High Performance Computing
Modernization Program (HPCMP)
Summer 2011 Puerto Rico Workshop on

Intermediate Parallel Programming
& Cluster Computing

in conjunction with
the National Computational Science Institute (NCSI)/
V SC11 Conference

JOintly hosted at POLYTECHNIC

§i7 Polytechnic U of Puerto Rico iy
SHODOR b and U Oklahoma

and available live via videoconferencing

(streaming video recordings coming soon)
EARLHAM in
C OLLEGE -
| HAMPTON
Sponsored by Uy R T
DOD HPCMP, .
SCLUACM, ¥ e
NCSI and

INFORMATION
TECHNOLOGY

TTTTTTTTTTTTTTTTTTTTTTT

OK EPSCoR ; V) o e P 4

Intermediate
Parallel Programming
& Cluster Computing

V Dlstrlbuted Multiprocessing

exander, University of Oklahoma
Ivan Babic, Earlham College POLYTECHNIC
VSHODOR Ken Gamradt, South Dakota State University UL
Andrew Fitz Gibbon, Amazon.com
Mobeen Ludin, Earlham College

Tom Murphy, Contra Costa College
EARLHAM Henry Neeman, University of Oklahoma E
COLLEGE Charlie Peck, Earlham College :
Sponsored b Stephen Providence, Hampton University M
P y Jeff Rufinus, Widener University
DOD HPCMP, Luis Vicente, Polytechnic University of Puerto Rico 5 Widener
SC11/ACM, Aaron Weeden, Earlham College Umseril
NCSI and Sunday July 31— Saturday August 6 2011 ty

OK EPSCoR

'I INFORMATION
| TECHNOLOGY SD S l l

N4 This Is an experiment!

It’s the nature of these kinds of videoconferences that
FAILURES ARE GUARANTEED TO HAPPEN!
NO PROMISES!

So, please bear with us. Hopefully everything will work out
well enough.

If you lose your connection, you can retry the same kind of
connection, or try connecting another way.

Remember, If all else fails, you always have the toll free phone
bridge to fall back on.

< —» S d b
‘i§§05cER Q| @Jitﬁm‘év DOD HPCMP, Distributed Multiprocessing ﬁ[ﬁ
HAML 1UN A SCLUACM, Intermediate Parallel, July 31 — Aug 6 2011 t‘

OK EPSCoR bDbU

Y H.323 (Polycom etc)

If you want to use H.323 videoconferencing — for example,
Polycom — then:
= If you ARE already registered with the OneNet gatekeeper,
dial 2500409.
= Ifyou AREN’T registered with the OneNet gatekeeper
(which is probably the case), then:
« Dial 164.58.250.47
= When asked for the conference ID, enter:
#04094

Many thanks to Roger Holder and OneNet for providing this.

5 —P Sponsore
‘;g;oscea Q| Q’itﬁz‘m‘év DOD HPCMP, Distributed Multiprocessing ﬁIIII
HAML 1ON s SCLUACM, Intermediate Parallel, July 31 — Aug 6 2011 t‘

OK EPSCoR bDSU

H.323 from Internet Explorer

From a Windows PC running Internet Explorer:

1.

9.

You MUST have the ability to install software on the PC (or have someone install it for
you).
Download and install the latest Java Runtime Environment (JRE) from here

(click on the Java Download icon, because that install package includes both the JRE and
other components).

Download and install this video decoder.
Start Internet Explorer.

Copy-and-paste this URL into your IE window:
http://164.58.250.47/

When that webpage loads, in the upper left, click on "Streaming".
In the textbox labeled Sign-in Name, type your name.

In the textbox labeled Conference ID, type this:
0409

Click on "Stream this conference".

10. When that webpage loads, you may see, at the very top, a bar offering you options.

(§oSCeREy)

If so, click on it and choose "Install this add-on."

—» s db L . . 0
Q| Q;ift?;émgV DOD HPCP, Distributed Multiprocessing ﬁﬁﬁ =
EH AMPION Wienir nesimd Intermediate Parallel, July 31 — Aug 6 2011 ﬁa D)

OK EPSCoR SDSU

http://www.oracle.com/technetwork/java/javase/downloads/
http://164.58.250.47/codian_video_decoder.msi

\7 EVO

There’s a quick description of how to use EVO on the
workshop logistics webpage.

TR _ Sponsored b
(Hi05CEREy) Q| Q:-i,tfmggv BOD HPCMP. Distributed Multiprocessing ﬁfl S
EH AMPION woer nesiad Intermediate Parallel, July 31 — Aug 6 2011 l‘—‘! P s

OK EPSCoR SDSU

N4 Phone Bridge

If all else fails, you can call into our toll free phone bridge:
1-800-832-0736
* 623 2874 #
Please mute yourself and use the phone to listen.
Don’t worry, we’ll call out slide numbers as we go.

Please use the phone bridge ONLY if you cannot connect any
other way: the phone bridge Is charged per connection per
minute, so our preference Is to minimize the number of
connections.

Many thanks to OU Information Technology for providing the
toll free phone bridge.

ﬁéioScER Q| @Jit;;smgv DOD HPCMP, Distributed Multiprocessing fﬁﬂﬁ
HAML 1UN oy SR Intermediate Parallel, July 31 — Aug 6 2011 t.

OK EPSCOR bl)bL

V Please Mute Yourself

No matter how you connect, please mute yourself, so that we
cannot hear you.

At ISU and UW, we will turn off the sound on all conferencing
technologies.

