
1 

 

Parallelization Sensation! 

In this exercise, we’ll use the same conventions and commands as in the previous exercises. You should 

refer back to the previous exercise descriptions for details. 

You’ll be parallelizing an existing serial code, similar to the Game of Life program featured Wed June 29.  

If you produce a fast MPI version, you may earn your way onto the Leader Board on the workshop 

webpage. The person with the best final score will receive a modest gift. 

Here are the steps for the Parallelization Sensation! 

1. Log in to the Linux cluster supercomputer (sooner.oscer.ou.edu). 

2. Confirm that you’re in your home directory: 

%  pwd 

/home/yourusername 

3. Check that you have a NCSIPARI2011_exercises subdirectory inside your home directory: 

%  ls 

NCSIPARI2011_exercises 

4. Copy Henry’s Transport directory into your NCSIPARI2011_exercises directory: 

%  cp  -r  ~hneeman/NCSIPARI2011_exercises/Transport/  ~/NCSIPARI2011_exercises/ 

5. Go into your NCSIPARI2011_exercises subdirectory: 

%  cd  NCSIPARI2011_exercises 

6. Confirm that you’re in your NCSIPARI2011_exercises subdirectory: 

%  pwd 

/home/yourusername/NCSIPARI2011_exercises 

7. See what files or subdirectories (if any) are in the current working directory: 

%  ls 

8. Go into your Transport subdirectory: 

%  cd  Transport 

9. Confirm that you’re in your NCSIPARI2011_exercises subdirectory: 

%  pwd 

/home/yourusername/NCSIPARI2011_exercises/Transport 

10. See what files or subdirectories (if any) are in the current working directory: 

%  ls 

11. Choose which language you want to use (C or Fortran90), and cd into the appropriate directory: 

%  cd  C 

OR: 

%  cd  Fortran90 

12. Go into your Serial subdirectory. 

%  cd  Serial 



2 

 

13. Edit the batch script transport_serial.bsub to use your username and e-mail address. 

14. Examine transport.c (or transport.f90). 

15. Compile using make: 

%  make 

16. Submit the batch script file transport_serial.bsub to the batch scheduler: 

%  bsub  <  transport_serial.bsub 

NOTICE the less than symbol < which is EXTREMELY IMPORTANT. 

You should get back output something like this: 

Job <######> is submitted to queue <pari_q>. 

where ###### is replaced by the batch job ID for the batch job that you’ve just submitted. 

17. Check the status of your batch job: 

%  bjobs 

You’ll get one of the following outputs, either: 

No unfinished job found 

(if you get this right after the bjobs command, try it several more times, because sometimes 

there’s a pause just before the batch job starts showing up, as below), 

OR: 

JOBID   USER         STAT  QUEUE    FROM_HOST  EXEC_HOST  JOB_NAME   SUBMIT_TIME 

4081250 yourusername PEND  pari_q   sooner1               transport  Oct 17 14:58 

where ###### is replaced by a batch job ID number, and yourusername is replaced by your 

user name, and where PEND is short for “pending,” meaning that your job is waiting to start, 

OR: 

JOBID   USER         STAT  QUEUE    FROM_HOST  EXEC_HOST  JOB_NAME   SUBMIT_TIME 

4081250 yourusername RUN   pari_q   sooner1    c127       transport  Oct 17 14:58 

18. You may need to check the status of your batch job repeatedly, using the bjobs command, until it 

runs to completion. This may take several minutes (occasionally much longer). 

You’ll know that the batch job has finished when it no longer appears in the list of your batch jobs: 

No unfinished job found 

19. Once your job has finished running, find the standard output and standard error files from your job:  

%  ls  -ltr  

Using this command, you should see files named 

transport_######_stdout.txt  

and 

transport_######_stderr.txt 

(where ###### is replaced by the batch job ID). 

These files should contain the output of transport. 



3 

 

20. Look at the contents of the standard output file: 

% cat transport_######_stdout.txt 

(where ###### is replaced by the batch job ID). 

