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This is an experiment!

It’s the nature of these kinds of videoconferences that 

FAILURES ARE GUARANTEED TO HAPPEN!       

NO PROMISES!

So, please bear with us. Hopefully everything will work out 

well enough.

If you lose your connection, you can retry the same kind of 

connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone 

bridge to fall back on.
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H.323 (Polycom etc)

If you want to use H.323 videoconferencing – for example, 

Polycom – then:

 If you ARE already registered with the OneNet gatekeeper, 

dial 2500409.

 If you AREN’T registered with the OneNet gatekeeper 

(which is probably the case), then:

 Dial 164.58.250.47

 When asked for the conference ID, enter:

#0409#

Many thanks to Roger Holder and OneNet for providing this.



H.323 from Internet Explorer

From a Windows PC running Internet Explorer:

1. You MUST have the ability to install software on the PC (or have someone install it for 

you). 

2. Download and install the latest Java Runtime Environment (JRE) from here

(click on the Java Download icon, because that install package includes both the JRE and 

other components). 

3. Download and install this video decoder. 

4. Start Internet Explorer. 

5. Copy-and-paste this URL into your IE window: 

http://164.58.250.47/

6. When that webpage loads, in the upper left, click on "Streaming". 

7. In the textbox labeled Sign-in Name, type your name. 

8. In the textbox labeled Conference ID, type this: 

0409 

9. Click on "Stream this conference". 

10. When that webpage loads, you may see, at the very top, a bar offering you options. 

If so, click on it and choose "Install this add-on." 
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http://www.oracle.com/technetwork/java/javase/downloads/
http://164.58.250.47/codian_video_decoder.msi
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EVO

There’s a quick description of how to use EVO on the 

workshop logistics webpage.
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Phone Bridge

If all else fails, you can call into our toll free phone bridge:

1-800-832-0736

* 623 2874 #

Please mute yourself and use the phone to listen.

Don’t worry, we’ll call out slide numbers as we go.

Please use the phone bridge ONLY if you cannot connect any 

other way: the phone bridge is charged per connection per 

minute, so our preference is to minimize the number of 

connections.

Many thanks to OU Information Technology for providing the 

toll free phone bridge.
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Please Mute Yourself

No matter how you connect, please mute yourself, so that we 

cannot hear you.

At ISU and UW, we will turn off the sound on all conferencing 

technologies.

That way, we won’t have problems with echo cancellation.

Of course, that means we cannot hear questions.

So for questions, you’ll need to send some kind of text.
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Thanks for helping!

 OSCER operations staff (Brandon George, Dave Akin, Brett 
Zimmerman, Josh Alexander, Patrick Calhoun)

 Kevin Blake, OU IT (videographer)

 James Deaton and Roger Holder, OneNet

 Keith Weber, Abel Clark and Qifeng Wu, Idaho State U Pocatello

 Nancy Glenn, Idaho State U Boise

 Jeff Gardner and Marya Dominik, U Washington

 Ken Gamradt, South Dakota State U

 Jeff Rufinus, Widener U

 Scott Lathrop, SC11 General Chair

 Donna Cappo, ACM

 Bob Panoff, Jack Parkin and Joyce South, Shodor Education Foundation 
Inc

 ID, NM, NV EPSCoR (co-sponsors)

 SC11 conference  (co-sponsors)
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Questions via Text: Piazza

Ask questions via:

http://www.piazza.com/

All questions will be read out loud and then answered out loud.

NOTE: Because of image-and-likeness rules, people attending 

remotely offsite via videoconferencing CANNOT ask 

questions via voice.

http://www.piazza.com/
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This is an experiment!

It’s the nature of these kinds of videoconferences that 

FAILURES ARE GUARANTEED TO HAPPEN!       

NO PROMISES!

So, please bear with us. Hopefully everything will work out 

well enough.