That way, we won’t have problems with echo cancellation.
Of course, that means we cannot hear questions.
So for questions, you’ll need to send some kind of text.

—p Sponsored b . . . -
& oScER, Q| Q:-i(t“,; FFFFFFFF V DOD HPCMP, Distributed Multiprocessing ﬁlﬁ ----------
y TECHNOLOG SCll/ACM -
CHAMPION wiey icsio Intermediate Parallel, July 31 - Aug 6 2011 t. ‘E 8

OK EPSCoR bl)bU

\74 Questions via Text: Piazzza

Ask questions via:
http://www.piazza.com/

All questions will be read out loud and then answered out loud.

NOTE: Because of image-and-likeness rules, people attending

remotely offsite via videoconferencing CANNQOT ask
guestions via voice.

Sponsored b
C: o_ccER, % Q"ii/t’azmzv bOD HPCMP, Distributed Multiprocessing m
HAMP IUN A Intermediate Parallel, July 31 — Aug 6 2011 t. rg 9

OK EPSCoR

SDSU

http://www.piazza.com/

Y| Thanks for helping and sponsoring!

= OSCER operations staff (Brandon George, Dave Akin, Brett
Zimmerman, Josh Alexander, Patrick Calhoun)

= Debi Gentis, OU

= Kevin Blake, OU IT (videographer)

= OU School of Electrical & Computer Engineering (LittleFe buildout)

= James Deaton and Roger Holder, OneNet

= Luis Vicente and Alfredo Cruz, Polytechnic U of Puerto Rico

= Omar Padron, Kean U

= Scott Lathrop, SC11 General Chair

= Donna Cappo, ACM

= Bob Panoff, Jack Parkin, Joyce South, Shodor Education Foundation Inc
= Jerry Malayer and Jim Wicksted, Oklahoma EPSCoR

= Dept of Defense High Performance Computing Modernization Program

—p Sponsored b . . . -
‘oScER, Q| Q,iﬁ FFFFFFFF V DOD HPCMP, Distributed Multiprocessing ﬁm ---------
y TECHNOLOG SCll/ACM -
HAMP LON Wipeer NSt nd Intermediate Parallel, July 31 — Aug 6 2011 t. ’9 10

OK EPSCoR bl)SU

N4 This Is an experiment!

It’s the nature of these kinds of videoconferences that
FAILURES ARE GUARANTEED TO HAPPEN!
NO PROMISES!

So, please bear with us. Hopefully everything will work out
well enough.

If you lose your connection, you can retry the same kind of
connection, or try connecting another way.

Remember, If all else fails, you always have the toll free phone
bridge to fall back on.

< —» Sponsore d b
‘;ggoscea Q| %itlﬁzmzv DOD HPCMP, Distributed Multiprocessing ﬁ[ﬁ
HAML 1ON s SCLUACM, Intermediate Parallel, July 31 — Aug 6 2011 t

OK EPSCoR bDbU

\74 Outline

= The Desert Islands Analogy
= Distributed Parallelism
= MPI

SR . Sponsored b . . - -
wéoScER; % Q’i/lt?';‘c‘a%tﬁ‘év DD HPCM)I;, Distributed Multiprocessing ﬁﬁ = T
e HAMPION wiomer nesiaa Intermediate Parallel, July 31 — Aug 6 2011 ‘E ‘F 12

OK EPSCoR SDSU

The Desert Islands

V| Analogy

\74 An Island Hut

= Imagine you’re on an 1sland in a little hut.
= Inside the hut is a desk.
= On the desk Is:

= aphone;

DATA

= a pencil;
= a calculator; 1. 27.3
2. -491.41

= a piece of paper with instructions; 3. 24

. . 4. -1le-05
= a piece of paper with numbers (data). o 1ar.a0
Instructions: What to Do 6. 0
T 7. 4167
Add the number in slot 27 to the number in slot 239,
and put the result in slot 71. 8. 94.14
if the number in slot 71 is equal to the number in slot 118 then 9. -518.481

Call 555-0127 and leave a voicemail containing the number in slot 962.
else

Call your voicemail box and collect a voicemail from 555-0063,
and put that number in slot 715.

& S T2 ./7 Sponsored by .. - - 2
e % of ,mﬁv DOD HPCMP, Distributed Multiprocessing m 5
& HAMP ION WIDENER *Nest o Intermediate Parallel, July 31 — Aug 6 2011 ‘E rg 14

R OK EPSCoR SDSU

\74 Instructions

The Instructions are split into two kinds:
= Arithmetic/Logical — for example:
= Add the number in slot 27 to the number in slot 239,
and put the result in slot 71.
= Compare the number in slot 71 to the number in slot
118, to see whether they are equal.
= Communication — for example:

= Call 555-0127 and leave a voicemail containing the
number in slot 962.

= Call your voicemail box and collect a voicemail from
555-0063, and put that number in slot 715.

OOOOOO

‘;;;;oscER Q| %i\t FFFFFFFF V 50D HPCMP, Distributed Multiprocessing fﬁIIII ----------
W TeciNoLoe SC11/ACM, :
HAMl 1UN WIDENER NGSI and Intermediate Parallel, July 31 — Aug 6 2011 t ‘E 15

OK EPSCoR b[)bL

\74 Is There Anybody Out There?

If you’re in a hut on an island, you aren’t specifically aware of
anyone else.

Especially, you don’t know whether anyone else 1s working on
the same problem as you are, and you don’t know who’s at
the other end of the phone line.

