
High Performance Computing

Modernization Program (HPCMP)

Summer 2011 Puerto Rico Workshop on

Intermediate Parallel Programming

& Cluster Computing

in conjunction with

the National Computational Science Institute (NCSI)/

SC11 Conference

Jointly hosted at

Polytechnic U of Puerto Rico

and U Oklahoma

and available live via videoconferencing

(streaming video recordings coming soon)

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

Intermediate

Parallel Programming

& Cluster Computing

Shared Memory Multithreading
Josh Alexander, University of Oklahoma

Ivan Babic, Earlham College
Ken Gamradt, South Dakota State University

Andrew Fitz Gibbon, Amazon.com
Mobeen Ludin, Earlham College

Tom Murphy, Contra Costa College
Henry Neeman, University of Oklahoma

Charlie Peck, Earlham College
Stephen Providence, Hampton University

Jeff Rufinus, Widener University
Luis Vicente, Polytechnic University of Puerto Rico

Aaron Weeden, Earlham College

Sunday July 31 – Saturday August 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

3

This is an experiment!

It‟s the nature of these kinds of videoconferences that

FAILURES ARE GUARANTEED TO HAPPEN!

NO PROMISES!

So, please bear with us. Hopefully everything will work out

well enough.

If you lose your connection, you can retry the same kind of

connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone

bridge to fall back on.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

4

H.323 (Polycom etc)

If you want to use H.323 videoconferencing – for example,

Polycom – then:

 If you ARE already registered with the OneNet gatekeeper,

dial 2500409.

 If you AREN‟T registered with the OneNet gatekeeper

(which is probably the case), then:

 Dial 164.58.250.47

 When asked for the conference ID, enter:

#0409#

Many thanks to Roger Holder and OneNet for providing this.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

H.323 from Internet Explorer

From a Windows PC running Internet Explorer:

1. You MUST have the ability to install software on the PC (or have someone install it for

you).

2. Download and install the latest Java Runtime Environment (JRE) from here

(click on the Java Download icon, because that install package includes both the JRE and

other components).

3. Download and install this video decoder.

4. Start Internet Explorer.

5. Copy-and-paste this URL into your IE window:

http://164.58.250.47/

6. When that webpage loads, in the upper left, click on "Streaming".

7. In the textbox labeled Sign-in Name, type your name.

8. In the textbox labeled Conference ID, type this:

0409

9. Click on "Stream this conference".

10. When that webpage loads, you may see, at the very top, a bar offering you options.

If so, click on it and choose "Install this add-on."

5

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

http://www.oracle.com/technetwork/java/javase/downloads/
http://164.58.250.47/codian_video_decoder.msi

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

6

EVO

There‟s a quick description of how to use EVO on the

workshop logistics webpage.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

7

Phone Bridge

If all else fails, you can call into our toll free phone bridge:

1-800-832-0736

* 623 2874 #

Please mute yourself and use the phone to listen.

Don‟t worry, we‟ll call out slide numbers as we go.

Please use the phone bridge ONLY if you cannot connect any

other way: the phone bridge is charged per connection per

minute, so our preference is to minimize the number of

connections.

Many thanks to OU Information Technology for providing the

toll free phone bridge.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

8

Please Mute Yourself

No matter how you connect, please mute yourself, so that we

cannot hear you.

At ISU and UW, we will turn off the sound on all conferencing

technologies.

That way, we won‟t have problems with echo cancellation.

Of course, that means we cannot hear questions.

So for questions, you‟ll need to send some kind of text.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

9

Questions via Text: Piazzza

Ask questions via:

http://www.piazza.com/

All questions will be read out loud and then answered out loud.

NOTE: Because of image-and-likeness rules, people attending

remotely offsite via videoconferencing CANNOT ask

questions via voice.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

http://www.piazza.com/

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

10

Thanks for helping and sponsoring!

 OSCER operations staff (Brandon George, Dave Akin, Brett
Zimmerman, Josh Alexander, Patrick Calhoun)

 Debi Gentis, OU

 Kevin Blake, OU IT (videographer)

 OU School of Electrical & Computer Engineering (LittleFe buildout)

 James Deaton and Roger Holder, OneNet

 Luis Vicente and Alfredo Cruz, Polytechnic U of Puerto Rico

 Omar Padron, Kean U

 Scott Lathrop, SC11 General Chair

 Donna Cappo, ACM

 Bob Panoff, Jack Parkin, Joyce South, Shodor Education Foundation Inc

 Jerry Malayer and Jim Wicksted, Oklahoma EPSCoR

 Dept of Defense High Performance Computing Modernization Program

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

11

This is an experiment!

