
Introduction to

Parallel Programming

& Cluster Computing

Applications and
Types of Parallelism

Josh Alexander, University of Oklahoma
Ivan Babic, Earlham College

Andrew Fitz Gibbon, Shodor Education Foundation Inc.
Henry Neeman, University of Oklahoma

Charlie Peck, Earlham College
Skylar Thompson, University of Washington

Aaron Weeden, Earlham College
Sunday June 26 – Friday July 1 2011

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011 2

This is an experiment!

It’s the nature of these kinds of videoconferences that

FAILURES ARE GUARANTEED TO HAPPEN!

NO PROMISES!

So, please bear with us. Hopefully everything will work out

well enough.

If you lose your connection, you can retry the same kind of

connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone

bridge to fall back on.

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011 3

H.323 (Polycom etc)

If you want to use H.323 videoconferencing – for example,

Polycom – then:

 If you ARE already registered with the OneNet gatekeeper,

dial 2500409.

 If you AREN’T registered with the OneNet gatekeeper

(which is probably the case), then:

 Dial 164.58.250.47

 When asked for the conference ID, enter:

#0409#

Many thanks to Roger Holder and OneNet for providing this.

H.323 from Internet Explorer

From a Windows PC running Internet Explorer:

1. You MUST have the ability to install software on the PC (or have someone install it for

you).

2. Download and install the latest Java Runtime Environment (JRE) from here

(click on the Java Download icon, because that install package includes both the JRE and

other components).

3. Download and install this video decoder.

4. Start Internet Explorer.

5. Copy-and-paste this URL into your IE window:

http://164.58.250.47/

6. When that webpage loads, in the upper left, click on "Streaming".

7. In the textbox labeled Sign-in Name, type your name.

8. In the textbox labeled Conference ID, type this:

0409

9. Click on "Stream this conference".

10. When that webpage loads, you may see, at the very top, a bar offering you options.

If so, click on it and choose "Install this add-on."

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011 4

http://www.oracle.com/technetwork/java/javase/downloads/
http://164.58.250.47/codian_video_decoder.msi

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011 5

EVO

There’s a quick description of how to use EVO on the

workshop logistics webpage.

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011 6

Phone Bridge

If all else fails, you can call into our toll free phone bridge:

1-800-832-0736

* 623 2874 #

Please mute yourself and use the phone to listen.

Don’t worry, we’ll call out slide numbers as we go.

Please use the phone bridge ONLY if you cannot connect any

other way: the phone bridge is charged per connection per

minute, so our preference is to minimize the number of

connections.

Many thanks to OU Information Technology for providing the

toll free phone bridge.

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011 7

Please Mute Yourself

No matter how you connect, please mute yourself, so that we

cannot hear you.

At ISU and UW, we will turn off the sound on all conferencing

technologies.

That way, we won’t have problems with echo cancellation.

Of course, that means we cannot hear questions.

So for questions, you’ll need to send some kind of text.

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011 8

Thanks for helping!

 OSCER operations staff (Brandon George, Dave Akin, Brett
Zimmerman, Josh Alexander, Patrick Calhoun)

 Kevin Blake, OU IT (videographer)

 James Deaton and Roger Holder, OneNet

 Keith Weber, Abel Clark and Qifeng Wu, Idaho State U Pocatello

 Nancy Glenn, Idaho State U Boise

 Jeff Gardner and Marya Dominik, U Washington

 Ken Gamradt, South Dakota State U

 Jeff Rufinus, Widener U

 Scott Lathrop, SC11 General Chair

 Donna Cappo, ACM

 Bob Panoff, Jack Parkin and Joyce South, Shodor Education Foundation
Inc

 ID, NM, NV EPSCoR (co-sponsors)

 SC11 conference (co-sponsors)

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011 9

Questions via Text: Piazza

Ask questions via:

http://www.piazza.com/

All questions will be read out loud and then answered out loud.

NOTE: Because of image-and-likeness rules, people attending

remotely offsite via videoconferencing CANNOT ask

questions via voice.

http://www.piazza.com/

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011 10

This is an experiment!