If you lose your connection, you can retry the same kind of 

connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone 

bridge to fall back on.
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Outline

 Monte Carlo: Client-Server

 N-Body: Task Parallelism

 Transport: Data Parallelism
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Monte Carlo:

Client-Server

[1]
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Embarrassingly Parallel

An application is known as embarrassingly parallel if its 
parallel implementation:

1. can straightforwardly be broken up into roughly equal 
amounts of work per processor, AND

2. has minimal parallel overhead (for example, communication 
among processors).

We love embarrassingly parallel applications, because they get 
near-perfect parallel speedup, sometimes with modest 
programming effort.

Embarrassingly parallel applications are also known as     
loosely coupled.
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Monte Carlo Methods

Monte Carlo is a European city where people gamble; that is, 

they play games of chance, which involve randomness.

Monte Carlo methods are ways of simulating (or otherwise 

calculating) physical phenomena based on randomness.

Monte Carlo simulations typically are embarrassingly parallel.
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Monte Carlo Methods: Example

Suppose you have some physical phenomenon. For example, 

consider High Energy Physics, in which we bang tiny 

particles together at incredibly high speeds.

BANG!

We want to know, say, the average properties of this 
phenomenon.

There are infinitely many ways that two particles can be 
banged together.

So, we can’t possibly simulate all of them.
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Monte Carlo Methods: Example

Suppose you have some physical phenomenon. For example, 

consider High Energy Physics, in which we bang tiny 

particles together at incredibly high speeds.

BANG!

There are infinitely many ways that two particles can be 
banged together.

So, we can’t possibly simulate all of them.

Instead, we can randomly choose a finite subset of these 
infinitely many ways and simulate only the subset.
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Monte Carlo Methods: Example

Suppose you have some physical phenomenon. For example, 
consider High Energy Physics, in which we bang tiny 
particles together at incredibly high speeds.

BANG!

There are infinitely many ways that two particles can be banged 
together.

We randomly choose a finite subset of these infinitely many 
ways and simulate only the subset.

The average of this subset will be close to the actual average.
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Monte Carlo Methods

In a Monte Carlo method, you randomly generate a large number 

of example cases (realizations) of a phenomenon, and then 

take the average of the properties of these realizations.

When the average of the realizations converges (that is, doesn’t 

change substantially if new realizations are generated), then 

the Monte Carlo simulation stops.
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MC: Embarrassingly Parallel

Monte Carlo simulations are embarrassingly parallel, because 
each realization is completely independent of all of the 
other realizations.

That is, if you’re going to run a million realizations, then:

1. you can straightforwardly break into roughly (Million / Np) 
chunks of realizations, one chunk for each of the Np

processors, AND

2. the only parallel overhead (for example, communication) 
comes from tracking the average properties, which doesn’t 
have to happen very often.
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Serial Monte Carlo (C)

Suppose you have an existing serial Monte Carlo simulation:

int main (int argc, char** argv)

{ /* main */

read_input(…);

for (realization = 0;

realization < number_of_realizations;

realization++) {

generate_random_realization(…);

calculate_properties(…);

} /* for realization */

calculate_average(…);

} /* main */

How would you parallelize this?
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Serial Monte Carlo (F90)

Suppose you have an existing serial Monte Carlo simulation:

PROGRAM monte_carlo

CALL read_input(…)

DO realization = 1, number_of_realizations

CALL generate_random_realization(…)

CALL calculate_properties(…)

END DO

CALL calculate_average(…)

END PROGRAM monte_carlo

How would you parallelize this?
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Parallel Monte Carlo (C)

int main (int argc, char** argv)

{ /* main */

[MPI startup]
if (my_rank == server_rank) {

read_input(…);

} 

mpi_error_code = MPI_Bcast(…);

for (realization = 0;

realization < number_of_realizations / number_of_processes;

realization++) {

generate_random_realization(…);

calculate_realization_properties(…);

calculate_local_running_average(...);

} /* for realization */

if (my_rank == server_rank) {

[collect properties]
}

else {

[send properties]
}   

calculate_global_average_from_local_averages(…)

output_overall_average(...)