It‟s the nature of these kinds of videoconferences that

FAILURES ARE GUARANTEED TO HAPPEN!

NO PROMISES!

So, please bear with us. Hopefully everything will work out

well enough.

If you lose your connection, you can retry the same kind of

connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone

bridge to fall back on.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

12

Outline

 Parallelism

 Shared Memory Multithreading

 OpenMP

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Parallelism

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

14

Parallelism

Less fish …

More fish!

Parallelism means

doing multiple things at

the same time: you can

get more work done in

the same time.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

15

What Is Parallelism?

Parallelism is the use of multiple processing units – either

processors or parts of an individual processor – to solve a

problem, and in particular the use of multiple processing

units operating concurrently on different parts of a problem.

The different parts could be different tasks, or the same task on

different pieces of the problem‟s data.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

16

Common Kinds of Parallelism

 Instruction Level Parallelism

 Shared Memory Multithreading (for example, OpenMP)

 Distributed Multiprocessing (for example, MPI)

 GPU Parallelism (for example, CUDA)

 Hybrid Parallelism

 Distributed + Shared (for example, MPI + OpenMP)

 Shared + GPU (for example, OpenMP + CUDA)

 Distributed + GPU (for example, MPI + CUDA)

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

17

Why Parallelism Is Good

 The Trees: We like parallelism because, as the number of

processing units working on a problem grows, we can solve

the same problem in less time.

 The Forest: We like parallelism because, as the number of

processing units working on a problem grows, we can solve

bigger problems.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

18

Parallelism Jargon

 Threads are execution sequences that share a single memory

area (“address space”)

 Processes are execution sequences with their own

independent, private memory areas

… and thus:

 Multithreading: parallelism via multiple threads

 Multiprocessing: parallelism via multiple processes

Generally:

 Shared Memory Parallelism is concerned with threads, and

 Distributed Parallelism is concerned with processes.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

19

Jargon Alert!

In principle:

 “shared memory parallelism” “multithreading”

 “distributed parallelism” “multiprocessing”

In practice, sadly, the following terms are often used
interchangeably:

 Parallelism

 Concurrency (not as popular these days)

 Multithreading

 Multiprocessing

Typically, you have to figure out what is meant based on the
context.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

20

Amdahl’s Law

In 1967, Gene Amdahl came up with an idea so crucial to our

understanding of parallelism that they named a Law for him:

p

p

p
S

F
F

S

)1(

1

where S is the overall speedup achieved by parallelizing a code,

Fp is the fraction of the code that‟s parallelizable, and Sp is the

speedup achieved in the parallel part.[1]

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

21

Amdahl’s Law: Huh?

What does Amdahl‟s Law tell us?

Imagine that you run your code on a zillion processors. The

parallel part of the code could speed up by as much as a

factor of a zillion.

For sufficiently large values of a zillion, the parallel part

would take zero time!

But, the serial (non-parallel) part would take the same
amount of time as on a single processor.

So running your code on infinitely many processors would
still take at least as much time as it takes to run just the
serial part.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

22

Max Speedup by Serial %

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

1E+10

1E-101E-091E-080.00000010.0000010.000010.00010.0010.010.11

M
a

x
im

u
m

 S
p

e
e
d

u
p

Serial Fraction

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

23

Amdahl’s Law Example (F90)
PROGRAM amdahl_test

IMPLICIT NONE

REAL,DIMENSION(a_lot) :: array

REAL :: scalar

INTEGER :: index

READ *, scalar !! Serial part

DO index = 1, a_lot !! Parallel part

array(index) = scalar * index

END DO

END PROGRAM amdahl_test

If we run this program on infinitely many CPUs, then the total

run time will still be at least as much as the time it takes to

perform the READ.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

24

Amdahl’s Law Example (C)
int main ()

{

float array[a_lot];

float scalar;

int index;

scanf("%f", scalar); /* Serial part */

/* Parallel part */

for (index = 0; index < a_lot; index++) {

array(index) = scalar * index

}

}

If we run this program on infinitely many CPUs, then the total

run time will still be at least as much as the time it takes to

perform the scanf.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

25

The Point of Amdahl’s Law

Rule of Thumb: When you write a parallel code, try to make

as much of the code parallel as possible, because the serial

part will be the limiting factor on parallel speedup.

Note that this rule will not hold when the overhead cost of

parallelizing exceeds the parallel speedup. More on this

presently.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

26

Speedup

The goal in parallelism is linear speedup: getting the speed of

the job to increase by a factor equal to the number of

processors.

Very few programs actually exhibit linear speedup, but some

come close.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

27

Scalability

Platinum = NCSA 1024 processor PIII/1GHZ Linux Cluster

Note: NCSA Origin timings are scaled from 19x19x53 domains.

