Benchmarking and Tuning for Parallel Programs

Charlie Peck
Introduction to Parallel Programming and Distributed Computing
UW and ISU
NCSI/SC Education Program
June, 2011



Introduction

Benchmarking and tuning parallel software is just like improving
the performance of serial software, just roughly -np X times harder
to do...

What is benchmarking? Accurately measuring the time and
resource consumption profile of a program built with particular
options with a given set of input data and run-time options.

What is tuning? Improving the performance and/or resource
consumption profile of a program built with particular options with
a given set of input data and run-time options.

Big question - How to use a given set of computational resources
to solve a particular problem efficiently?



Resources

CPU utilization
Memory utilization (cache, RAM; space, bandwidth)
Disk utilization (intentional and unintentional (e.g. paging))

Network utilization (bandwidth, latency)



Overall Process

Looking at the outside; what resources is it using?
LLooking at the inside; what is it doing to consume those resources?

Working from the highest level to the lowest level; the most
change is possible at the highest level, as you go down less change
IS possible since the lower layers are all in response to the higher
layers.

— The algorithm

— The implementation of the algorithm
— The compiler

— The operating system

The 80/20 rule.
Time/space tradeoffs.
The effect of the memory hierarchy.

Style, clarity, generality; then tuning only if necessary.



Benchmarking

e Accurately measuring the time and resource consumption of a
program built with particular options with a given set of input data
and run-time options to find the nature and location of the
bottleneck(s).

e Operating system level

— time - system call, shell built-in and standalone
— vmstat

— top

— 1lostat

e Program level

— printf () or cout statements

— gprof - statistical profiling (lab)

— getrusage() - resource measurement from within the program
— Performance counters (lab)



Tuning

Improving the performance and/or resource consumption profile of
a program built with particular options with a given set of input
data and run-time options.

Working from the top down because the most change is possible
at the highest levels since lower levels are just responses to what
happens at the levels above them.

What work is being done? Where is it being done? Is there a more
efficient way to accomplish the task?

The process: measure, think, change one thing; measure, think,
change one thing; measure, think, ...



Tuning - Continued

Choice of algorithm

Resource limits (ulimit -a)

Compiler choice (GNU, Intel, etc.)

Compiler optimizations (-0N, loop unrolling, etc.)

Find an optimized library, e.g. Goto’'s BLAS, that does what you
need more efficiently/quickly



Parallel and Distributed Specific Tuning

LLatency and bandwidth; aggregation
Synchronization

Memory copies

Network port contention
Communication barriers

Load balancing



The gprof Lab

e The lab is located at
https://cluster.earlham.edu/wiki/index.php/Cluster:Gprof

e You will need a piece of serial code as one of the inputs to the lab,
for today I suggest you use Henry’s serial N-Body code.



Resources

gprof lab -
https://cluster.earlham.edu/wiki/index.php/Cluster:Gprof

man gprof

IBM whitepaper on low—level tuning -
http://www-128.ibm.com/developerworks/library/pa-bigiron3/

High Performance Computing 2e, Severance and Dowd, O’Reilly,
Sebastopol, CA

Performance Optimization of Numerically Intensive Codes,
Goedecker and Hoisie, SIAM Publishing, Philadelphia, PA

10