All you know is what to do with the voicemails you get, and
what phone numbers to send voicemails to.

—2 Sponsored b
& oScER, Q| @iﬁm‘év DOD HPCMP, Distributed Multiprocessing ﬁm ----------
HAMP LON e SCLIACH, Intermediate Parallel, July 31 — Aug 6 2011 t. rg 16

OK EPSCoR bl)bU

VY| Someone Might Be Out There

Now suppose that Horst is on another island somewhere, in
the same kind of hut, with the same kind of equipment.

Suppose that he has the same list of instructions as you, but a
different set of numbers (both data and phone numbers).

Like you, he doesn’t know whether there’s anyone else
working on his problem.

OOOOOO

‘;égo&ER, Q| Q"ifif OOOOOOO V 50D HPCMP, Distributed Multiprocessing ﬁm ----------
[TECkNOLOG SC11/ACM, :
HAMl 1()N WIDENER NGSI and Intermediate Parallel, July 31 — Aug 6 2011 t rg 17

OK EPSCOR bl)SU

V| Even More People Out There

Now suppose that Bruce and Dee are also in huts on islands.

Suppose that each of the four has the exact same list of
Instructions, but different lists of numbers.

And suppose that the phone numbers that people call are each
others’: that 1s, your instructions have you call Horst, Bruce
and Dee, Horst’s has him call Bruce, Dee and you, and so on.

Then you might all be working together on the same problem.

& oScER Q| @itV 50D HPCME Distributed Multiprocessing ﬁIIII ----------
SCLUACM, Intermediate Parallel, July 31 — Aug 6 2011 t‘ rg 18

HAMPIUN WIDENER ~ NCSI and

OK EPSCOR bl)SU

\74 All Data Are Private

Notice that you can’t see Horst’s or Bruce’s or Dee’s
numbers, nor can they see yours or each other’s

Thus, everyone’s numbers are private: there’s no way for
anyone to share numbers, except by leaving them in
voicemails.

& osCER; Q| @ﬁ’%mv 0O HPOMP, Distributed Multiprocessing ﬁm
HAMP IUN A Intermediate Parallel, July 31 — Aug 6 2011 t. rg 19

OK EPSCoR SDSU

\74 Long Distance Calls: 2 Costs

When you make a long distance phone call, you typically have to
pay two costs:

= Connection charge: the fixed cost of connecting your phone
to someone else’s, even 1f you’re only connected for a second

= Per-minute charge: the cost per minute of talking, once
you’re connected

If the connection charge is large, then you want to make as few
calls as possible.

See:
http://www.vyvoutube.com/watch?v=8k1UOEYIORO

— Sponsored b .. . -
;o_cCER, Q| Q,ift,‘iémmgv DOD HPCP, Distributed Multiprocessing ﬁﬁl ----------
HAMP ION e Ncsmi Intermediate Parallel, July 31 — Aug 6 2011 t‘ ’9 20

OK EPSCoR b[)bU

http://www.youtube.com/watch?v=8k1UOEYIQRo

Distributed

V| Parallelism

\74 Like Desert Islands

Distributed parallelism is very much like the Desert Islands
analogy:

= processes are independent of each other.
= All data are private.

= Processes communicate by passing messages (like
voicemails).

= The cost of passing a message is split into:
= latency (connection time)
= bandwidth (time per byte)

OOOOOO

‘oSCER, % Q"il'/t’azmzv 50D HPCME Distributed Multiprocessing m
H AM P IUN - A SCLUAC, Intermediate Parallel, July 31 — Aug 6 2011 t. rg 22

OK EPSCoR SDSU

VY| Latency vs Bandwidth on topdawg

In 2006, a benchmark of the Infiniband interconnect on a large
Linux cluster at the University of Oklahoma revealed:

= Latency — the time for the first bit to show up at the
destination — Is about 3 microseconds:;

= Bandwidth — the speed of the subsequent bits — is about 5
Gigabits per second.

Thus, on this cluster’s Infiniband:

= the 1%t bit of a message shows up in 3 microsec;
= the 2" bit shows up in 0.2 nanosec.

So latency iIs 15,000 times worse than bandwidth!

oScER Q| Q’itﬁz‘m‘év bOD HPCMP, Distributed Multiprocessing ﬁIIII
HAMl LON Wiy Ncsmi Intermediate Parallel, July 31 — Aug 6 2011 t

OK EPSCoR bl)bU

VY| Latency vs Bandwidth on topdawg

In 2006, a benchmark of the Infiniband interconnect on a large
Linux cluster at the University of Oklahoma revealed:

= Latency — the time for the first bit to show up at the
destination — Is about 3 microseconds:;

= Bandwidth — the speed of the subsequent bits — is about 5
Gigabits per second.

Latency is 15,000 times worse than bandwidth!
That’s like having a long distance service that charges
= $150 to make a call;

= 1¢ per minute — after the first 10 days of the call.

oScER Q| Q’itﬁz‘m‘év bOD HPCMP, Distributed Multiprocessing ﬁIIII
HAMl LON Wiy Ncsmi Intermediate Parallel, July 31 — Aug 6 2011 t

OK EPSCoR bDSU

\74 Parallelism

Parallelism means doing multiple

things at the same time: you can get |[=

more work done in the same amount of
time.

Less fish ...

More fish!