It’s the nature of these kinds of videoconferences that

FAILURES ARE GUARANTEED TO HAPPEN!

NO PROMISES!

So, please bear with us. Hopefully everything will work out

well enough.

If you lose your connection, you can retry the same kind of

connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone

bridge to fall back on.

11

Outline

 Monte Carlo: Client-Server

 N-Body: Task Parallelism

 Transport: Data Parallelism

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011

Monte Carlo:

Client-Server

[1]

13

Embarrassingly Parallel

An application is known as embarrassingly parallel if its
parallel implementation:

1. can straightforwardly be broken up into roughly equal
amounts of work per processor, AND

2. has minimal parallel overhead (for example, communication
among processors).

We love embarrassingly parallel applications, because they get
near-perfect parallel speedup, sometimes with modest
programming effort.

Embarrassingly parallel applications are also known as
loosely coupled.

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011

14

Monte Carlo Methods

Monte Carlo is a European city where people gamble; that is,

they play games of chance, which involve randomness.

Monte Carlo methods are ways of simulating (or otherwise

calculating) physical phenomena based on randomness.

Monte Carlo simulations typically are embarrassingly parallel.

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011

15

Monte Carlo Methods: Example

Suppose you have some physical phenomenon. For example,

consider High Energy Physics, in which we bang tiny

particles together at incredibly high speeds.

BANG!

We want to know, say, the average properties of this
phenomenon.

There are infinitely many ways that two particles can be
banged together.

So, we can’t possibly simulate all of them.

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011

16

Monte Carlo Methods: Example

Suppose you have some physical phenomenon. For example,

consider High Energy Physics, in which we bang tiny

particles together at incredibly high speeds.

BANG!

There are infinitely many ways that two particles can be
banged together.

So, we can’t possibly simulate all of them.

Instead, we can randomly choose a finite subset of these
infinitely many ways and simulate only the subset.

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011

17

Monte Carlo Methods: Example

Suppose you have some physical phenomenon. For example,
consider High Energy Physics, in which we bang tiny
particles together at incredibly high speeds.

BANG!

There are infinitely many ways that two particles can be banged
together.

We randomly choose a finite subset of these infinitely many
ways and simulate only the subset.

The average of this subset will be close to the actual average.

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011

18

Monte Carlo Methods

In a Monte Carlo method, you randomly generate a large number

of example cases (realizations) of a phenomenon, and then

take the average of the properties of these realizations.

When the average of the realizations converges (that is, doesn’t

change substantially if new realizations are generated), then

the Monte Carlo simulation stops.

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011

19

MC: Embarrassingly Parallel

Monte Carlo simulations are embarrassingly parallel, because
each realization is completely independent of all of the
other realizations.

That is, if you’re going to run a million realizations, then:

1. you can straightforwardly break into roughly (Million / Np)
chunks of realizations, one chunk for each of the Np

processors, AND

2. the only parallel overhead (for example, communication)
comes from tracking the average properties, which doesn’t
have to happen very often.

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011

20

Serial Monte Carlo (C)

Suppose you have an existing serial Monte Carlo simulation:

int main (int argc, char** argv)

{ /* main */

read_input(…);

for (realization = 0;

realization < number_of_realizations;

realization++) {

generate_random_realization(…);

calculate_properties(…);

} /* for realization */

calculate_average(…);

} /* main */

How would you parallelize this?

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011

21

Serial Monte Carlo (F90)

Suppose you have an existing serial Monte Carlo simulation:

PROGRAM monte_carlo

CALL read_input(…)

DO realization = 1, number_of_realizations

CALL generate_random_realization(…)

CALL calculate_properties(…)

END DO

CALL calculate_average(…)

END PROGRAM monte_carlo

How would you parallelize this?

