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Message Passing Interface 



Where are we headed? 

n  Blocking 
n  Easiest, but might waste time 
n  Send Communication Modes (same Receive) 

n  Non Blocking 
n  Extra things that might go wrong 
n  Might be able to overlap wait with other stuff 
n  Send/Receive and their friends 

in focusing on Send and Receive 



From where‘d we come? 

•  MPI_Init         (int *argc, char ***argv) 
n  MPI_Comm_rank (MPI_Comm comm, int *rank)  
n  MPI_Comm_size (MPI_Comm comm, int *size) 
n  MPI_Send( 

    void* buf, int count, MPI_Datatype datatype, 
    int dest,    int tag,    MPI_Comm comm) 

n  MPI_Recv( 
   void* buf,  int count, MPI_Datatype datatype, 
   int source, int tag,     MPI_Comm comm, 
   MPI_Status *status) 

•  MPI_Finalize () 
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6 MPI commands 



Four Blocking Send Modes 

n  Send is the focus 
n  MPI_RECV works with all Sends 

n  Four Send modes to answer the questions … 
n  Do an extra copy to dodge synchronization delay? 
n  How do Sends/Receives Start/Finish together? 

n  No change to parameters passed to send or receive 
n  What does change is the name of the function 

n  MPI_Ssend, MPI_Bsend, MPI_Rsend, and MPI_Send 
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basically synchronous communication 



4 Blocking Send modes 

n  Synchronous – Stoplight Intersection 
n  No buffer, but both sides wait for other 

n  Buffered – The roundabout You construct 
n  Explicit user buffer, alls well as long as within buffer 

n  Ready – Fire truck Stoplight Override 
n  No buffer, no handshake, Send is the firetruck 

n  Standard – The Roundabout 
n  Not so standard blend of Synchronous and Buffered 
n  Internal buffer? 
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all use same blocking receive 



Synchronous 

n  MPI_Ssend 
n  Send can initiate, before Receive starts 
n  Receive must start, before Send sends anything 
n  Safest and most portable 

n  Doesn’t care about order of Send/Receive 
n  Doesn’t care about any hidden internal buffer 

n  May have high synchronization overhead 
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no buffer 



Buffered 

n  MPI_Bsend 
n  Send can complete, before Receive even starts 
n  Explicit buffer allocation, via MPI_Buffer_attach 
n  Error, if buffer overflow 
n  Eliminates synchronization overhead, at cost of extra copy 
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explicit user defined buffer 



Ready 

n  MPI_Rsend 
n  Receive must initiate, before Send starts 
n  Minimum idle Sender, at expense of Receiver 
n  Lowest sender overhead 

n  No Sender/Receiver handshake  
 As with Synchronous 

n  No extra copy to buffer 
 As with Buffered and Standard 
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no buffer - no synchronization 



Standard 

n  MPI_Send 
n  Buffer may be on send side, receive side, or both 
n  Could be Synchronous, but users expect Buffered 
n  Goes Synchronous, if you exceed hidden buffer size 
n  Potential for unexpected timing behavior 
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mysterious internal buffer 



Non-Blocking Send/Receive 

n  Call returns immediately, which allows for  
overlapping other work 

n  User must worry about whether … 
n  Data to be sent is out of the send buffer 
n  Data to be received has finished arriving 

n  For sends and receives in flight 
n  MPI_Wait – blocking - you go synchronous 
n  MPI_Test  – non-blocking  - Status Check 
n  Check for existence of data to receive 
n  Blocking:         MPI_Probe  

Non-blocking: MPI_Iprobe 
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basically asynchronous communication 



 
Non-Blocking Call Sequence 
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Restricts other work you can do 

Don’t use data  
till receive completes 

Don’t write to send buffer 
till send completes 

requestID -> MPI_Wait 

MPI_Irecv ->requestID 
requestID ->MPI_Wait 

MPI_Isend ->requestID 
Receiver Sender 



Non-blocking Send/Receive 

n  MPI_Isend(  
"void *buf, int count, MPI_Datatype datatype,  
"int dest,int tag, MPI_Comm comm,  
 MPI_Request *request) 

n  MPI_Irecv(  
"void *buf, int count, MPI_Datatype datatype,        
"int source, int tag, MPI_Comm comm,  
"MPI_Request *request)"
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request ID for status checks 



Return to blocking 

n  Waiting on a single send"
n  MPI_Wait(MPI_Request *request, MPI_Status *status)"

n  Waiting on multiple sends (get status of all)"
n  Till all complete, as a barrier"

n  MPI_Waitall(int count, MPI_Request *requests,  
MPI_Status *statuses)  
"

n  Till at least one completes"
n  MPI_Waitany(int count, MPI_Request *requests,  
int *index, MPI_Status *status)"

n  Helps manage progressive completions"
n  int MPI_Waitsome(int incount, MPI_Request *requests,  
int *outcount, int *indices, MPI_Status *statuses)  
"
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waiting for send/receive to complete  



Tests don’t block 

n  Flag true means completed"
n  MPI_Test(MPI_Request *request,  

int *flag, MPI_Status *status)"
n  MPI_Testall(int count, MPI_Request *requests,  

int *flag, MPI_Status *statuses)"
n  int MPI_Testany(int count, MPI_Request *requests,  

int *index, int *flag, MPI_Status *status)  
"

n  Like a non blocking MPI_Waitsome"
n  MPI_Testsome(int incount, MPI_Request *requests,  

int *outcount, int *indices, MPI_Status *statuses)  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but give you same info as a wait 



Probe to Receive 

n  Probes yield incoming size "
n  Blocking Probe,  
wait til match"

n  MPI_Probe(int source, int tag, MPI_Comm comm,  
          MPI_Status *status)"

n  Non Blocking Probe,  
flag true if ready"

n  MPI_Iprobe(int source, int tag, MPI_Comm comm,  
           int *flag, MPI_Status *status)"
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you can know something's there 



Non-Blocking Advantages 

n  Avoids Deadlock 
n  Decreases Synchronization Overhead 
n  Best to 

n  Post non-blocking sends and receives 
 as early as possible 

n  Do waits as late as possible 
n  Otherwise consider using blocking calls 
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fine-tuning your send and receives 