[MPI shutdown]
} /* main */

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011



23

Parallel Monte Carlo (F90)

PROGRAM monte_carlo

[MPI startup]

IF (my_rank == server_rank) THEN

CALL read_input(…)

END IF 

CALL MPI_Bcast(…)

DO realization = 1, number_of_realizations / number_of_processes

CALL generate_random_realization(…)

CALL calculate_realization_properties(…)

CALL calculate_local_running_average(...)

END DO

IF (my_rank == server_rank) THEN

[collect properties]

ELSE

[send properties]

END IF   

CALL calculate_global_average_from_local_averages(…)

CALL output_overall_average(...)

[MPI shutdown]

END PROGRAM monte_carlo
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Collective 

Communication

[2]
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N Bodies
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N-Body Problems

An N-body problem is a problem involving N “bodies” –
that is, particles (for example, stars, atoms) – each of which 
applies a force to all of the others.

For example, if you have N stars, then each of the N stars 
exerts a force (gravity) on all of the other N–1 stars.

Likewise, if you have N atoms, then every atom exerts a force 
(nuclear) on all of the other N–1 atoms.
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1-Body Problem

When N is 1, you have a simple 1-Body Problem: a single 

particle, with no forces acting on it.

Given the particle’s position P and velocity V at some time t0, 

you can trivially calculate the particle’s position at time t0+Δt:

P(t0+Δt) = P(t0) + VΔt

V(t0+Δt) = V(t0)
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2-Body Problem

When N is 2, you have – surprise! – a 2-Body Problem: exactly 
2 particles, each exerting a force that acts on the other.

The relationship between the 2 particles can be expressed as a 
differential equation that can be solved analytically, 
producing a closed-form solution.

So, given the particles’ initial positions and velocities, you can 
trivially calculate their positions and velocities at any later 
time.
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3-Body Problem

When N is 3, you have – surprise! – a 3-Body Problem: exactly 
3 particles, each exerting a force that acts on the other 2.

The relationship between the 3 particles can be expressed as a 
differential equation that can be solved using an infinite 
series, producing a closed-form solution, due to Karl Fritiof
Sundman in 1912.

However, in practice, the number of terms of the infinite series 
that you need to calculate to get a reasonable solution is so 
large that the infinite series is impractical, so you’re stuck 
with the generalized formulation.
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N-Body Problems (N > 3)

When N > 3, you have a general N-Body Problem: N particles, 
each exerting a force that acts on the other N-1 particles.

The relationship between the N particles can be expressed as a 
differential equation that can be solved using an infinite 
series, producing a closed-form solution, due to Qiudong
Wang in 1991.

However, in practice, the number of terms of the infinite series 
that you need to calculate to get a reasonable solution is so 
large that the infinite series is impractical, so you’re stuck 
with the generalized formulation.

NCSI Intro Parallel: Apps & Par Types

June 26 - July 11 2011



31

N-Body Problems (N > 3)

For N > 3, the relationship between the N particles can be 

expressed as a differential equation that can be solved using 

an infinite series, producing a closed-form solution, but 

convergence takes so long that this approach is impractical.

So, numerical simulation is pretty much the only way to study 

groups of 3 or more bodies.

Popular applications of N-body codes include:

 astronomy (that is, galaxy formation, cosmology);

 chemistry (that is, protein folding, molecular dynamics).

Note that, for N bodies, there are on the order of N2 forces, 

denoted O(N2).
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N Bodies
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Force #1

A
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Force #2

A
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Force #3

A

NCSI Intro Parallel: Apps & Par Types

June 26 - July 11 2011



36

Force #4

A
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Force #5

A
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Force #6

A
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Force #N-1

A

NCSI Intro Parallel: Apps & Par Types

June 26 - July 11 2011



40

N-Body Problems

Given N bodies, each body exerts a force on all of the other    

N – 1 bodies.

Therefore, there are N • (N – 1) forces in total.