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011

22

Parallel Monte Carlo (C)

int main (int argc, char** argv)

{ /* main */

[MPI startup]
if (my_rank == server_rank) {

read_input(…);

}

mpi_error_code = MPI_Bcast(…);

for (realization = 0;

realization < number_of_realizations / number_of_processes;

realization++) {

generate_random_realization(…);

calculate_realization_properties(…);

calculate_local_running_average(...);

} /* for realization */

if (my_rank == server_rank) {

[collect properties]
}

else {

[send properties]
}

calculate_global_average_from_local_averages(…)

output_overall_average(...)

[MPI shutdown]
} /* main */

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011

23

Parallel Monte Carlo (F90)

PROGRAM monte_carlo

[MPI startup]

IF (my_rank == server_rank) THEN

CALL read_input(…)

END IF

CALL MPI_Bcast(…)

DO realization = 1, number_of_realizations / number_of_processes

CALL generate_random_realization(…)

CALL calculate_realization_properties(…)

CALL calculate_local_running_average(...)

END DO

IF (my_rank == server_rank) THEN

[collect properties]

ELSE

[send properties]

END IF

CALL calculate_global_average_from_local_averages(…)

CALL output_overall_average(...)

[MPI shutdown]

END PROGRAM monte_carlo

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011

N-Body:

Task Parallelism and

Collective

Communication

[2]

25

N Bodies

NCSI Intro Parallel: Apps & Par Types

June 26 - July 11 2011

26

N-Body Problems

An N-body problem is a problem involving N “bodies” –
that is, particles (for example, stars, atoms) – each of which
applies a force to all of the others.

For example, if you have N stars, then each of the N stars
exerts a force (gravity) on all of the other N–1 stars.

Likewise, if you have N atoms, then every atom exerts a force
(nuclear) on all of the other N–1 atoms.

NCSI Intro Parallel: Apps & Par Types

June 26 - July 11 2011

27

1-Body Problem

When N is 1, you have a simple 1-Body Problem: a single

particle, with no forces acting on it.

Given the particle’s position P and velocity V at some time t0,

you can trivially calculate the particle’s position at time t0+Δt:

P(t0+Δt) = P(t0) + VΔt

V(t0+Δt) = V(t0)

NCSI Intro Parallel: Apps & Par Types

June 26 - July 11 2011

28

2-Body Problem

When N is 2, you have – surprise! – a 2-Body Problem: exactly
2 particles, each exerting a force that acts on the other.

The relationship between the 2 particles can be expressed as a
differential equation that can be solved analytically,
producing a closed-form solution.

So, given the particles’ initial positions and velocities, you can
trivially calculate their positions and velocities at any later
time.

NCSI Intro Parallel: Apps & Par Types

June 26 - July 11 2011

29

3-Body Problem

When N is 3, you have – surprise! – a 3-Body Problem: exactly
3 particles, each exerting a force that acts on the other 2.

The relationship between the 3 particles can be expressed as a
differential equation that can be solved using an infinite
series, producing a closed-form solution, due to Karl Fritiof
Sundman in 1912.

However, in practice, the number of terms of the infinite series
that you need to calculate to get a reasonable solution is so
large that the infinite series is impractical, so you’re stuck
with the generalized formulation.

NCSI Intro Parallel: Apps & Par Types

June 26 - July 11 2011

30

N-Body Problems (N > 3)

When N > 3, you have a general N-Body Problem: N particles,
each exerting a force that acts on the other N-1 particles.

The relationship between the N particles can be expressed as a
differential equation that can be solved using an infinite
series, producing a closed-form solution, due to Qiudong
Wang in 1991.

However, in practice, the number of terms of the infinite series
that you need to calculate to get a reasonable solution is so
large that the infinite series is impractical, so you’re stuck
with the generalized formulation.

NCSI Intro Parallel: Apps & Par Types

June 26 - July 11 2011

31

N-Body Problems (N > 3)

For N > 3, the relationship between the N particles can be

expressed as a differential equation that can be solved using

an infinite series, producing a closed-form solution, but

convergence takes so long that this approach is impractical.

So, numerical simulation is pretty much the only way to study

groups of 3 or more bodies.