Sponsored by

osc; Q| Q’iTt"*"“cﬁ""*ﬂgV DOD HPCMP, Distributed Multiprocessing Y
EH AMPTON Wiper Nesimd Intermediate Parallel, July 31 —Aug 6 2011 2 % Y 25

OK EPSCoR SDSU

\74 What Is Parallelism?

Parallelism is the use of multiple processing units — either
processors or parts of an individual processor — to solve a
problem, and in particular the use of multiple processing
units operating concurrently on different parts of a problem.

The different parts could be different tasks, or the same task on
different pieces of the problem’s data.

—p Sponsored b . . . -
& oScER, Q| %i\f; FFFFFFFF V DOD HPCMP, Distributed Multiprocessing ﬁlﬁ ----------
y TECHNOLOG SCll/ACM -
CHAMPION wiey icsio Intermediate Parallel, July 31 - Aug 6 2011 t. ‘F 26

OK EPSCoR bl)SU

\74 Kinds of Parallelism

= Instruction Level Parallelism

= Shared Memory Multithreading

= Distributed Memory Multiprocessing

= GPU Parallelism

= Hybrid Parallelism (Shared + Distributed + GPU)

& oscER, % Q’il'/t’azamzv 50D HPCMP, Distributed Multiprocessing m
HAMP IUN A Intermediate Parallel, July 31 — Aug 6 2011 t. rg 27

OK EPSCoR SI)SU

\74 Why Parallelism Is Good

= The Trees: We like parallelism because, as the number of

processing units working on a problem grows, we can solve
the same problem in less time.

= The Forest: We like parallelism because, as the number of

processing units working on a problem grows, we can solve
bigger problems.

- Sponsored b
C: OgCER; % Q’ﬂﬁm‘év bOD HPCMP, Distributed Multiprocessing ﬁm
HAMP IUN A Intermediate Parallel, July 31 — Aug 6 2011 t‘ rg 28

OK EPSCoR SDSU

Y Parallelism Jargon

= Threads are execution sequences that share a single memory
arca (“address space”)

= Processes are execution sequences with their own
Independent, private memory areas

. and thus:
= Multithreading: parallelism via multiple threads
= Multiprocessing: parallelism via multiple processes
Generally:
= Shared Memory Parallelism is concerned with threads, and
= Distributed Parallelism is concerned with processes.

_— Sponsored b .. - -
;o_ccER Q| Q'itlﬁz‘m:‘év DOD HPCP, Distributed Multiprocessing ﬁﬁl ---------
HAMP TONT Ncsmi Intermediate Parallel, July 31 — Aug 6 2011 t‘ ’9 29

OK EPSCoR b[)bU

Y Jargon Alert!

In principle:

= “shared memory parallelism” =» “multithreading”

s “distributed parallelism” => “multiprocessing”

In practice, sadly, these terms are often used interchangeably:
= Parallelism

= Concurrency (not as popular these days)

= Multithreading

= Multiprocessing

Typically, you have to figure out what is meant based on the
context.

—» Sponsored b . . - -
‘oScER Q| Q,i‘f;; FFFFFFFF V DOD HPCP, Distributed Multiprocessing ﬁIIII ---------
4 TECHNOLOG SCll/ACM -
HAMP LON Wipeer NSt nd Intermediate Parallel, July 31 — Aug 6 2011 t‘ "9 30

OK EPSCoR bDSU

\74 Load Balancing

Suppose you have a distributed parallel code, but one process
does 90% of the work, and all the other processes share 10%
of the work.

Is it a big win to run on 1000 processes?

Now, suppose that each process gets exactly 1/N; of the work,
where N, Is the number of processes.

Now Is it a big win to run on 1000 processes?

—p Sponsored b . . . -
& oScER, Q| %i\f; FFFFFFFF V DOD HPCMP, Distributed Multiprocessing ﬁlﬁ ----------
y TECHNOLOG SCll/ACM -
CHAMPION wiey icsio Intermediate Parallel, July 31 - Aug 6 2011 t. ‘F 31

OK EPSCoR bl)bU

|_oad Balancing

@

®

Load balancing means ensuring that everyone completes their workload at
roughly the same time.

P Sponsored by . . - -
HosceRty Qj/i? V DOD HPCMP, Distributed Multiprocessing
H AM v 1UN Winevir NGoiama Intermediate Parallel, July 31 — Aug 6 2011 %. ? 32

o -V ERSTTY OK EPSCoR SDSU

|_oad Balancing

Load balancing can be easy, if the problem splits up into chunks of roughly
equal size, with one chunk per processor. Or load balancing can be very hard.

IRy o Sponsored b
oscen Q| *jt, V DOD HPCMP, Distributed Multiprocessing
H AMP 1UN Wi nosiaa Intermediate Parallel, July 31 — Aug 6 2011 %.&? 33

e | /VTRSTTY OK EPSCOR SDSU

|_oad Balancing

Load balancing can be easy, if the problem splits up into chunks of roughly
equal size, with one chunk per processor. Or load balancing can be very hard.

Sponsored by

C Ql/i_? V DOD HPCMP, Distributed Multiprocessing
H AM v 1 ON WIDENER SCLIACH, Intermediate Parallel, July 31 — Aug 6 2011 %. ‘? 34

o -V ERSTTY OK EPSCoR SDSU

_oad Balancing

Load balancing can be easy, if the problem splits up into chunks of roughly
equal size, with one chunk per processor. Or load balancing can be very hard.