Scalable means “performs just as well regardless of

how big the problem is.” A scalable code has near

linear speedup.

Better

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

28

Strong vs Weak Scalability

 Strong Scalability: If you double the number of processors,

but you keep the problem size constant, then the problem

takes half as long to complete.

 Weak Scalability: If you double the number of processors,

and double the problem size, then the problem takes the

same amount of time to complete.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

29

Scalability

Platinum = NCSA 1024 processor PIII/1GHZ Linux Cluster

Note: NCSA Origin timings are scaled from 19x19x53 domains.

This benchmark shows weak scalability.

Better

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

30

Granularity

Granularity is the size of the subproblem that each thread or
process works on, and in particular the size that it works on
between communicating or synchronizing with the others.

Some codes are coarse grain (a few very large parallel parts)
and some are fine grain (many small parallel parts).

Usually, coarse grain codes are more scalable than fine
grain codes, because less of the runtime is spent managing
the parallelism, so a higher proportion of the runtime is
spent getting the work done.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

31

Parallel Overhead

Parallelism isn’t free. Behind the scenes, the compiler and

the hardware have to do a lot of overhead work to make

parallelism happen.

The overhead typically includes:

 Managing the multiple threads/processes

 Communication among threads/processes

 Synchronization (described later)

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Shared Memory

Multithreading

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

33

The Jigsaw Puzzle Analogy

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

34

Serial Computing

Suppose you want to do a jigsaw puzzle

that has, say, a thousand pieces.

We can imagine that it‟ll take you a

certain amount of time. Let‟s say

that you can put the puzzle together in

an hour.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

35

Shared Memory Parallelism

If Scott sits across the table from you,
then he can work on his half of the
puzzle and you can work on yours.
Once in a while, you‟ll both reach into
the pile of pieces at the same time
(you‟ll contend for the same resource),
which will cause a little bit of
slowdown. And from time to time
you‟ll have to work together
(communicate) at the interface
between his half and yours. The
speedup will be nearly 2-to-1: y‟all
might take 35 minutes instead of 30.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

36

The More the Merrier?

Now let‟s put Bob and Charlie on the
other two sides of the table. Each of
you can work on a part of the puzzle,
but there‟ll be a lot more contention
for the shared resource (the pile of
puzzle pieces) and a lot more
communication at the interfaces. So
y‟all will get noticeably less than a
4-to-1 speedup, but you‟ll still have
an improvement, maybe something
like 3-to-1: the four of you can get it
done in 20 minutes instead of an hour.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

37

Diminishing Returns

If we now put Dave and Tom and Dan
and Paul on the corners of the table,
there‟s going to be a whole lot of
contention for the shared resource,
and a lot of communication at the
many interfaces. So the speedup y‟all
get will be much less than we‟d like;
you‟ll be lucky to get 5-to-1.

So we can see that adding more and
more workers onto a shared resource
is eventually going to have a
diminishing return.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

38

Distributed Parallelism

Now let‟s try something a little different. Let‟s set up two
tables, and let‟s put you at one of them and Scott at the other.
Let‟s put half of the puzzle pieces on your table and the other
half of the pieces on Scott‟s. Now y‟all can work completely
independently, without any contention for a shared resource.
BUT, the cost per communication is MUCH higher (you have
to scootch your tables together), and you need the ability to
split up (decompose) the puzzle pieces reasonably evenly,
which may be tricky to do for some puzzles.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

39

More Distributed Processors
It‟s a lot easier to add
more processors in
distributed parallelism.
But, you always have to
be aware of the need to
decompose the problem
and to communicate
among the processors.
Also, as you add more
processors, it may be
harder to load balance
the amount of work that
each processor gets.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

40

Load Balancing

Load balancing means ensuring that everyone completes

their workload at roughly the same time.

For example, if the jigsaw puzzle is half grass and half sky,

then you can do the grass and Scott can do the sky, and then

y‟all only have to communicate at the horizon – and the

amount of work that each of you does on your own is

roughly equal. So you‟ll get pretty good speedup.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

41

Load Balancing

Load balancing can be easy, if the problem splits up into
chunks of roughly equal size, with one chunk per
processor. Or load balancing can be very hard.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

42

Load Balancing

Load balancing can be easy, if the problem splits up into
chunks of roughly equal size, with one chunk per
processor. Or load balancing can be very hard.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

43

Load Balancing

Load balancing can be easy, if the problem splits up into
chunks of roughly equal size, with one chunk per
processor. Or load balancing can be very hard.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

How Shared Memory

Parallelism Behaves

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

45

The Fork/Join Model

Many shared memory parallel systems use a programming

model called Fork/Join. Each program begins executing on

just a single thread, called the parent.