Popular applications of N-body codes include:

 astronomy (that is, galaxy formation, cosmology);

 chemistry (that is, protein folding, molecular dynamics).

Note that, for N bodies, there are on the order of N2 forces,

denoted O(N2).

NCSI Intro Parallel: Apps & Par Types

June 26 - July 11 2011

32

N Bodies

NCSI Intro Parallel: Apps & Par Types

June 26 - July 11 2011

33

Force #1

A

NCSI Intro Parallel: Apps & Par Types

June 26 - July 11 2011

34

Force #2

A

NCSI Intro Parallel: Apps & Par Types

June 26 - July 11 2011

35

Force #3

A

NCSI Intro Parallel: Apps & Par Types

June 26 - July 11 2011

36

Force #4

A

NCSI Intro Parallel: Apps & Par Types

June 26 - July 11 2011

37

Force #5

A

NCSI Intro Parallel: Apps & Par Types

June 26 - July 11 2011

38

Force #6

A

NCSI Intro Parallel: Apps & Par Types

June 26 - July 11 2011

39

Force #N-1

A

NCSI Intro Parallel: Apps & Par Types

June 26 - July 11 2011

40

N-Body Problems

Given N bodies, each body exerts a force on all of the other

N – 1 bodies.

Therefore, there are N • (N – 1) forces in total.

You can also think of this as (N • (N – 1)) / 2 forces, in the

sense that the force from particle A to particle B is the same

(except in the opposite direction) as the force from particle

B to particle A.

NCSI Intro Parallel: Apps & Par Types

June 26 - July 11 2011

41

Aside: Big-O Notation

Let’s say that you have some task to perform on a certain

number of things, and that the task takes a certain amount of

time to complete.

Let’s say that the amount of time can be expressed as a

polynomial on the number of things to perform the task on.

For example, the amount of time it takes to read a book might

be proportional to the number of words, plus the amount of

time it takes to settle into your favorite easy chair.

C1
. N + C2

NCSI Intro Parallel: Apps & Par Types

June 26 - July 11 2011

42

Big-O: Dropping the Low Term

C1
. N + C2

When N is very large, the time spent settling into your easy
chair becomes such a small proportion of the total time that
it’s virtually zero.

So from a practical perspective, for large N, the polynomial
reduces to:

C1
. N

In fact, for any polynomial, if N is large, then all of the terms
except the highest-order term are irrelevant.

NCSI Intro Parallel: Apps & Par Types

June 26 - July 11 2011

43

Big-O: Dropping the Constant

C1
. N

Computers get faster and faster all the time. And there are
many different flavors of computers, having many different
speeds.

So, computer scientists don’t care about the constant, only
about the order of the highest-order term of the polynomial.

They indicate this with Big-O notation:

O(N)

This is often said as: “of order N.”

NCSI Intro Parallel: Apps & Par Types

June 26 - July 11 2011

44

N-Body Problems

Given N bodies, each body exerts a force on all of the other

N – 1 bodies.
Therefore, there are N • (N – 1) forces total.

In Big-O notation, that’s O(N2) forces.

So, calculating the forces takes O(N2) time to execute.

But, there are only N particles, each taking up the same amount

of memory, so we say that N-body codes are of:

 O(N) spatial complexity (memory)

 O(N2) time complexity

NCSI Intro Parallel: Apps & Par Types

June 26 - July 11 2011

45

O(N2) Forces

Note that this picture shows only the forces between A and everyone else.

A

NCSI Intro Parallel: Apps & Par Types

June 26 - July 11 2011

46

How to Calculate?

Whatever your physics is, you have some function, F(Bi,Bj),
that expresses the force between two bodies Bi and Bj.

For example, for stars and galaxies,

F(A,B) = G · mBi
· mBj

/ dist(Bi, Bj)
2

where G is the gravitational constant and m is the mass of the
body in question.

If you have all of the forces for every pair of particles, then

you can calculate their sum, obtaining the force on every

particle.

From that, you can calculate every particle’s new position and

velocity.

NCSI Intro Parallel: Apps & Par Types

June 26 - July 11 2011

47

How to Parallelize?