Sponsored by

_ Q| Q"it’;:zmzv DOD HECIVP Distributed Multiprocessing « =
HH AMP TON WIDENER “Nestand Intermediate Parallel, July 31 — Aug 6 2011 % T 35

RSITY OK EPSCoR SDSU

\74 Load Balancing Is Good

When every process gets the same amount of work, the job Is
load balanced.

We like load balancing, because it means that our speedup can

potentially be linear: if we run on N, processes, it takes 1/N,
as much time as on one.

For some codes, figuring out how to balance the load is trivial
(for example, breaking a big unchanging array into sub-
arrays).

For others, load balancing is very tricky (for example, a

dynamically evolving collection of arbitrarily many blocks
of arbitrary size).

_— Sponsored b .. - -
;ochR Q| Q'itlﬁz‘m‘év DOD HPCP, Distributed Multiprocessing fﬁﬂl ---------
HAMP TONT Ncsimi Intermediate Parallel, July 31 — Aug 6 2011 t. ‘E 36

OK EPSCoR b[)bL

Parallel Strategies

oScER

Ql @it OOOOOOOO v DOD HPCVP, Distributed Multiprocessing ﬁm ----------
STECHNOLOC SC11/ACM, :
HAMl 1UN WIDENER NGSI and Intermediate Parallel, July 31 — Aug 6 2011 t rg 37

Client-Server: One worker (the server) decides what tasks
the other workers (clients) will do; for example, Hello
World, Monte Carlo.

Data Parallelism: Each worker does exactly the same tasks
on its unique subset of the data; for example, distributed
meshes for transport problems (weather etc).

Task Parallelism: Each worker does different tasks on
exactly the same set of data (each process holds exactly the
same data as the others); for example, N-body problems
(molecular dynamics, astrophysics).

Pipeline: Each worker does its tasks, then passes its set of
data along to the next worker and receives the next set of
data from the previous worker.

OK EPSCoR b[)bL

MPI:
The Message-Passing

V| Interface

Most of this discussion is from [1] and [2].

\ 74 What Is MPI?

The Message-Passing Interface (MPI) is a standard for
expressing distributed parallelism via message passing.

MPI consists of a header file, a library of routines and a
runtime environment.

When you compile a program that has MPI calls in it, your
compiler links to a local implementation of MPI, and then
you get parallelism; 1f the MPI library 1sn’t available, then the
compile will fail.

MPI can be used in Fortran, C and C++.

—p Sponsored b . . . -
& oScER, Q| %i\f; FFFFFFFF V DOD HPCMP, Distributed Multiprocessing ﬁlﬁ ----------
y TECHNOLOG SCll/ACM -
CHAMPION wiey icsio Intermediate Parallel, July 31 - Aug 6 2011 t. ‘F 39

OK EPSCoR bl)SU

\74 MPI Calls

MPI calls in Fortran look like this:
CALL MPI Funcname (.., mpi error code)
In C, MPI calls look like:
mpi error code = MPI Funcname(..);
In C++, MPI calls look like:
mpi error code = MPI::Funcname(..);
Notice that mpi error code is returned by the MPI routine

MPI Funcname, With a value of MPI SUCCESS
Indicating that MPI Funcname has worked correctly.

& osCER, @ @ﬂm‘év 0O HPOMP, Distributed Multiprocessing m
HAMP IUN A Intermediate Parallel, July 31 — Aug 6 2011 t. ra 40

OK EPSCoR bDSU

\74 MPI Is an API

MPI is actually just an Application Programming Interface
(API).

An API specifies what a call to each routine should look like,
and how each routine should behave.

An API does not specify how each routine should be
Implemented, and sometimes is intentionally vague about

certain aspects of a routine’s behavior.
Each platform has its own MPI implementation.

_— Sponsored b .. - -
;o_ccER Q| Q'itlﬁz‘m:‘év DOD HPCP, Distributed Multiprocessing ﬁﬁl ---------
HAMP TONT Ncsmi Intermediate Parallel, July 31 — Aug 6 2011 t‘ ’9 41

OK EPSCoR b[)bU

\74 WARNING!

In principle, the MPI standard provides bindings for:

s C

m C++

= Fortran 77

= Fortran 90

In practice, you should do this:

= Touse MPI in a C++ code, use the C binding.

= Touse MPI in Fortran 90, use the Fortran 77 binding.

This iIs because the C++ and Fortran 90 bindings are less
popular, and therefore less well tested.

—p Sponsored b . . . -
;o_cCER, Q| Q,iﬂgmv DOD HPCMP, Distributed Multiprocessing ﬁlﬁ ~~~~~~~~~
HAMP TONT Ncsmi Intermediate Parallel, July 31 — Aug 6 2011 t. ’9 42

OK EPSCoR bl)SU

\74 Example MPI Routines

= MPI Init starts up the MPI runtime environment at the
beginning of a run.

= MPI Finalize shuts down the MPI runtime environment
at the end of a run.

= MPI Comm_size getsthe number of processes inarun, N,
(typically called just after MPTI Init).

= MPI Comm rank getsthe process ID that the current

process uses, which is between 0 and N -1 inclusive (typically
called just after MPI Init).

‘oSCER, @ @ﬂm‘év 50D HPCME Distributed Multiprocessing m
HAMP IUN - A SCLUAC, Intermediate Parallel, July 31 — Aug 6 2011 t. ra 43

OK EPSCoR bI)SU

V| More Example MPI Routines

= MPI Send sendsa message from the current process to
some other process (the destination).