You can also think of this as (N • (N – 1)) / 2 forces, in the 

sense that the force from particle A to particle B is the same 

(except in the opposite direction) as the force from particle 

B to particle A.
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Aside: Big-O Notation

Let’s say that you have some task to perform on a certain 

number of things, and that the task takes a certain amount of 

time to complete.

Let’s say that the amount of time can be expressed as a 

polynomial on the number of things to perform the task on.

For example, the amount of time it takes to read a book might 

be proportional to the number of words, plus the amount of 

time it takes to settle into your favorite easy chair.

C1
. N + C2
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Big-O: Dropping the Low Term

C1
. N + C2

When N is very large, the time spent settling into your easy 
chair becomes such a small proportion of the total time that 
it’s virtually zero.

So from a practical perspective, for large N, the polynomial 
reduces to:

C1
. N

In fact, for any polynomial, if N is large, then all of the terms 
except the highest-order term are irrelevant.
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Big-O: Dropping the Constant

C1
. N

Computers get faster and faster all the time. And there are 
many different flavors of computers, having many different 
speeds.

So, computer scientists don’t care about the constant, only 
about the order of the highest-order term of the polynomial.

They indicate this with Big-O notation:

O(N)

This is often said as: “of order N.”
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N-Body Problems

Given N bodies, each body exerts a force on all of the other    

N – 1 bodies.
Therefore, there are N • (N – 1) forces total.

In Big-O notation, that’s O(N2) forces.

So, calculating the forces takes O(N2) time to execute.

But, there are only N particles, each taking up the same amount 

of memory, so we say that N-body codes are of:

 O(N)  spatial complexity (memory)

 O(N2) time complexity
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O(N2) Forces

Note that this picture shows only the forces between A and everyone else.

A

NCSI Intro Parallel: Apps & Par Types

June 26 - July 11 2011



46

How to Calculate?

Whatever your physics is, you have some function, F(Bi,Bj), 
that expresses the force between two bodies Bi and Bj.

For example, for stars and galaxies,

F(A,B) = G · mBi
· mBj

/ dist(Bi, Bj)
2

where G is the gravitational constant and m is the mass of the 
body in question.

If you have all of the forces for every pair of particles, then 

you can calculate their sum, obtaining the force on every 

particle.

From that, you can calculate every particle’s new position and 

velocity.
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How to Parallelize?

Okay, so let’s say you have a nice serial (single-CPU) code 

that does an N-body calculation.
How are you going to parallelize it?

You could:

 have a server feed particles to processes;

 have a server feed interactions (particle pairs) to processes;

 have each process decide on its own subset of the particles, 

and then share around the summed forces on those particles;

 have each process decide its own subset of the interactions, 
and then share around the summed forces from those 
interactions.
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Do You Need a Server?

Let’s say that you have N bodies, and therefore you have        

½ N (N - 1) interactions (every particle interacts with all of 

the others, but you don’t need to calculate both Bi Bj and 

Bj Bi).

Do you need a server?

Well, can each processor determine, on its own, either           

(a) which of the bodies to process, or (b) which of the 

interactions to process?

If the answer is yes, then you don’t need a server.
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Parallelize How?

Suppose you have Np processors.

Should you parallelize:

 by assigning a subset of N / Np of the bodies to each 

processor, OR

 by assigning a subset of N (N - 1) / Np of the interactions to 

each processor?
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Data vs. Task Parallelism

 Data Parallelism means parallelizing by giving a subset of 

the data to each process, and then each process performs the 

same tasks on the different subsets of data.

 Task Parallelism means parallelizing by giving a subset of 

the tasks to each process, and then each process performs a 

different subset of tasks on the same data.
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Data Parallelism for N-Body?

If you parallelize an N-body code by data, then each processor 

gets N / Np pieces of data.

For example, if you have 8 bodies and 2 processors, then:
 Processor P0 gets the first 4 bodies;
 Processor P1 gets the second 4 bodies.

But, every piece of data (that is, every body) has to interact 
with every other piece of data, to calculate the forces.

So, every processor will have to send all of its data to all of the 
other processors, for every single interaction that it 
calculates.