Okay, so let’s say you have a nice serial (single-CPU) code

that does an N-body calculation.
How are you going to parallelize it?

You could:

 have a server feed particles to processes;

 have a server feed interactions (particle pairs) to processes;

 have each process decide on its own subset of the particles,

and then share around the summed forces on those particles;

 have each process decide its own subset of the interactions,
and then share around the summed forces from those
interactions.

NCSI Intro Parallel: Apps & Par Types

June 26 - July 11 2011

48

Do You Need a Server?

Let’s say that you have N bodies, and therefore you have

½ N (N - 1) interactions (every particle interacts with all of

the others, but you don’t need to calculate both Bi Bj and

Bj Bi).

Do you need a server?

Well, can each processor determine, on its own, either

(a) which of the bodies to process, or (b) which of the

interactions to process?

If the answer is yes, then you don’t need a server.

NCSI Intro Parallel: Apps & Par Types

June 26 - July 11 2011

49

Parallelize How?

Suppose you have Np processors.

Should you parallelize:

 by assigning a subset of N / Np of the bodies to each

processor, OR

 by assigning a subset of N (N - 1) / Np of the interactions to

each processor?

NCSI Intro Parallel: Apps & Par Types

June 26 - July 11 2011

50

Data vs. Task Parallelism

 Data Parallelism means parallelizing by giving a subset of

the data to each process, and then each process performs the

same tasks on the different subsets of data.

 Task Parallelism means parallelizing by giving a subset of

the tasks to each process, and then each process performs a

different subset of tasks on the same data.

NCSI Intro Parallel: Apps & Par Types

June 26 - July 11 2011

51

Data Parallelism for N-Body?

If you parallelize an N-body code by data, then each processor

gets N / Np pieces of data.

For example, if you have 8 bodies and 2 processors, then:
 Processor P0 gets the first 4 bodies;
 Processor P1 gets the second 4 bodies.

But, every piece of data (that is, every body) has to interact
with every other piece of data, to calculate the forces.

So, every processor will have to send all of its data to all of the
other processors, for every single interaction that it
calculates.

That’s a lot of communication!

NCSI Intro Parallel: Apps & Par Types

June 26 - July 11 2011

52

Task Parallelism for N-body?

If you parallelize an N-body code by task, then each processor

gets all of the pieces of data that describe the particles (for

example, positions, velocities, masses).

Then, each processor can calculate its subset of the interaction

forces on its own, without talking to any of the other

processors.

But, at the end of the force calculations, everyone has to share all

of the forces that have been calculated, so that each particle

ends up with the total force that acts on it (global reduction).

NCSI Intro Parallel: Apps & Par Types

June 26 - July 11 2011

53

MPI_Reduce (C)

Here’s the C syntax for MPI_Reduce:
mpi_error_code =

MPI_Reduce(sendbuffer, recvbuffer,
count, datatype, operation,
root, communicator, mpi_error_code);

For example, to do a sum over all of the particle forces:
mpi_error_code =

MPI_Reduce(

local_particle_force_sum,

global_particle_force_sum,

number_of_particles,

MPI_DOUBLE, MPI_SUM,

server_process, MPI_COMM_WORLD);

NCSI Intro Parallel: Apps & Par Types

June 26 - July 11 2011

54

MPI_Reduce (F90)

Here’s the Fortran 90 syntax for MPI_Reduce:
CALL MPI_Reduce(sendbuffer, recvbuffer, &
& count, datatype, operation, &
& root, communicator, mpi_error_code)

For example, to do a sum over all of the particle forces:
CALL MPI_Reduce(&

& local_particle_force_sum, &

& global_particle_force_sum, &

& number_of_particles, &

& MPI_DOUBLE_PRECISION, MPI_SUM, &

& server_process, MPI_COMM_WORLD, &

& mpi_error_code)

NCSI Intro Parallel: Apps & Par Types

June 26 - July 11 2011

55

Sharing the Result

In the N-body case, we don’t want just one processor to know
the result of the sum, we want every processor to know.