= MPI Recv receivesamessage on the current process from
some other process (the source).

= MPI Bcast Dbroadcasts a message from one process to all
of the others,

= MPI Reduce performs areduction (for example, sum,

maximum) of a variable on all processes, sending the result to
a single process.

‘oScER, @ Q’iﬂm‘év 0O HPOMP, Distributed Multiprocessing m
HAMP IUN A Intermediate Parallel, July 31 — Aug 6 2011 t. rg 44

OK EPSCoR b[)bU

\74 MPI Program Structure (C)

#include <stdio.h>
#include "mpi.h"
[other includes]

int main (int argc, char* argv([])
{ /* main */
int my rank, num procs, mpi error code;
[other declaratlons]
mpi error code =
MPI Inlt(&argc, &argv) ; /* Start up MPI */
mpi error code =
MPI Comm rank (MPI COMM WORLD, &my rank);
mpi error code =
MPI Comm . size (MPI COMM WORLD, &num procs) ;

[actual work goes here]
mpi error code = MPI Finalize(); /* Shut down MPI */

} /* main */

‘_3; o_ccER; % Q,ﬁ’%cmv 50D HPCME Distributed Multiprocessing ﬁm
ScripeM. Intermediate Parallel, July 31 — Aug 6 2011 t‘ ‘F 45

&HAMPIUN WIDENER ~ NCSI and

OK EPSCoR SDSU

\74 MPI Program Structure (F90)

PROGRAM my mpi program
IMPLICIT NONE
INCLUDE "mpif.h"
[other includes]

INTEGER :: my rank, num procs, mpi_ error code
[other declarations]
CALL MPI Init(mpi error code) 1! Start up MPI

CALL MPI Comm Rank (my rank, mpi error code)
CALL MPI Comm size (num procs, mpi_ error code)

[actual work goes here]
CALL MPI Finalize (mpi error code) !! Shut down MPI

END PROGRAM my mpli program

Note that MPI uses the term “rank™ to indicate process identifier.

‘oSCER, @ Q’il/";";c‘a%tzzv 50D HPCME Distributed Multiprocessing m
HAMP IUN A Intermediate Parallel, July 31 — Aug 6 2011 t. ra 46

OK EPSCoR bl)SU

\74 MPI is SPMD (C)

MPI uses kind of parallelism known as
Single Program, Multiple Data (SPMD).

This means that you have one MPI program — a single
executable — that is executed by all of the processes in an
MPI run.

So, to differentiate the roles of various processes in the MPI
run, you have to have i £ statements:

if (my rank == server rank) {

—» Sponsored b . . - -
& oScER Q| Q,i‘f:; FFFFFFFF V BOD HPCWP, Distributed Multiprocessing ﬁIIII ----------
/& TECHNOLOG SCll/ACM -
CHAMPION wiey icsio Intermediate Parallel, July 31 - Aug 6 2011 t. ‘E 47

OK EPSCoR bl)SU

\74 MPI is SPMD (F90)

MPI uses kind of parallelism known as
Single Program, Multiple Data (SPMD).

This means that you have one MPI program — a single
executable — that is executed by all of the processes in an

MPI run.

So, to differentiate the roles of various processes in the MPI
run, you have to have i £ statements:

IF (my rank == server rank) THEN

END IF

l O&ER % Q’if:w ooooooo V DOD HPCMP DiStribUted MUItiproceSSing ﬁlﬁ
& TEckNoLOG SC11/ACM, i
HAMPlUN weie Nesind - Intermediate Parallel, July 31 — Aug 6 2011 t‘ rg 0

OK EPSCOR bl)SU

Example: Greetings

1.

4.

D.

Start the MPI system.
Get the rank and number of processes.
If you’re not the server process:
1. Create a greeting string.
2. Send it to the server process.
If you are the server process:.

1. For each of the client processes:
1. Receive its greeting string.
2. Print its greeting string.

Shut down the MPI system.

OK EPSCoR SI)SU

— Sponsored b .. . -
Q| Q;ift?j; FFFFFFFF V BOD HPCWP, Distributed Multiprocessing ﬁm{ ‘‘‘‘‘‘‘‘‘‘‘
TECHNOLOG SCll/ACM -
H AMPION winn N Intermediate Parallel, July 31 - Aug 6 2011 t‘ ‘E 49

Y greeting.c

#include <stdio.h>
#include <string.h>
#include "mpi.h"

int main (int argc, char* argv|[])
{ /* main */
const int maximum message length = 100;

const int server rank = 0;

char message [maximum message length+l];

MPI Status status; /* Info about receive status */
int my rank; /* This process ID *x /
int num _procs; /* Number of processes in run */
int source; /* Process ID to receive from */
int destination; /* Process ID to send to */
int tag = 0; /* Message ID */
int mpi_ error code; /* Error code for MPI calls */

[work goes here]
} /* main */

Sponsored by

goscga, Q| Q,-it OOOOOOO V DOD HPCMP, Distributed Multiprocessing ﬁﬁﬁ =
NG s T NYERY OF R SC11/ACM, -
s HAMPY TON WIDENER NGS! and Intermediate Parallel, July 31 — Aug 6 2011 ‘EEEE