That’s a lot of communication!
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Task Parallelism for N-body?

If you parallelize an N-body code by task, then each processor 

gets all of the pieces of data that describe the particles (for 

example, positions, velocities, masses).

Then, each processor can calculate its subset of the interaction 

forces on its own, without talking to any of the other 

processors.

But, at the end of the force calculations, everyone has to share all 

of the forces that have been calculated, so that each particle 

ends up with the total force that acts on it (global reduction).
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MPI_Reduce (C)

Here’s the C syntax for MPI_Reduce:
mpi_error_code =

MPI_Reduce(sendbuffer, recvbuffer,
count, datatype, operation,
root, communicator, mpi_error_code);

For example, to do a sum over all of the particle forces:
mpi_error_code =

MPI_Reduce(

local_particle_force_sum,

global_particle_force_sum,

number_of_particles,

MPI_DOUBLE, MPI_SUM,

server_process, MPI_COMM_WORLD);
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MPI_Reduce (F90)

Here’s the Fortran 90 syntax for MPI_Reduce:
CALL MPI_Reduce(sendbuffer, recvbuffer,  &
&         count, datatype, operation,     &
&         root, communicator, mpi_error_code)

For example, to do a sum over all of the particle forces:
CALL MPI_Reduce(                          &

&         local_particle_force_sum,        &

&         global_particle_force_sum,       &

&         number_of_particles,             &

&         MPI_DOUBLE_PRECISION, MPI_SUM,   &

&         server_process, MPI_COMM_WORLD,  &

&         mpi_error_code)
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Sharing the Result

In the N-body case, we don’t want just one processor to know 
the result of the sum, we want every processor to know.

So, we could do a reduce followed immediately by a broadcast.

But, MPI gives us a routine that packages all of that for us:

MPI_Allreduce.

MPI_Allreduce is just like MPI_Reduce except that 

every process gets the result (so we drop the

server_process argument).
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MPI_Allreduce (C)

Here’s the C syntax for MPI_Allreduce:
mpi_error_code =

MPI_Allreduce(

sendbuffer, recvbuffer, count,

datatype, operation,

communicator);

For example, to do a sum over all of the particle forces:
mpi_error_code =

MPI_Allreduce(

local_particle_force_sum,

global_particle_force_sum,

number_of_particles,

MPI_DOUBLE, MPI_SUM,

MPI_COMM_WORLD);
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MPI_Allreduce (F90)

Here’s the Fortran 90 syntax for MPI_Allreduce:
CALL MPI_Allreduce(                      &

&         sendbuffer, recvbuffer, count,  &

&         datatype, operation,            &

&         communicator, mpi_error_code)

For example, to do a sum over all of the particle forces:
CALL MPI_Allreduce(                      &

&         local_particle_force_sum,       &

&         global_particle_force_sum,      &

&         number_of_particles,            &

&         MPI_DOUBLE_PRECISION, MPI_SUM,  &    

&         MPI_COMM_WORLD, mpi_error_code)
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Collective Communications

A collective communication is a communication that is shared 

among many processes, not just a sender and a receiver.

MPI_Reduce and MPI_Allreduce are collective 

communications.

Others include: broadcast, gather/scatter, all-to-all.
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Collectives Are Expensive

Collective communications are very expensive relative to 

point-to-point communications, because so much more 

communication has to happen.

But, they can be much cheaper than doing zillions of point-to-

point communications, if that’s the alternative.
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What is a Simulation?

All physical science ultimately is expressed as calculus (for 

example, differential equations).

Except in the simplest (uninteresting) cases, equations based 

on calculus can’t be directly solved on a computer.

Therefore, all physical science on computers has to be 

approximated.
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I Want the Area Under This Curve!

How can I get the area under this curve?
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A Riemann Sum

Δx

{

yi

Area under the curve  ≈ 



n

i

i xy
1

Ceci n’est pas un area under the curve: it’s approximate!

