
Benchmarking and Tuning for Parallel Programs

Charlie Peck

Introduction to Parallel Programming and Distributed Computing

UW and ISU

NCSI/SC Education Program

June, 2011

1



Introduction

• Benchmarking and tuning parallel software is just like improving

the performance of serial software, just roughly -np X times harder

to do...

• What is benchmarking? Accurately measuring the time and

resource consumption profile of a program built with particular

options with a given set of input data and run-time options.

• What is tuning? Improving the performance and/or resource

consumption profile of a program built with particular options with

a given set of input data and run-time options.

• Big question - How to use a given set of computational resources

to solve a particular problem efficiently?

2



Resources

• CPU utilization

• Memory utilization (cache, RAM; space, bandwidth)

• Disk utilization (intentional and unintentional (e.g. paging))

• Network utilization (bandwidth, latency)

3



Overall Process

• Looking at the outside; what resources is it using?

• Looking at the inside; what is it doing to consume those resources?

• Working from the highest level to the lowest level; the most
change is possible at the highest level, as you go down less change
is possible since the lower layers are all in response to the higher
layers.

– The algorithm
– The implementation of the algorithm
– The compiler
– The operating system

• The 80/20 rule.

• Time/space tradeoffs.

• The effect of the memory hierarchy.

• Style, clarity, generality; then tuning only if necessary.

4



Benchmarking

• Accurately measuring the time and resource consumption of a

program built with particular options with a given set of input data

and run-time options to find the nature and location of the

bottleneck(s).

• Operating system level

– time - system call, shell built-in and standalone
– vmstat
– top
– iostat

• Program level

– printf() or cout statements
– gprof - statistical profiling (lab)
– getrusage() - resource measurement from within the program
– Performance counters (lab)

5



Tuning

• Improving the performance and/or resource consumption profile of

a program built with particular options with a given set of input

data and run-time options.

• Working from the top down because the most change is possible

at the highest levels since lower levels are just responses to what

happens at the levels above them.

• What work is being done? Where is it being done? Is there a more

efficient way to accomplish the task?

• The process: measure, think, change one thing; measure, think,

change one thing; measure, think, ...

6



Tuning - Continued

• Choice of algorithm

• Resource limits (ulimit -a)

• Compiler choice (GNU, Intel, etc.)

• Compiler optimizations (-ON, loop unrolling, etc.)

• Find an optimized library, e.g. Goto’s BLAS, that does what you

need more efficiently/quickly

7



Parallel and Distributed Specific Tuning

• Latency and bandwidth; aggregation

• Synchronization

• Memory copies

• Network port contention

• Communication barriers

• Load balancing

8



The gprof Lab

• The lab is located at

https://cluster.earlham.edu/wiki/index.php/Cluster:Gprof

• You will need a piece of serial code as one of the inputs to the lab,

for today I suggest you use Henry’s serial N-Body code.

9



Resources

• gprof lab -

https://cluster.earlham.edu/wiki/index.php/Cluster:Gprof

• man gprof

• IBM whitepaper on low–level tuning -

http://www-128.ibm.com/developerworks/library/pa-bigiron3/

• High Performance Computing 2e, Severance and Dowd, O’Reilly,

Sebastopol, CA

• Performance Optimization of Numerically Intensive Codes,

Goedecker and Hoisie, SIAM Publishing, Philadelphia, PA

10