So, we could do a reduce followed immediately by a broadcast.

But, MPI gives us a routine that packages all of that for us:

MPI_Allreduce.

MPI_Allreduce is just like MPI_Reduce except that

every process gets the result (so we drop the

server_process argument).

NCSI Intro Parallel: Apps & Par Types

June 26 - July 11 2011

56

MPI_Allreduce (C)

Here’s the C syntax for MPI_Allreduce:
mpi_error_code =

MPI_Allreduce(

sendbuffer, recvbuffer, count,

datatype, operation,

communicator);

For example, to do a sum over all of the particle forces:
mpi_error_code =

MPI_Allreduce(

local_particle_force_sum,

global_particle_force_sum,

number_of_particles,

MPI_DOUBLE, MPI_SUM,

MPI_COMM_WORLD);

NCSI Intro Parallel: Apps & Par Types

June 26 - July 11 2011

57

MPI_Allreduce (F90)

Here’s the Fortran 90 syntax for MPI_Allreduce:
CALL MPI_Allreduce(&

& sendbuffer, recvbuffer, count, &

& datatype, operation, &

& communicator, mpi_error_code)

For example, to do a sum over all of the particle forces:
CALL MPI_Allreduce(&

& local_particle_force_sum, &

& global_particle_force_sum, &

& number_of_particles, &

& MPI_DOUBLE_PRECISION, MPI_SUM, &

& MPI_COMM_WORLD, mpi_error_code)

NCSI Intro Parallel: Apps & Par Types

June 26 - July 11 2011

58

Collective Communications

A collective communication is a communication that is shared

among many processes, not just a sender and a receiver.

MPI_Reduce and MPI_Allreduce are collective

communications.

Others include: broadcast, gather/scatter, all-to-all.

NCSI Intro Parallel: Apps & Par Types

June 26 - July 11 2011

59

Collectives Are Expensive

Collective communications are very expensive relative to

point-to-point communications, because so much more

communication has to happen.

But, they can be much cheaper than doing zillions of point-to-

point communications, if that’s the alternative.

NCSI Intro Parallel: Apps & Par Types

June 26 - July 11 2011

Transport:

Data Parallelism

[2]

61

What is a Simulation?

All physical science ultimately is expressed as calculus (for

example, differential equations).

Except in the simplest (uninteresting) cases, equations based

on calculus can’t be directly solved on a computer.

Therefore, all physical science on computers has to be

approximated.

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011

62

I Want the Area Under This Curve!

How can I get the area under this curve?

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011

63

A Riemann Sum

Δx

{

yi

Area under the curve ≈

n

i

i xy
1

Ceci n’est pas un area under the curve: it’s approximate!

[3]

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011

64

A Riemann Sum

Δx

{

yi

Area under the curve ≈

n

i

i xy
1

Ceci n’est pas un area under the curve: it’s approximate!

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011

65

A Better Riemann Sum

Δx

{

yi

Area under the curve ≈

n

i

i xy
1

More, smaller rectangles produce a better approximation.

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011

66

The Best Riemann Sum

Area under the curve =

1i

i ydxdxy

In the limit, infinitely many infinitesimally small
rectangles produce the exact area.

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011

67

The Best Riemann Sum

Area under the curve =

1i

i ydxdxy

In the limit, infinitely many infinitesimally small
rectangles produce the exact area.

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011

68

Differential Equations

A differential equation is an equation in which differentials
(for example, dx) appear as variables.

Most physics is best expressed as differential equations.

Very simple differential equations can be solved in “closed
form,” meaning that a bit of algebraic manipulation gets the
exact answer.

Interesting differential equations, like the ones governing
interesting physics, can’t be solved in close form.

Solution: approximate!

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011

69

A Discrete Mesh of Data

Data

live

here!

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011

NCSI Intro Parallel: Apps & Par Types

June 26 – July 1 2011 70

A Discrete Mesh of Data

Data

live

here!