[3]
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A Riemann Sum

Δx

{

yi

Area under the curve  ≈ 



n

i

i xy
1

Ceci n’est pas un area under the curve: it’s approximate!
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A Better Riemann Sum

Δx

{

yi

Area under the curve  ≈ 



n

i

i xy
1

More, smaller rectangles produce a better approximation.

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011



66

The Best Riemann Sum

Area under the curve  = 





1i

i ydxdxy

In the limit, infinitely many infinitesimally small 
rectangles produce the exact area.
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The Best Riemann Sum

Area under the curve  = 





1i

i ydxdxy

In the limit, infinitely many infinitesimally small 
rectangles produce the exact area.
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Differential Equations

A differential equation is an equation in which differentials 
(for example, dx) appear as variables.

Most physics is best expressed as differential equations.

Very simple differential equations can be solved in “closed 
form,” meaning that a bit of algebraic manipulation gets the 
exact answer.

Interesting differential equations, like the ones governing 
interesting physics, can’t be solved in close form.

Solution: approximate!
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A Discrete Mesh of Data

Data 

live 

here!
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A Discrete Mesh of Data

Data 

live 

here!
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Finite Difference

A typical (though not the only) way of approximating the 

solution of a differential equation is through finite 

differencing: convert each dx (infinitely thin) into a Δx (has 

finite nonzero width).
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Navier-Stokes Equation
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Differential Equation

Finite Difference Equation

The Navier-Stokes equations governs the 

movement of fluids (water, air, etc).
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Cartesian Coordinates

x

y
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Structured Mesh

A structured mesh is like the mesh on the previous slide. It’s 

nice and regular and rectangular, and can be stored in a 

standard Fortran or C or C++ array of the appropriate 

dimension and shape.

REAL,DIMENSION(nx,ny,nz) :: u

float u[nx][ny][nz];
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Flow in Structured Meshes

When calculating flow in a structured mesh, you typically use 
a finite difference equation, like so:

unewi,j = F(t, uoldi,j, uoldi-1,j, uoldi+1,j, uoldi,j-1, uoldi,j+1)

for some function F, where uoldi,j is at time t and unewi,j is at 

time t + t.

In other words, you calculate the new value of ui,j, based on its 
old value as well as the old values of its immediate 
neighbors.

Actually, it may use neighbors a few farther away.
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Ghost Boundary Zones
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Ghost Boundary Zones

We want to calculate values in the part of the mesh that we 

care about, but to do that, we need values on the boundaries.

For example, to calculate unew1,1, you need uold0,1 and uold1,0.

Ghost boundary zones are mesh zones that aren’t really part of 

the problem domain that we care about, but that hold 

boundary data for calculating the parts that we do care 

about.
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Using Ghost Boundary Zones (C)

A good basic algorithm for flow that uses ghost boundary 

zones is:
for (timestep = 0;

timestep <  number_of_timesteps;
timestep++) {

fill_ghost_boundary(…);
advance_to_new_from_old(…);

}

This approach generally works great on a serial code.
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Using Ghost Boundary Zones (F90)

A good basic algorithm for flow that uses ghost boundary 

zones is:
DO timestep = 1, number_of_timesteps

CALL fill_ghost_boundary(…)
CALL advance_to_new_from_old(…)

END DO

This approach generally works great on a serial code.
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Ghost Boundary Zones in MPI

What if you want to parallelize a Cartesian flow code in MPI?

You’ll need to:

 decompose the mesh into submeshes;

 figure out how each submesh talks to its neighbors.

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011



81

Data Decomposition
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Data Decomposition

We want to split the data into chunks of equal size, and give 

each chunk to a processor to work on.

Then, each processor can work independently of all of the 

others, except when it’s exchanging boundary data with its 

neighbors.
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MPI_Cart_*

MPI supports exactly this kind of calculation, with a set of 

functions MPI_Cart_*:

 MPI_Cart_create

 MPI_Cart_coords

 MPI_Cart_shift

These routines create and describe a new communicator, one 

that replaces MPI_COMM_WORLD in your code.
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MPI_Sendrecv

MPI_Sendrecv is just like an MPI_Send followed by an
MPI_Recv, except that it’s much better than that.