Fork: When a parallel region is reached, the parent thread

spawns additional child threads as needed.

Join: When the parallel region ends, the child threads shut

down, leaving only the parent still running.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

46

The Fork/Join Model (cont’d)

Parent Thread

Fork

Join

Start

End

Child Threads

C
o
m

p
u

te
 t

im
e

Overhead

Overhead

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

47

The Fork/Join Model (cont’d)

In principle, as a parallel section completes, the child threads

shut down (join the parent), forking off again when the

parent reaches another parallel section.

In practice, the child threads often continue to exist but are idle.

Why?

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

48

Principle vs. Practice

Fork

Join

Start

End

Fork

Join

Start

End

Idle

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

49

Why Idle?
 On some shared memory multithreading computers, the

overhead cost of forking and joining is high compared to
the cost of computing, so rather than waste time on
overhead, the children sit idle until the next parallel section.

 On some computers, joining threads releases a program‟s
control over the child processors, so they may not be
available for more parallel work later in the run. Gang
scheduling is preferable, because then all of the processors
are guaranteed to be available for the whole run.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Standards and

Nonstandards

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

Standards and Nonstandards

In computing, there are standards and nonstandards.

Standards are established by independent organizations and

made public, so that anyone can produce a standard-

compliant implementation.

Example standards organizations include:

 International Organization for Standardization (ISO)

 “„ISO‟ [is] derived from the Greek isos, meaning „equal‟.” [2]

 American National Standards Institute (ANSI)

 Ecma International

Nonstandards are produced by a single organization or

consortium, with no requirement for external input and no

recognized standard.

51

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

Standards and Nonstandards

In practice, there are:

 standard standards, which both are common and have

been accepted as official standards – for example: C,

TCP/IP, HTML;

 nonstandard standards, which aren‟t common but have

been accepted as official standards – for example: Myrinet;

 standard nonstandards, which are common but haven‟t

been accepted as official standard – for example: PDF,

Windows;

 nonstandard nonstandards, which aren‟t common and

haven‟t been accepted as official standards – for example:

WordStar.

52

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

OpenMP

Most of this discussion is from [3], with a little bit from [4].

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

54

What Is OpenMP?

OpenMP is a standard way of expressing shared memory
parallelism.

OpenMP consists of compiler directives, functions and
environment variables.

When you compile a program that has OpenMP in it, then:

 if your compiler knows OpenMP, then you get an
executable that can run in parallel;

 otherwise, the compiler ignores the OpenMP stuff and you
get a purely serial executable.

OpenMP can be used in Fortran, C and C++, but only if your
preferred compiler explicitly supports it.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

55

Compiler Directives

A compiler directive is a line of source code that gives the

compiler special information about the statement or block of

code that immediately follows.

C++ and C programmers already know about compiler

directives:

#include "MyClass.h"

Many Fortran programmers already have seen at least one

compiler directive:

INCLUDE ’mycommon.inc’

OR

INCLUDE "mycommon.inc"

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

56

OpenMP Compiler Directives

OpenMP compiler directives in Fortran look like this:

!$OMP…stuff…

In C++ and C, OpenMP directives look like:

#pragma omp…stuff…

Both directive forms mean “the rest of this line contains

OpenMP information.”

Aside: “pragma” is the Greek word for “thing.” Go figure.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

57

Example OpenMP Directives

Fortran

!$OMP PARALLEL DO

!$OMP CRITICAL

!$OMP MASTER

!$OMP BARRIER

!$OMP SINGLE

!$OMP ATOMIC

!$OMP SECTION

!$OMP FLUSH

!$OMP ORDERED

C++/C

#pragma omp parallel for

#pragma omp critical

#pragma omp master

#pragma omp barrier

#pragma omp single

#pragma omp atomic

#pragma omp section

#pragma omp flush

#pragma omp ordered

Note that we won‟t cover all of these.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

58

A First OpenMP Program (F90)
PROGRAM hello_world

IMPLICIT NONE

INTEGER :: number_of_threads, this_thread, iteration

INTEGER,EXTERNAL :: omp_get_max_threads,

omp_get_thread_num

number_of_threads = omp_get_max_threads()

WRITE (0,"(I2,A)") number_of_threads, " threads"

!$OMP PARALLEL DO DEFAULT(PRIVATE) &

!$OMP SHARED(number_of_threads)

DO iteration = 0, number_of_threads - 1

this_thread = omp_get_thread_num()

WRITE (0,"(A,I2,A,I2,A) ")"Iteration ", &

& iteration, ", thread ", this_thread, &

& ": Hello, world!"