OK EPSCoR SDSU

V| Hello World Startup/Shut Down

[header file includes]
int main (int argc, char* argv|[])
{ /* main */

[declarations]

mpi error code = MPI Init(&argc, &argv);

mpi error code = MPI Comm rank (MPI COMM WORLD, &my rank);
mpi error code = MPI Comm size (MPI COMM WORLD, &num procs);
if (my rank != server rank) ({
[work of each non-server (worker) process]
} /* if (my rank != server rank) */
else {
[work of server process]
} /* if (my rank != server rank)..else */
mpi error code = MPI Finalize();
} /* main */

> . Sponsored b
(HOScEREy) Q| Q’i?*"*‘mv DOD HPCMP, Distributed Multiprocessing ﬁfl =
E IAMP TON. WinR Nesr o Intermediate Parallel, July 31 — Aug 6 2011 ‘i! rg 51

UNIVERSITY OK EPSCoR SDSU

Y Hello World Client’s Work

[header file includes]
int main (int argc, char* argv|[])
{ /* main */
[declarations]
[MPI startup (MPI_Init etc)]
if (my rank != server rank) ({
sprintf (message, "Greetings from process #%d!",

my rank);
destination = server_rank;

mpi error code =
MPI Send(message, strlen(message) + 1, MPI CHAR,

tag, MPI COMM WORLD) ;

destination,
} /* if (my rank !'= server rank) S x/
else {
[work of server process]
} /* if (my rank != server rank)..else */

mpi error code = MPI Finalize();

} /* main */

% Q’ﬂm‘av 0O HPOMP, Distributed Multiprocessing ﬁm
Nesmd Intermediate Parallel, July 31 — Aug 6 2011 t‘ ‘F 52

HAMPIUN WIDENER ~ NCSI and
OK EPSCoR snsu

UNIVYERSITY

Y Hello World Server’s Work

[header file includes]
int main (int argc, char* argv|[])
{ /* main */
[declarations, MPI startup]
if (my rank != server rank) ({
[work of each client process]
} /* if (my rank != server rank) */
else {
for (source = 0; source < num procs; source++) {
if (source != server rank) ({
mpi error code =
MPI Recv(message, maximum message length + 1,
MPI CHAR, source, tag, MPI COMM WORLD,

&stgtus);
fprintf (stderr, "%$s\n", message);
} /* if (source != server rank) */
} /* for source */
} /* if (my rank != server rank)..else */

mpi_ error code = MPI Finalize();
} /* main */

; Sponsored b . . - -
% | V DOD HPCP, Distributed Multiprocessing m
HAMP TON WDk SCLIACH, Intermediate Parallel, July 31 — Aug 6 2011 t. rg 53

UNIVERSITY OK EPSCoR SDSU

N4 How an MPI Run Works

= Every process gets a copy of the executable:
Single Program, Multiple Data (SPMD).

= They all start executing it.

= Each looks at its own rank to determine which part of the
problem to work on.

= Each process works completely independently of the other
processes, except when communicating.

OOOOOO

oScER, Q| Q:-it OOOOOOO V 50D HPCM Distributed Multiprocessing ﬁm ‘‘‘‘‘‘‘‘‘‘
- TECHOLoC SC11/ACM, :
HAMl 1UN WIDENER NGSI and Intermediate Parallel, July 31 — Aug 6 2011 t rg 54

OK EPSCOR bl)SU

Compiling and Running

‘ oScER i

mpicc

%
%

mpirun

o°

mpirun
Greetings
% mpirun
Greetings
Greetings

% mpirun
Greetings

Greetings
Greetings

-0 hello world mpi greeting.c

-np 1 hello world mpi

-np 2 hello world mpi

from process #1!

-np 3 hello world mpi

from process #1!

from process #2!

-np 4 hello world mpi

from process #1!

from process #2!

from process #3!

Note: The compile command and the run command vary from
platform to platform.

This ISN’T how you run MPI on Sooner.
% Q’iﬁ%‘mﬁ‘év Dss%lﬁég\j?

OK EPSCoR

HAMP l ()N WIDENER ~ NCSI and

Distributed Multiprocessing
Intermediate Parallel, July 31 — Aug 6 2011

LB -

SDSU

\74 Why Is Rank #0 the Server?

const int server rank = 0;
By convention, the server process has rank (process ID) #0.
Why?
A run must use at least one process but can use multiple
Processes.

Process ranks are 0 through N -1, N, >1 .
Therefore, every MPI run has a process with rank #0.

Note: Every MPI run also has a process with rank N,-1, so you
could use Np—l as the server instead of O ... but no one does.

—2 Sponsored b
& oScER, Q| Q’i\tﬁz‘m‘év DOD HPCMP, Distributed Multiprocessing ﬁm ----------
HAMP LON Wiy SCLIACH, Intermediate Parallel, July 31 — Aug 6 2011 t. rg 56

OK EPSCoR

bl)SU

V| Does There Have to be a Server?

There DOESN’T have to be a server.

It’s perfectly possible to write an MPI code that has no master
as such.

For example, weather and other transport codes typically share

most duties equally, and likewise chemistry and astronomy
codes.

In practice, though, most codes use rank #0 to do things like
small scale I/O, since 1t’s typically more efficient to have

one process read the files and then broadcast the input data
to the other processes.

‘;égo&ER Q| Q’itV 50D HPCMP, Distributed Multiprocessing ﬁIIII ----------
HAMl LON Wiy ScripeM. Intermediate Parallel, July 31 — Aug 6 2011 t rg 57

OK EPSCOR bl)SU

\74 Why “Rank?”

Why does MPI use the term rank to refer to process ID?

