

MPI Send/Receive Blocked/Unblocked

Josh Alexander, University of Oklahoma
Ivan Babic, Earlham College

Andrew Fitz Gibbon, Shodor Education Foundation Inc.
Henry Neeman, University of Oklahoma

Charlie Peck, Earlham College
Skylar Thompson, University of Washington

Aaron Weeden, Earlham College
Sunday June 26 – Friday July 1 2011

NCSI Intro Parallel: Non-blocking calls
June 26 - July 1 2011

Message Passing Interface

Where are we headed?

n  Blocking
n  Easiest, but might waste time
n  Send Communication Modes (same Receive)

n  Non Blocking
n  Extra things that might go wrong
n  Might be able to overlap wait with other stuff
n  Send/Receive and their friends

in focusing on Send and Receive

From where‘d we come?

•  MPI_Init (int *argc, char ***argv)
n  MPI_Comm_rank (MPI_Comm comm, int *rank)
n  MPI_Comm_size (MPI_Comm comm, int *size)
n  MPI_Send(

 void* buf, int count, MPI_Datatype datatype,
 int dest, int tag, MPI_Comm comm)

n  MPI_Recv(
 void* buf, int count, MPI_Datatype datatype,
 int source, int tag, MPI_Comm comm,
 MPI_Status *status)

•  MPI_Finalize ()

3

6 MPI commands

Four Blocking Send Modes

n  Send is the focus
n  MPI_RECV works with all Sends

n  Four Send modes to answer the questions …
n  Do an extra copy to dodge synchronization delay?
n  How do Sends/Receives Start/Finish together?

n  No change to parameters passed to send or receive
n  What does change is the name of the function

n  MPI_Ssend, MPI_Bsend, MPI_Rsend, and MPI_Send

4

basically synchronous communication

4 Blocking Send modes

n  Synchronous – Stoplight Intersection
n  No buffer, but both sides wait for other

n  Buffered – The roundabout You construct
n  Explicit user buffer, alls well as long as within buffer

n  Ready – Fire truck Stoplight Override
n  No buffer, no handshake, Send is the firetruck

n  Standard – The Roundabout
n  Not so standard blend of Synchronous and Buffered
n  Internal buffer?

5

all use same blocking receive

Synchronous

n  MPI_Ssend
n  Send can initiate, before Receive starts
n  Receive must start, before Send sends anything
n  Safest and most portable

n  Doesn’t care about order of Send/Receive
n  Doesn’t care about any hidden internal buffer

n  May have high synchronization overhead

6

no buffer

Buffered

n  MPI_Bsend
n  Send can complete, before Receive even starts
n  Explicit buffer allocation, via MPI_Buffer_attach
n  Error, if buffer overflow
n  Eliminates synchronization overhead, at cost of extra copy

7

explicit user defined buffer

Ready

n  MPI_Rsend
n  Receive must initiate, before Send starts
n  Minimum idle Sender, at expense of Receiver
n  Lowest sender overhead

n  No Sender/Receiver handshake
 As with Synchronous

n  No extra copy to buffer
 As with Buffered and Standard

8

no buffer - no synchronization

Standard

n  MPI_Send
n  Buffer may be on send side, receive side, or both
n  Could be Synchronous, but users expect Buffered
n  Goes Synchronous, if you exceed hidden buffer size
n  Potential for unexpected timing behavior

9

mysterious internal buffer

Non-Blocking Send/Receive

n  Call returns immediately, which allows for
overlapping other work

n  User must worry about whether …
n  Data to be sent is out of the send buffer
n  Data to be received has finished arriving

n  For sends and receives in flight
n  MPI_Wait – blocking - you go synchronous
n  MPI_Test – non-blocking - Status Check
n  Check for existence of data to receive
n  Blocking: MPI_Probe

Non-blocking: MPI_Iprobe

10

basically asynchronous communication

Non-Blocking Call Sequence

11

Restricts other work you can do

Don’t use data
till receive completes

Don’t write to send buffer
till send completes

requestID -> MPI_Wait

MPI_Irecv ->requestID
requestID ->MPI_Wait

MPI_Isend ->requestID
Receiver Sender

Non-blocking Send/Receive

n  MPI_Isend( 
"void *buf, int count, MPI_Datatype datatype,  
"int dest,int tag, MPI_Comm comm,
 MPI_Request *request)

n  MPI_Irecv( 
"void *buf, int count, MPI_Datatype datatype,
"int source, int tag, MPI_Comm comm,  
"MPI_Request *request)"

12

request ID for status checks

Return to blocking

n  Waiting on a single send"
n  MPI_Wait(MPI_Request *request, MPI_Status *status)"

n  Waiting on multiple sends (get status of all)"
n  Till all complete, as a barrier"

n  MPI_Waitall(int count, MPI_Request *requests,  
MPI_Status *statuses)  
"

n  Till at least one completes"
n  MPI_Waitany(int count, MPI_Request *requests,  
int *index, MPI_Status *status)"

n  Helps manage progressive completions"
n  int MPI_Waitsome(int incount, MPI_Request *requests,  
int *outcount, int *indices, MPI_Status *statuses)  
"

13

waiting for send/receive to complete

Tests don’t block

n  Flag true means completed"
n  MPI_Test(MPI_Request *request,  

int *flag, MPI_Status *status)"
n  MPI_Testall(int count, MPI_Request *requests,  

int *flag, MPI_Status *statuses)"
n  int MPI_Testany(int count, MPI_Request *requests,  

int *index, int *flag, MPI_Status *status)  
"

n  Like a non blocking MPI_Waitsome"
n  MPI_Testsome(int incount, MPI_Request *requests,  

int *outcount, int *indices, MPI_Status *statuses)  

14

but give you same info as a wait

Probe to Receive

n  Probes yield incoming size "
n  Blocking Probe,  
wait til match"

n  MPI_Probe(int source, int tag, MPI_Comm comm,  
 MPI_Status *status)"

n  Non Blocking Probe,  
flag true if ready"

n  MPI_Iprobe(int source, int tag, MPI_Comm comm,  
 int *flag, MPI_Status *status)"

15

you can know something's there

Non-Blocking Advantages

n  Avoids Deadlock
n  Decreases Synchronization Overhead
n  Best to

n  Post non-blocking sends and receives
 as early as possible

n  Do waits as late as possible
n  Otherwise consider using blocking calls

16

fine-tuning your send and receives