END DO

END PROGRAM hello_world

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

59

A First OpenMP Program (C)

int main ()

{

int number_of_threads, this_thread, iteration;

int omp_get_max_threads(), omp_get_thread_num();

number_of_threads = omp_get_max_threads();

fprintf(stderr, "%2d threads\n", number_of_threads);

pragma omp parallel for default(private) \

shared(number_of_threads)

for (iteration = 0;

iteration < number_of_threads; iteration++) {

this_thread = omp_get_thread_num();

fprintf(stderr, "Iteration %2d, thread %2d: Hello, world!\n",

iteration, this_thread);

}

}

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

60

Running hello_world

% setenv OMP_NUM_THREADS 4

% hello_world

4 threads

Iteration 0, thread 0: Hello, world!

Iteration 1, thread 1: Hello, world!

Iteration 3, thread 3: Hello, world!

Iteration 2, thread 2: Hello, world!

% hello_world

4 threads

Iteration 2, thread 2: Hello, world!

Iteration 1, thread 1: Hello, world!

Iteration 0, thread 0: Hello, world!

Iteration 3, thread 3: Hello, world!

% hello_world

4 threads

Iteration 1, thread 1: Hello, world!

Iteration 2, thread 2: Hello, world!

Iteration 0, thread 0: Hello, world!

Iteration 3, thread 3: Hello, world!

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

61

OpenMP Issues Observed

From the hello_world program, we learn that:

 At some point before running an OpenMP program, you must

set an environment variable

OMP_NUM_THREADS

that represents the number of threads to use.

 The order in which the threads execute is nondeterministic.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

62

The PARALLEL DO Directive (F90)

The PARALLEL DO directive tells the compiler that the DO

loop immediately after the directive should be executed in

parallel; for example:

!$OMP PARALLEL DO

DO index = 1, length

array(index) = index * index

END DO

The iterations of the loop will be computed in parallel (note

that they are independent of one another).

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

63

The parallel for Directive (C)

The parallel for directive tells the compiler that the for

loop immediately after the directive should be executed in

parallel; for example:

pragma omp parallel for

for (index = 0; index < length; index++) {

array[index] = index * index;

}

The iterations of the loop will be computed in parallel (note that

they are independent of one another).

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

64

A Change to hello_world

% hello_world

4 threads

Iteration 9, thread 3: Hello, world!

Iteration 0, thread 0: Hello, world!

Iteration 10, thread 3: Hello, world!

Iteration 11, thread 3: Hello, world!

Iteration 1, thread 0: Hello, world!

Iteration 2, thread 0: Hello, world!

Iteration 3, thread 1: Hello, world!

Iteration 6, thread 2: Hello, world!

Iteration 7, thread 2: Hello, world!

Iteration 8, thread 2: Hello, world!

Iteration 4, thread 1: Hello, world!

Iteration 5, thread 1: Hello, world!

Suppose we do 3 loop iterations per thread:

DO iteration = 0, number_of_threads * 3 – 1

Notice that the

iterations are split into

contiguous chunks,

and each thread gets

one chunk of

iterations.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

65

Chunks
By default, OpenMP splits the iterations of a loop into chunks

of equal (or roughly equal) size, assigns each chunk to a
thread, and lets each thread loop through its subset of the
iterations.

So, for example, if you have 4 threads and 12 iterations, then
each thread gets three iterations:

 Thread 0: iterations 0, 1, 2
 Thread 1: iterations 3, 4, 5
 Thread 2: iterations 6, 7, 8
 Thread 3: iterations 9, 10, 11

Notice that each thread performs its own chunk in
deterministic order, but that the overall order is
nondeterministic.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

66

Private and Shared Data

Private data are data that are owned by, and only visible to, a

single individual thread.

Shared data are data that are owned by and visible to all

threads.

(Note: In distributed parallelism, all data are private, as we‟ll

see next time.)

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

67

Should All Data Be Shared?

In our example program, we saw this:

!$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(number_of_threads)

What do DEFAULT(PRIVATE) and SHARED mean?

We said that OpenMP uses shared memory parallelism. So

PRIVATE and SHARED refer to memory.

Would it make sense for all data within a parallel loop to be

shared?

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

68

A Private Variable (F90)
Consider this loop:
!$OMP PARALLEL DO …

DO iteration = 0, number_of_threads - 1

this_thread = omp_get_thread_num()

WRITE (0,"(A,I2,A,I2,A) ") "Iteration ", iteration, &

& ", thread ", this_thread, ": Hello, world!"

END DO

Notice that, if the iterations of the loop are executed
concurrently, then the loop index variable named
iteration will be wrong for all but one of the threads.

