
Running HPL

1. Before doing this, you MUST have already installed HPL.

2. Go into your NCSIPARI2011_exercises directory:

% cd ~/NCSIPARI2011_exercises

3. Check to make sure that you’re in your NCSIPARI2011_exercises directory:

% pwd

4. Copy the directory named HPL_exercise from Henry’s

NCSIPARI2011_exercises directory:

% cp -r ~hneeman/NCSIPARI2011_exercises/HPL_exercise .

NOTE: The period (“dot”) at the end of the cp command means “to the current

working directory” and is VERY IMPORTANT.

5. You should now have your own copy of the HPL_exercise directory, as a subdirectory

of your NCSIPARI2011_exercises directory. Check to make sure that you do:

% ls

Note that this command is lower case L followed by lower case S (that is, “ell ess” which is

short for “list”), NOT “one ess.”

You should see a list of files and subdirectories, one of which should be:

 HPL_exercise

6. Change directory into your HPL_exercise directory, like this:

% cd HPL_exercise

7. Make sure that you’re in your HPL_exercise directory, like this:

% pwd

8. See what’s in this directory, like this:

% ls

You should see some subdirectories, such as HPL_0001p.

9. Go into the first such subdirectory:

% cd HPL_0001p1t

10. Using your preferred Unix text editor (for example, nano, pico, vi, emacs), edit the

batch script file hpl_0001p1t.bsub.

In particular:

(a) Change yourusername to your user name.

(b) Change youremailaddress@yourinstitution.edu to your e-mail address.

11. While you’re editing the batch script file, carefully read its contents.

12. Also examine the file named HPL_0001p1t.dat, which contains the input parameters for

this run.

13. Submit the batch script file hpl_0001p1t.bsub to the batch scheduler:

% bsub < hpl_0001p1t.bsub

NOTICE the less than symbol < which is EXTREMELY IMPORTANT.

You should get back output something like this:

Job <######> is submitted to queue <pari_q>.

where ###### is replaced by the batch job ID for the batch job that you’ve just submitted.

14. Check the status of your batch job:

% bjobs

You’ll get one of the following outputs, either:

No unfinished job found

(if you get this right after the bjobs command, try it several more times, because

sometimes there’s a pause just before the batch job starts showing up, as below),

OR:

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

4081250 yourusername PEND pari_q sooner1 hpl_0001p1t Oct 17 9:58

where ###### is replaced by a batch job ID number, and yourusername is replaced

by your user name, and where PEND is short for “pending,” meaning that your job is

waiting to start,

OR:

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

4081250 yourusername RUN pari_q sooner1 c127 hpl_0001p1t Oct 17 9:58

15. You may need to check the status of your batch job repeatedly, using the bjobs command,

until it runs to completion. This may take several minutes (occasionally much longer).

You’ll know that the batch job is done when it no longer appears in your list of batch jobs:

No unfinished job found

16. Once your job has finished running, find the standard output and standard error files from

your job:

% ls -ltr

Using this command, you should see files named

hpl_0001p1t_######_stdout.txt

and

hpl_0001p1t_######_stderr.txt

(where ###### is replaced by the batch job ID).

These files should contain the output of hpl_0001p1t. Ideally, the stderr file should

have length zero.

17. Look at the contents of the standard output file:

% cat hpl_0001p1t_######_stdout.txt

(where ###### is replaced by the batch job ID).

You may want to look at the stderr file as well:

% cat hpl_0001p1t_######_stdout.txt

18. What percentage of the theoretical peak of the hardware you’re running on did you achieve?

Hint: These chips are 2.0 GHz (2 billion clock cycles per second), and can perform up to 4

Floating point OPerations per clock cycle per core. Each CPU chip has 4 cores, and each

compute node has 2 CPU chips. (For this first run, you’re using only a single core.)

HPL reports speeds in GFLOPs (“gigaflops,” meaning billions of FLoating point OPerations

per Second).

19. Go into your HPL_0001p2t directory:

% cd ../HPL_0001p2t

20. Edit your hpl_0001p2t.bsub batch script file.

In this file, notice that we’ve changed the number of threads to 2 but kept the number of MPI

processes at 1.

21. Also examine the file named HPL_0001p2t.dat, which contains the input parameters for

this run.

How does this run’s parameters differ from the previous? Why?

22. Submit this batch job using the bsub command.

23. Monitor its progress using the bjobs command.

24. When it completes, find its stdout and stderr files, and examine them.

How does this run differ from the previous run?

Is the output what you expected? Why or why not?

25. Do the same sequence of steps (#16 - #20) with hpl_0002p1t.bsub.

In this file, notice that we’ve changed the number of MPI processes to 2 but kept the number

of threads per process at 1. So this is the opposite approach from the previous.

How does this run’s parameters differ from the previous? Why?

26. Now, create new directories with names like

HPL_0001p4t

hpl_0004p4t

and figure out how to change them to do the appropriate run.

Specifically, in the HPL_whatever.dat file, you’ll want to change the following values:

P, Q, Ns.

For the various values of N, we recommend doing the following:

a. Calculate:

 sqrt(0.75 * nodes * 16 * 1024 * 1024 * 1024 / 8)

(Explanation: Each compute node on Sooner has 16 GB of RAM; each double precision

value is 8 bytes; you want to use only part of the RAM, because the operating system

needs part of it, and you really really don’t want to use swap disk.)

b. Find the nearest multiple of 256 * 3 * 5 that is just below the value calculated.

c. Then divide by 2, 4 and 8 to get the 4 N values needed.

Explain why this would be a good idea.

