
Hybrid Model Parallel Programs

Charlie Peck, Earlham College

High Performance Computing Modernization Program

Workshop on Intermediate Parallel Programming & Cluster Computing

produced in conjunction with the

National Computational Science Institute and the SC11 Conference

co-hosted at PUPR and OU

August, 2011

1



Well, How Did We Get Here?

Almost all of the clusters provisioned now and for the forseeable future

are constellations, that is they are composed of nodes, each with 1 or

more sockets holding CPUs with 2 or more cores, possibly with

GPGPUs, connected by a high–speed network fabric.

With their additional levels of memory hierarchy these constellation

clusters are more difficult to use efficiently than their predecessors, yet

they offer the promise of significantly greater cycles available for

science. The Blue Waters computational resource is a good example

of this trend.

Often a hybrid approach, utilizing 2 or more of MPI, OpenMP,

pthreads and/or GPGPU techniques, can utilize these computational

resource more effeciently and effectively than any one of them on their

own.

2



Common Parallel Programming Paradigms, Strengths
and Weaknesses

• OpenMP

1. Strengths - relatively easy to use, portable, relatively easy to

adapt to existing serial software, standard standard, low

latency/high bandwidth communication, implicit communication

model, dynamic load balancing

2. Weaknesses - shared memory model only, i.e. one “node” or

memory region, support for C/C++ and FORTRAN only, little

explicit control over thread creation and rundown

3



• Message Passing Interface (MPI)

1. Strengths - support for C/C++, FORTRAN, Perl, Python and

other languages, scales beyond one shared memory image

“node”, widely used in the scientific software community,

enables you to harness more compute cycles and more memory

which translate to bigger science

2. Weaknesses - non–standard standard (to some extent), can

support shared memory model for intra–node communication

but not all bindings do it efficiently, can be difficult to program,

high latency/low bandwidth communication (compared to

shared memory), explicit communication model, load balancing

can be difficult



• GPGPU with CUDA or OpenCL

1. Strengths - ability to harness significant computational cycles,

becoming widely used in the scientific software community

2. Weaknesses - can be difficult to program, non–portable

proprietary language (CUDA), requires re–thinking many

problems to take advantage of the high degree of parallel

cardinality required to harness those cycles



• pthreads

1. Strengths - better granularity of control over thread model than

OpenMP, fairly portable, explicit control over thread creation

and rundown

2. Weaknesses - can be difficult to program, only somewhat

portable



• Field Programmable Gate Array (FPGA)

1. Strengths - encode any algorithm in hardware

2. Weaknesses - can be difficult to program, not portable,

expensive hardware



Hybrid Parallel Algorithms

• OpenMP + CUDA

• OpenMP + FPGA

• MPI + OpenMP

• MPI + CUDA

• MPI + FPGA

• MPI + pthreads

• MPI + OpenMP + CUDA

• MPI + pthreads + CUDA

4



Designing, Building and Debugging Hybrid Parallel
Programs

• The basic approach is to find the most efficient way to do the

work, whether it be OpenMP (CPU), GPGPU (CUDA or

OpenCL), pthreads or a blend of them, and then the most efficient

way to distribute the data and harvest the results via MPI.

• Study the communication pattern(s) to insure that the algorithm

maps to the architecture.

1. Embarrassingly parallel

2. Loosely coupled through tightly coupled

• Look for opportunities to overlap computation and communication,

this is a key attribute of efficient hybrid parallel programs.

• Don’t design/implement an algorithm that requires more than one

type of parallelism to be enabled for it to run. This will make

testing and debugging much harder than it needs to be.

5



• Better to {OpenMP, CUDA/OpenCL, Pthread} your MPI code
than the other way around. MPI is harder to architect, do that
first, then work on the “on–node” parallelism.

• The simplest and least error prone software architecture is to use
MPI calls only outside of any parallel regions {OpenMP, pthreads}
and only allow the master thread to communicate between MPI
processes (this is known as funneling). It’s also possible to use
MPI calls within parallel regions if you are using a thread–safe MPI
binding (not all of them are).

• Debug by running on one node and testing the {OpenMP, GPGPU
(CUDA or OpenCL), Pthreads}, then on 2–n nodes with just the
MPI enabled to verify the data transfer.

• Take care to have no more than about one process/thread doing
network communication contemporaneously, contention for the
network port will quickly become a bottleneck unless there is a
minimal amount of communication.

• Take care to have no more than about two processes/threads
performing GPGPU calculations contemporaneously, contention for
the I/O bandwidth to/from the CPU and the GPGPU card can
become a bottleneck.



Simple MPI + OpenMP Example

#i n c l u d e <omp . h>
#i n c l u d e ” mpi . h”
#i n c l u d e < s t d i o . h>

i n t main ( i n t argc , c h a r ∗ a r g v [ ] ) {
i n t w o r l d s i z e , my rank , t h r e a d c o u n t , t h r e a d p r o v i d e d ;
c o n s t i n t NUM THREADS = 4 ;

o m p s e t n u m t h r e a d s ( NUM THREADS ) ;

M P I I n i t t h r e a d (& argc , &argv , MPI THREAD MULTIPLE , &t h r e a d p r o v i d e d ) ;
p r i n t f (” The MPI b i n d i n g p r o v i d e d t h r e a d s u p p o r t o f : %d \n ” , t h r e a d p r o v i d e d ) ;
MPI Comm size (MPI COMM WORLD, &w o r l d s i z e ) ;
MPI Comm rank (MPI COMM WORLD, &my rank ) ;

#pragma omp p a r a l l e l r e d u c t i o n (+: t h r e a d c o u n t )
{

t h r e a d c o u n t = o m p g e t n u m t h r e a d s ( ) ;
}

p r i n t f (” MPI Rank %d h a s r e p o r t e d %d \n ” , my rank , t h r e a d c o u n t ) ;

M P I F i n a l i z e ( ) ;
r e t u r n 0 ;

}

6



Questions?

7



Lab Exercises

• To compile MPI + OpenMP programs on Sooner add -fopenmp to your mpicc
command line. The same recipe works on Al-salam.

• To run MPI +
OpenMP programs on Sooner copy and modify the example bsub script found here:
∼charliep/NCSI-2011-intermediate/hybrid-mpi-openmp/example parallel hybrid.bsub

• Copy, build, run and explore
∼charliep/NCSI-2011-intermediate/hybrid-mpi-openmp/mpi-openmp-first.c

• Copy, build, run and explore
∼charliep/NCSI-2011-intermediate/hybrid-mpi-openmp/mpi-openmp-second.c
Fix the total threads problem.

• Copy, add the appropriate OpenMP directives, build, run and explore
∼charliep/NCSI-2011-intermediate/hybrid-mpi-openmp/area under curve mpi.c
Using the input file found in the same directory explore the efficiency of using
more or less MPI processes and more or less OpenMP threads spread across
different numbers of nodes for that problem size. What’s the most efficient
mapping?

8