Each thread should get its own copy of the variable named
iteration.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

69

A Private Variable (C)
Consider this loop:
#pragma omp parallel for …

for (iteration = 0;

iteration < number_of_threads; iteration++) {

this_thread = omp_get_thread_num();

printf("Iteration %d, thread %d: Hello, world!\n",

iteration, this_thread);

}

Notice that, if the iterations of the loop are executed
concurrently, then the loop index variable named
iteration will be wrong for all but one of the threads.

Each thread should get its own copy of the variable named
iteration.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

70

Another Private Variable (F90)

!$OMP PARALLEL DO …

DO iteration = 0, number_of_threads - 1

this_thread = omp_get_thread_num()

WRITE (0,"(A,I2,A,I2,A)") "Iteration ", iteration, &

& ", thread ", this_thread, ": Hello, world!"

END DO

Notice that, if the iterations of the loop are executed
concurrently, then this_thread will be wrong for all but
one of the threads.

Each thread should get its own copy of the variable named
this_thread.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

71

Another Private Variable (C)

#pragma omp parallel for …

for (iteration = 0;

iteration < number_of_threads; iteration++) {

this_thread = omp_get_thread_num();

printf("Iteration %d, thread %d: Hello, world!\n",

iteration, this_thread);

}

Notice that, if the iterations of the loop are executed
concurrently, then this_thread will be wrong for all but
one of the threads.

Each thread should get its own copy of the variable named
this_thread.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

72

A Shared Variable (F90)

!$OMP PARALLEL DO …

DO iteration = 0, number_of_threads - 1

this_thread = omp_get_thread_num()

WRITE (0,"(A,I2,A,I2,A)"“) "Iteration ", iteration, &

& ", thread ", this_thread, ": Hello, world!"

END DO

Notice that, regardless of whether the iterations of the loop are

executed serially or in parallel, number_of_threads

will be correct for all of the threads.

All threads should share a single instance of
number_of_threads.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

73

A Shared Variable (C)

#pragma omp parallel for …

for (iteration = 0;

iteration < number_of_threads; iteration++) {

this_thread = omp_get_thread_num();

printf("Iteration %d, thread %d: Hello, world!\n",

iteration, thread);

}

Notice that, regardless of whether the iterations of the loop are

executed serially or in parallel, number_of_threads

will be correct for all of the threads.

All threads should share a single instance of
number_of_threads.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

74

SHARED & PRIVATE Clauses

The PARALLEL DO directive allows extra clauses to be

appended that tell the compiler which variables are shared and

which are private:
!$OMP PARALLEL DO PRIVATE(iteration,this_thread) &

!$OMP SHARED (number_of_threads)

This tells that compiler that iteration and this_thread

are private but that number_of_threads is shared.

(Note the syntax for continuing a directive in Fortran90.)

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

75

DEFAULT Clause

If your loop has lots of variables, it may be cumbersome to put

all of them into SHARED and PRIVATE clauses.

So, OpenMP allows you to declare one kind of data to be the

default, and then you only need to explicitly declare

variables of the other kind:

!$OMP PARALLEL DO DEFAULT(PRIVATE) &

!$OMP SHARED(number_of_threads)

The default DEFAULT (so to speak) is SHARED, except for

the loop index variable, which by default is PRIVATE.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

76

Different Workloads

What happens if the threads have different amounts of work to

do?

!$OMP PARALLEL DO

DO index = 1, length

x(index) = index / 3.0

IF (x(index) < 0) THEN

y(index) = LOG(x(index))

ELSE

y(index) = 1.0 - x(index)

END IF

END DO

The threads that finish early have to wait.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

77

Chunks
By default, OpenMP splits the iterations of a loop into chunks

of equal (or roughly equal) size, assigns each chunk to a
thread, and lets each thread loop through its subset of the
iterations.

So, for example, if you have 4 threads and 12 iterations, then
each thread gets three iterations:

 Thread 0: iterations 0, 1, 2
 Thread 1: iterations 3, 4, 5
 Thread 2: iterations 6, 7, 8
 Thread 3: iterations 9, 10, 11

Notice that each thread performs its own chunk in
deterministic order, but that the overall order is
nondeterministic.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

78

Scheduling Strategies

OpenMP supports three scheduling strategies:

 Static: The default, as described in the previous slides –
good for iterations that are inherently load balanced.

 Dynamic: Each thread gets a chunk of a few iterations, and
when it finishes that chunk it goes back for more, and so on
until all of the iterations are done – good when iterations
aren‟t load balanced at all.