71

Finite Difference

A typical (though not the only) way of approximating the

solution of a differential equation is through finite

differencing: convert each dx (infinitely thin) into a Δx (has

finite nonzero width).

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011

72

Navier-Stokes Equation

 uij

i

j

j

i

j

i

x

u

x

u

xV

F

 uij

i

j

j

i

j

i

x

u

x

u

xV

F

Differential Equation

Finite Difference Equation

The Navier-Stokes equations governs the

movement of fluids (water, air, etc).

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011

73

Cartesian Coordinates

x

y

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011

74

Structured Mesh

A structured mesh is like the mesh on the previous slide. It’s

nice and regular and rectangular, and can be stored in a

standard Fortran or C or C++ array of the appropriate

dimension and shape.

REAL,DIMENSION(nx,ny,nz) :: u

float u[nx][ny][nz];

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011

75

Flow in Structured Meshes

When calculating flow in a structured mesh, you typically use
a finite difference equation, like so:

unewi,j = F(t, uoldi,j, uoldi-1,j, uoldi+1,j, uoldi,j-1, uoldi,j+1)

for some function F, where uoldi,j is at time t and unewi,j is at

time t + t.

In other words, you calculate the new value of ui,j, based on its
old value as well as the old values of its immediate
neighbors.

Actually, it may use neighbors a few farther away.

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011

76

Ghost Boundary Zones

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011

77

Ghost Boundary Zones

We want to calculate values in the part of the mesh that we

care about, but to do that, we need values on the boundaries.

For example, to calculate unew1,1, you need uold0,1 and uold1,0.

Ghost boundary zones are mesh zones that aren’t really part of

the problem domain that we care about, but that hold

boundary data for calculating the parts that we do care

about.

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011

78

Using Ghost Boundary Zones (C)

A good basic algorithm for flow that uses ghost boundary

zones is:
for (timestep = 0;

timestep < number_of_timesteps;
timestep++) {

fill_ghost_boundary(…);
advance_to_new_from_old(…);

}

This approach generally works great on a serial code.

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011

79

Using Ghost Boundary Zones (F90)

A good basic algorithm for flow that uses ghost boundary

zones is:
DO timestep = 1, number_of_timesteps

CALL fill_ghost_boundary(…)
CALL advance_to_new_from_old(…)

END DO

This approach generally works great on a serial code.

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011

80

Ghost Boundary Zones in MPI

What if you want to parallelize a Cartesian flow code in MPI?

You’ll need to:

 decompose the mesh into submeshes;

 figure out how each submesh talks to its neighbors.

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011

81

Data Decomposition

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011

82

Data Decomposition

We want to split the data into chunks of equal size, and give

each chunk to a processor to work on.

Then, each processor can work independently of all of the

others, except when it’s exchanging boundary data with its

neighbors.

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011

83

MPI_Cart_*

MPI supports exactly this kind of calculation, with a set of

functions MPI_Cart_*:

 MPI_Cart_create

 MPI_Cart_coords

 MPI_Cart_shift

These routines create and describe a new communicator, one

that replaces MPI_COMM_WORLD in your code.

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011

84

MPI_Sendrecv

MPI_Sendrecv is just like an MPI_Send followed by an
MPI_Recv, except that it’s much better than that.

With MPI_Send and MPI_Recv, these are your choices:

 Everyone calls MPI_Recv, and then everyone calls
MPI_Send.

 Everyone calls MPI_Send, and then everyone calls
MPI_Recv.

 Some call MPI_Send while others call MPI_Recv,
and then they swap roles.

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011

85

Why not Recv then Send?

Suppose that everyone calls MPI_Recv, and then everyone

calls MPI_Send.

MPI_Recv(incoming_data, ...);

MPI_Send(outgoing_data, ...);

Well, these routines are blocking, meaning that the

communication has to complete before the process can

continue on farther into the program.

That means that, when everyone calls MPI_Recv, they’re

waiting for someone else to call MPI_Send.

We call this deadlock.

Officially, the MPI standard guarantees that

THIS APPROACH WILL ALWAYS FAIL.

