
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Subroutine Profiling

Subroutine profiling means finding out how much time is 

spent in each routine.

The 90-10 Rule: Typically, a program spends 90% of its 

runtime in 10% of the code.

Subroutine profiling tells you what parts of the program to 

spend time optimizing and what parts you can ignore.

Specifically, at regular intervals (e.g., every millisecond), the 

program takes note of what instruction it’s currently on.
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Profiling Example

On GNU compilers systems:

gcc –O –g -pg …

The –g -pg options tell the compiler to set the executable up 

to collect profiling information.

Running the executable generates a file named gmon.out, 

which contains the profiling information.
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Profiling Example (cont’d)

When the run has completed, a file named gmon.out has 

been generated.

Then:

gprof executable

produces a list of all of the routines and how much time was 

spent in each.
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Profiling Result

%   cumulative   self              self     total

time   seconds   seconds    calls  ms/call  ms/call  name

27.6      52.72    52.72   480000     0.11     0.11  longwave_ [5]

24.3      99.06    46.35      897    51.67    51.67  mpdata3_ [8]

7.9     114.19    15.13      300    50.43    50.43  turb_ [9]

7.2     127.94    13.75      299    45.98    45.98  turb_scalar_ [10]

4.7     136.91     8.96      300    29.88    29.88  advect2_z_ [12]

4.1     144.79     7.88      300    26.27    31.52  cloud_ [11]

3.9     152.22     7.43      300    24.77   212.36  radiation_ [3]

2.3     156.65     4.43      897     4.94    56.61  smlr_ [7]

2.2     160.77     4.12      300    13.73    24.39  tke_full_ [13]

1.7     163.97     3.20      300    10.66    10.66  shear_prod_ [15]

1.5     166.79     2.82      300     9.40     9.40  rhs_ [16]

1.4     169.53     2.74      300     9.13     9.13  advect2_xy_ [17]

1.3     172.00     2.47      300     8.23    15.33  poisson_ [14]

1.2     174.27     2.27   480000     0.00     0.12  long_wave_ [4]

1.0     176.13     1.86      299     6.22   177.45  advect_scalar_ [6]

0.9     177.94     1.81      300     6.04     6.04  buoy_ [19]

...
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Thanks for your 
attention!

Questions?
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