 Guided: Each thread gets smaller and smaller chunks over
time – a compromise.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

79

Static Scheduling

For Ni iterations and Nt threads, each thread gets one chunk of

Ni/Nt loop iterations:

T0 T1 T2 T3 T4 T5

 Thread #0: iterations 0 through Ni/Nt-1

 Thread #1: iterations Ni/Nt through 2Ni/Nt-1

 Thread #2: iterations 2Ni/Nt through 3Ni/Nt-1

…

 Thread #Nt-1: iterations (Nt-1)Ni/Nt through Ni-1

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

80

Dynamic Scheduling

For Ni iterations and Nt threads, each thread gets a fixed-size
chunk of k loop iterations:

T0 T1 T2 T3 T4 T5 T2 T3 T4 T0 T1 T5 T3 T2

When a particular thread finishes its chunk of iterations, it gets
assigned a new chunk. So, the relationship between
iterations and threads is nondeterministic.

 Advantage: very flexible

 Disadvantage: high overhead – lots of decision making
about which thread gets each chunk

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

81

Guided Scheduling

For Ni iterations and Nt threads, initially each thread gets a

fixed-size chunk of k < Ni/Nt loop iterations:

T0 T1 T2 T3 T4 T5 2 3 4 1 0 2 5 4 231

After each thread finishes its chunk of k iterations, it gets a
chunk of k/2 iterations, then k/4, etc. Chunks are assigned
dynamically, as threads finish their previous chunks.

 Advantage over static: can handle imbalanced load

 Advantage over dynamic: fewer decisions, so less overhead

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

82

How to Know Which Schedule?

Test all three using a typical case as a benchmark.

Whichever wins is probably the one you want to use most of

the time on that particular platform.

This may vary depending on problem size, new versions of the

compiler, who‟s on the machine, what day of the week it is,

etc, so you may want to benchmark the three schedules from

time to time.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

83

SCHEDULE Clause

The PARALLEL DO directive allows a SCHEDULE clause to be
appended that tell the compiler which variables are shared and
which are private:

!$OMP PARALLEL DO … SCHEDULE(STATIC)

This tells that compiler that the schedule will be static.

Likewise, the schedule could be GUIDED or DYNAMIC.

However, the very best schedule to put in the SCHEDULE clause
is RUNTIME.

You can then set the environment variable OMP_SCHEDULE to
STATIC or GUIDED or DYNAMIC at runtime – great for
benchmarking!

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

84

Synchronization

Jargon: Waiting for other threads to finish a parallel loop (or

other parallel section) before going on to the work after the

parallel section is called synchronization.

Synchronization is BAD, because when a thread is waiting for

the others to finish, it isn‟t getting any work done, so it isn‟t

contributing to speedup.

So why would anyone ever synchronize?

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

85

Why Synchronize? (F90)

Synchronizing is necessary when the code that follows a parallel

section needs all threads to have their final answers.

!$OMP PARALLEL DO
DO index = 1, length

x(index) = index / 1024.0
IF ((index / 1000) < 1) THEN

y(index) = LOG(x(index))
ELSE

y(index) = x(index) + 2
END IF

END DO
! Need to synchronize here!

DO index = 1, length
z(index) = y(index) + y(length – index + 1)

END DO

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

86

Why Synchronize?

Synchronizing is necessary when the code that follows a parallel

section needs all threads to have their final answers.

#pragma omp parallel for
for (index = 0; index < length; index++) {

x[index] = index / 1024.0;
if ((index / 1000) < 1) {

y[index] = log(x[index]);
}
else {
y[index] = x[index] + 2;

}
}

/* Need to synchronize here! */
for (index = 0; index < length; index++) {

z[index] = y[index] + y[length – index + 1];
}

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

87

Barriers

A barrier is a place where synchronization is forced to occur; that

is, where faster threads have to wait for slower ones.

The PARALLEL DO directive automatically puts an invisible,

implied barrier at the end of its DO loop:

!$OMP PARALLEL DO

DO index = 1, length

… parallel stuff …

END DO

! Implied barrier

… serial stuff …

OpenMP also has an explicit BARRIER directive, but most people
don‟t need it.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

88

Critical Sections

A critical section is a piece of code that any thread can
execute, but that only one thread can execute at a time.

!$OMP PARALLEL DO

DO index = 1, length

… parallel stuff …

!$OMP CRITICAL(summing)

sum = sum + x(index) * y(index)

!$OMP END CRITICAL(summing)

… more parallel stuff …

END DO

What‟s the point?

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

89

Why Have Critical Sections?

If only one thread at a time can execute a critical section, that

slows the code down, because the other threads may be

waiting to enter the critical section.

But, for certain statements, if you don‟t ensure mutual exclusion,

then you can get nondeterministic results.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

90

If No Critical Section

!$OMP CRITICAL(summing)

sum = sum + x(index) * y(index)
!$OMP END CRITICAL(summing)

Suppose for thread #0, index is 27, and for thread #1, index

is 92.