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011

86

Why not Send then Recv?

Suppose that everyone calls MPI_Send, and then everyone

calls MPI_Recv:

MPI_Send(outgoing_data, ...);

MPI_Recv(incoming_data, ...);

Well, this will only work if there’s enough buffer space

available to hold everyone’s messages until after everyone

is done sending.

Sometimes, there isn’t enough buffer space.

Officially, the MPI standard allows MPI implementers to

support this, but it isn’t part of the official MPI standard;

that is, a particular MPI implementation doesn’t have to

allow it, so THIS WILL SOMETIMES FAIL.

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011

87

Alternate Send and Recv?

Suppose that some processors call MPI_Send while others
call MPI_Recv, and then they swap roles:

if ((my_rank % 2) == 0) {

MPI_Send(outgoing_data, ...);

MPI_Recv(incoming_data, ...);

}

else {

MPI_Recv(incoming_data, ...);

MPI_Send(outgoing_data, ...);
}

This will work, and is sometimes used, but it can be painful to

manage – especially if you have an odd number of

processors.

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011

88

MPI_Sendrecv

MPI_Sendrecv allows each processor to simultaneously

send to one processor and receive from another.

For example, P1 could send to P0 while simultaneously
receiving from P2 .

(Note that the send and receive don’t have to literally be
simultaneous, but we can treat them as so in writing the
code.)

This is exactly what we need in Cartesian flow: we want the

boundary data to come in from the east while we send

boundary data out to the west, and then vice versa.

These are called shifts.

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011

89

MPI_Sendrecv

mpi_error_code =

MPI_Sendrecv(

westward_send_buffer,

westward_send_size, MPI_REAL,

west_neighbor_process, westward_tag,

westward_recv_buffer,

westward_recv_size, MPI_REAL,

east_neighbor_process, westward_tag,

cartesian_communicator, mpi_status);

This call sends to west_neighbor_process the data in

westward_send_buffer, and at the same time receives

from east_neighbor_process a bunch of data that

end up in westward_recv_buffer.

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011

90

Why MPI_Sendrecv?

The advantage of MPI_Sendrecv is that it allows us the

luxury of no longer having to worry about who should send

when and who should receive when.

This is exactly what we need in Cartesian flow: we want the

boundary information to come in from the east while we

send boundary information out to the west – without us

having to worry about deciding who should do what to who

when.

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011

91

MPI_Sendrecv

Concept

in Principle

Concept

in practice

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011

92

MPI_Sendrecv

Concept

in practice

westward_send_buffer westward_recv_buffer

Actual

Implementation

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011

93

What About Edges and Corners?

If your numerical method involves faces, edges and/or corners,

don’t despair.

It turns out that, if you do the following, you’ll handle those

correctly:

 When you send, send the entire ghost boundary’s worth,

including the ghost boundary of the part you’re sending.

 Do in this order:

 all east-west;

 all north-south;

 all up-down.

 At the end, everything will be in the correct place.

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011

Thanks for your
attention!

Questions?

95

References

[1] http://en.wikipedia.org/wiki/Monte_carlo_simulation

[2] http://en.wikipedia.org/wiki/N-body_problem

[3] http://lostbiro.com/blog/wp-

content/uploads/2007/10/Magritte-Pipe.jpg

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011

http://en.wikipedia.org/wiki/Monte_carlo_simulation
http://en.wikipedia.org/wiki/N-body_problem
http://en.wikipedia.org/wiki/N-body_problem
http://en.wikipedia.org/wiki/N-body_problem
http://lostbiro.com/blog/wp-content/uploads/2007/10/Magritte-Pipe.jpg
http://lostbiro.com/blog/wp-content/uploads/2007/10/Magritte-Pipe.jpg
http://lostbiro.com/blog/wp-content/uploads/2007/10/Magritte-Pipe.jpg
http://lostbiro.com/blog/wp-content/uploads/2007/10/Magritte-Pipe.jpg
http://lostbiro.com/blog/wp-content/uploads/2007/10/Magritte-Pipe.jpg