With MPI_Send and MPI_Recv, these are your choices:

 Everyone calls MPI_Recv, and then everyone calls
MPI_Send.

 Everyone calls MPI_Send, and then everyone calls
MPI_Recv.

 Some call MPI_Send while others call MPI_Recv, 
and then they swap roles.
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Why not Recv then Send?

Suppose that everyone calls MPI_Recv, and then everyone 

calls MPI_Send.

MPI_Recv(incoming_data, ...);

MPI_Send(outgoing_data, ...);

Well, these routines are blocking, meaning that the 

communication has to complete before the process can 

continue on farther into the program.

That means that, when everyone calls MPI_Recv, they’re 

waiting for someone else to call MPI_Send.

We call this deadlock.

Officially, the MPI standard guarantees that                          

THIS APPROACH WILL ALWAYS FAIL.
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Why not Send then Recv?

Suppose that everyone calls MPI_Send, and then everyone 

calls MPI_Recv:

MPI_Send(outgoing_data, ...);

MPI_Recv(incoming_data, ...);

Well, this will only work if there’s enough buffer space

available to hold everyone’s messages until after everyone 

is done sending.

Sometimes, there isn’t enough buffer space.

Officially, the MPI standard allows MPI implementers to 

support this, but it isn’t part of the official MPI standard; 

that is, a particular MPI implementation doesn’t have to 

allow it, so THIS WILL SOMETIMES FAIL.

NCSI Intro Parallel: Apps & Par Types

June 26 - July 1 2011



87

Alternate Send and Recv?

Suppose that some processors call MPI_Send while others 
call MPI_Recv, and then they swap roles:

if ((my_rank % 2) == 0) {

MPI_Send(outgoing_data, ...);

MPI_Recv(incoming_data, ...);

}

else {

MPI_Recv(incoming_data, ...);

MPI_Send(outgoing_data, ...);
}

This will work, and is sometimes used, but it can be painful to 

manage – especially if you have an odd number of 

processors.
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MPI_Sendrecv

MPI_Sendrecv allows each processor to simultaneously 

send to one processor and receive from another.

For example, P1 could send to P0 while simultaneously 
receiving from P2 .

(Note that the send and receive don’t have to literally be 
simultaneous, but we can treat them as so in writing the 
code.)

This is exactly what we need in Cartesian flow: we want the 

boundary data to come in from the east while we send 

boundary data out to the west, and then vice versa.

These are called shifts.
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MPI_Sendrecv

mpi_error_code =

MPI_Sendrecv(

westward_send_buffer,

westward_send_size, MPI_REAL,

west_neighbor_process, westward_tag,

westward_recv_buffer,

westward_recv_size, MPI_REAL,

east_neighbor_process, westward_tag,

cartesian_communicator, mpi_status);

This call sends to west_neighbor_process the data in

westward_send_buffer, and at the same time receives 

from east_neighbor_process a bunch of data that 

end up in westward_recv_buffer.
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Why MPI_Sendrecv?

The advantage of MPI_Sendrecv is that it allows us the 

luxury of no longer having to worry about who should send 

when and who should receive when.

This is exactly what we need in Cartesian flow: we want the 

boundary information to come in from the east while we 

send boundary information out to the west – without us 

having to worry about deciding who should do what to who 

when.
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MPI_Sendrecv

Concept

in Principle

Concept

in practice
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MPI_Sendrecv

Concept

in practice

westward_send_buffer westward_recv_buffer

Actual

Implementation
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What About Edges and Corners?

If your numerical method involves faces, edges and/or corners, 

don’t despair.

It turns out that, if you do the following, you’ll handle those 

correctly:

 When you send, send the entire ghost boundary’s worth, 

including the ghost boundary of the part you’re sending.

 Do in this order:

 all east-west;

 all north-south;

 all up-down.

 At the end, everything will be in the correct place.
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