If the two threads execute the above statement at the same time,
sum could be

 the value after adding x(27) * y(27), or

 the value after adding x(92) * y(92), or

 garbage!

This is called a race condition: the result depends on who wins
the race.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

91

Pen Game #1: Take the Pen

We need two volunteers for this game.

1. I‟ll hold a pen in my hand.

2. You win by taking the pen from my hand.

3. One, two, three, go!

Can we predict the outcome? Therefore, can we guarantee that

we get the correct outcome?

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

92

Pen Game #2: Look at the Pen

We need two volunteers for this game.

1. I‟ll hold a pen in my hand.

2. You win by looking at the pen.

3. One, two, three, go!

Can we predict the outcome? Therefore, can we guarantee that

we get the correct outcome?

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

93

Race Conditions

A race condition is a situation in which multiple processes can

change the value of a variable at the same time.

As in Pen Game #1 (Take the Pen), a race condition can lead to

unpredictable results.

So, race conditions are BAD.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

94

Reductions

A reduction converts an array to a scalar: sum, product,

minimum value, maximum value, location of minimum

value, location of maximum value, Boolean AND, Boolean

OR, number of occurrences, etc.

Reductions are so common, and so important, that OpenMP has

a specific construct to handle them: the REDUCTION clause

in a PARALLEL DO directive.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

95

Reduction Clause
total_mass = 0

!$OMP PARALLEL DO REDUCTION(+:total_mass)

DO index = 1, length

total_mass = total_mass + mass(index)

END DO !! index

This is equivalent to:

DO thread = 0, number_of_threads – 1

thread_mass(thread) = 0

END DO !! thread

$OMP PARALLEL DO

DO index = 1, length

thread = omp_get_thread_num()

thread_mass(thread) = thread_mass(thread) + mass(index)

END DO !! index

total_mass = 0

DO thread = 0, number_of_threads – 1

total_mass = total_mass + thread_mass(thread)

END DO !! thread

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

96

Parallelizing a Serial Code #1

PROGRAM big_science

… declarations …

DO …
… parallelizable work …
END DO

… serial work …

DO …
… more parallelizable work …
END DO

… serial work …
… etc …
END PROGRAM big_science

PROGRAM big_science

… declarations …
!$OMP PARALLEL DO …

DO …
… parallelizable work …
END DO

… serial work …
!$OMP PARALLEL DO …

DO …
… more parallelizable work …
END DO

… serial work …
… etc …
END PROGRAM big_science

This way may have lots of synchronization overhead.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

97

Parallelizing a Serial Code #2

PROGRAM big_science

… declarations …

DO task = 1, numtasks
CALL science_task(…)

END DO
END PROGRAM big_science

SUBROUTINE science_task (…)
… parallelizable work …

… serial work …

… more parallelizable work …

… serial work …

… etc …
END PROGRAM big_science

PROGRAM big_science

… declarations …
!$OMP PARALLEL DO …
DO task = 1, numtasks
CALL science_task(…)

END DO
END PROGRAM big_science

SUBROUTINE science_task (…)
… parallelizable work …
!$OMP MASTER
… serial work …
!$OMP END MASTER
… more parallelizable work …
!$OMP MASTER
… serial work …
!$OMP END MASTER
… etc …
END PROGRAM big_science

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

Thanks for your
attention!

Questions?

Sponsored by

DOD HPCMP,

SC11/ACM,

NCSI and

OK EPSCoR

99

References
[1] Amdahl, G.M. “Validity of the single-processor approach to achieving

large scale computing capabilities.” In AFIPS Conference Proceedings vol.

30 (Atlantic City, N.J., Apr. 18-20). AFIPS Press, Reston VA, 1967, pp. 483-

485. Cited in

http://www.scl.ameslab.gov/Publications/AmdahlsLaw/Amdahls.html

[2] http://www.iso.org/iso/about/discover-iso_isos-name.htm

[3] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald and R.

Menon, Parallel Programming in OpenMP. Morgan Kaufmann, 2001.

[4] Kevin Dowd and Charles Severance, High Performance Computing, 2nd

ed. O‟Reilly, 1998.

Shared Memory Multithreading

Intermediate Parallel, July 31 – Aug 6 2011

http://www.scl.ameslab.gov/Publications/AmdahlsLaw/Amdahls.html
http://www.iso.org/iso/about/discover-iso_isos-name.htm
http://www.iso.org/iso/about/discover-iso_isos-name.htm
http://www.iso.org/iso/about/discover-iso_isos-name.htm
http://www.iso.org/iso/about/discover-iso_isos-name.htm
http://www.iso.org/iso/about/discover-iso_isos-name.htm