You may want to look at the stderr file as well: 

% cat transport_######_stdout.txt 

21. If this run had ANY problems, then send e-mail to: 

support@oscer.ou.edu 

which reaches all OSCER staff (including Henry), and attach the following files: 

make_cmd 

makefile 

transport.c 

transport_serial.bsub 

transport_######_stdout.txt 

transport_######_stderr.txt 

22. When the batch job has finished, examine the output files, including the following file: 

data_xline.txt 

23. Profile the executable: 

%  gprof  transport  >  transport_serial_gprof.txt 

24. Examine the profile output in the file named transport_serial_gprof.txt to determine 

which routine most of the runtime is spent in. That’s where you should focus your speedup efforts. 

25. Go up to the parent of the Serial directory (that is, to the NBody directory): 

%  cd  .. 

26. Copy the Serial directory to a new MPI directory: 

% cp  -r  Serial/  MPI/ 

27. Copy the new batch script into the new directory: 

%  cp  transport_mpi.bsub  MPI/ 

28. Go into your MPI collective communications directory: 

%  cd  MPI 

29. Edit your batch script transport_mpi.bsub to use your username and e-mail address. 

30. Edit your makefile to change gcc or pgcc or icc to mpicc (or to change gfortran or 

pgf90 or ifort to mpif90). 

31. Parallelize the code using MPI. We recommend using MPI_Sendrecv, but that’s not a 

requirement. 

32. Set the environment variables named MPI_COMPILER and MPI_INTERCONNECT; for example: 

%  setenv  MPI_COMPILER      gnu 

%  setenv  MPI_INTERCONNECT  ib 

33. Compile using your makefile. You may need to do this multiple times, debugging as you go. 

mailto:support@oscer.ou.edu


4 

 

34. Submit the batch job and let it run to completion. Once it starts actually running (that is, no longer 

pending in the queue waiting to start), if it seems to take a very long time, probably you have a bug. 

35. For each run, once the batch job completes: 

a. Examine the various output files to see the timings for your runs with executables created by the 

various compilers under the various levels of optimization. 

b. Profile, as described above. 

36. Continue to debug and run until you’ve got a working version of the code. 

Parallelization Sensation Rules 

 You may participate as an individual or as part of a team of collaborators. 

 You’re welcome to submit questions to us via Piazza. While we’ll make our best effort to respond in 

a timely manner, we cannot promise to do so. 

 Your code MUST compile and run on Sooner. If it runs on everything except Sooner, it will be 

discarded. 

 Submit your source code, makefile and batch script by e-mail to Henry Neeman (hneeman@ou.edu) 

by no later than 12:00 noon Pacific Time this coming Friday (July 1 2011). 

 Late submissions will be ignored. 

 Be sure to tell us what values you used for MPI_COMPILER and MPI_INTERCONNECT. 

 We will compile and run your code as you have set it up, using the values for those environment 

variables that you’ve specified. 

 Your MPI version MUST be able to run successfully on 32 MPI processes. 

 You MUST choose inputs such that the original serial version of the Transport code runs for at least 

10 minutes on your set of inputs before completing (runtime only, not pending time in the queue, nor 

startup and shutdown overhead time in the batch system, etc). 

 The values in your MPI version’s output (data_xline.txt) must be just about the same as the 

original serial version’s output produced by the same compiler family on the same input data. Here, 

“just about the same” means that the relative error is less than 10
-5

 when calculated like so: 

For each value of the final timestep of your run: 

((parallel_value[i][j][k] – serial_value[i][j][k]) / 

serial_value[i][j][k])  <  10
-5

 

Note that, where serial_value is zero, we won’t calculate the relative error. 

Your overall relative error is the maximum of the individual relative error values that you obtain. 

 Your score will be the original serial version’s time divided by your MPI version’s time on 32 

processes, for the same input dataset (your choice) on both. 

 You may submit multiple times up until the deadline (but not after). We only promise to judge the last 

one submitted, though we reserve the right to try at any time your most recently submitted version. 

 The score values will be posted to the Parallelization Sensation Leader Board on the workshop 

webpage. You may submit anonymously or by individual name or team name. 

 The final top entry will receive acknowledgement and possibly a small gift. Results will be posted by 

the end of this workshop. 

mailto:hneeman@ou.edu