In general, a process has an identifier that is assigned by the
operating system (for example, Unix), and that is unrelated
to MPI:

% ps
PID TTY TIME CMD

52170812 ttyg57 0:01 tcsh
Also, each processor has an identifier, but an MPI run that
uses fewer than all processors will use an arbitrary subset.

The rank of an MPI process is neither of these.

;{éoScER Ql %i\t FFFFFFFF V DOD HPCMP, Distributed Multiprocessing ﬁ[ﬁ
& TEckNoLOG SC11/ACM, i
HAMPLON wineie Nesias - Intermediate Parallel, July 31 —Aug 6 2011 t‘ rg >

OK EPSCoR bDbU

Y Compiling and Running

Recall:

% mpicc -o hello world mpi greeting.c
$ mpirun -np 1 hello world mpi

% mpirun -np 2 hello world mpi
Greetings from process #1!

$ mpirun -np 3 hello world mpi
Greetings from process #1!

Greetings from process #2!

% mpirun -np 4 hello world mpi
Greetings from process #1!

Greetings from process #2!
Greetings from process #3!

Sponsored by

€05cER, @ Q’iﬂ‘mv DOD HPCMP, Distributed Multiprocessing ﬁﬁl N
C HAMP TON, Wik SCLUACM, Intermediate Parallel, July 31 — Aug 6 2011 ﬂE rg 59

RS ITY OK EPSCoR SDSU

\74 Deterministic Operation?

% mpirun -np 4 hello world mpi
Greetings from process #1!
Greetings from process #2!
Greetings from process #3!

The order in which the greetings are printed is deterministic.
Why?

for (source = 0; source < num procs; source++) {

if (source != server rank) ({

mpi_ error code =
MPT Recv(message maximum message length + 1,

MPI CHAR, source, tag, MPI_ COMM WORLD,

&status)
fprintf (stderr, "%s\n", message);
} /* if (source !'= server rank) */

} /* for source */

This loop ignores the receive order.

& oScER, Q;i% OOOOOOO DOD HPCM, Distributed Multiprocessing /5 L s
[TECHNOLOG SCll/ACM -
’ Intermediate Parallel, July 31 — Aug 6 2011 rg 60

E HAMP l ()N WIDENER ~ NCSI and

OK EPSCoR bl)SU

\74 Deterministic Parallelism

for (source = 0; source < num procs; source++) {
if (source !'= server rank) {
mpi error code =
MPI Recv (message, maximum message length + 1,
MPI CHAR, @ tag,

MPI_COMM WOR &status) ;
fprintf (stderr, "°s\n", message) ;
} /* if (source !'= server rank) */

} /* for source */

Because of the order in which the loop iterations occur, the
greetings will be printed in non-deterministic order.

— Sponsored b . . - -
& oScER, Q| Q’ift'é?ézmzv bOD HPCMP, Distributed Multiprocessing ﬁm{ ‘‘‘‘‘‘‘‘‘‘‘
H AMPION Wesr Nesimd Intermediate Parallel, July 31 — Aug 6 2011 t‘ ‘E 61

OK EPSCoR bl)SU

\74 Nondeterministic Parallelism

for (source = 0; source < num procs; source++) {
if (source !'= server rank) {
mpi error code =

MPI Recv (message, maximum message length + 1,
MPI CHA.”.MPI ANY SOURCE>D tag,
MPI COMM WORLD sStatus) ;

fprlntf(stderr "$s\n", message);
} /* if (source !'= server rank) */
} /* for source */

Because of this change, the greetings will be printed in
non-deterministic order, specifically in the order in which
they’re received.

— Sponsored b .. . -
& oScER, Q| Q,.i[t,‘v; FFFFFFFF V bOD HPCMP, Distributed Multiprocessing ﬁm{ ‘‘‘‘‘‘‘‘‘‘‘
TECHNOLOG SCll/ACM -
CHAMPION wiey icsio Intermediate Parallel, July 31 - Aug 6 2011 t‘ ‘E 62

OK EPSCoR SI)SU

V| Message = Envelope+Contents

MPI Send (message, strlen(message) + 1,
MPI CHAR, destination, tag,
MPI_COMM WORLD) ;

When MPI sends a message, it doesn’t just send the contents; it
also sends an “envelope” describing the contents:

Size (number of elements of data type)

Data type

Source: rank of sending process

Destination: rank of process to receive

Tag (message ID)

Communicator (for example, MPI COMM WORLD)

‘oScER, @ Q’iﬂm‘év 0O HPOMP, Distributed Multiprocessing m
HAMP IUN A Intermediate Parallel, July 31 — Aug 6 2011 t. rg 63

OK EPSCoR b[)bU

MPI1 Data Types

' C Fortran
char MPI_CHAR CHARACTER |MPI CHARACTER
int MPI_INT INTEGER MPI_INTEGER
float MPI_FLOAT REAL MPI_REAL
double |MPI DOUBLE |DOUBLE MPI_DOUBLE PRECISION
PRECISION

MPI supports several other data types, but most are variations of these, and probably
these are all you’ll use.

=

Sponsored by
DOD HPCMP
SC11/ACM,

OK EPSCoR

, Distributed Multiprocessing ﬁﬁ =
WIDENER NCSI and Intermediate Parallel, July 31 — Aug 6 2011 ‘E rg 64

s HAMPION.

SDSU

N4 Message Tags

My daughter was born in mid-December.

So, If | give her a present in December, how does she know
which of these 1t’s for?

= Her birthday

= Christmas

= Hanukkah

She knows because of the tag on the present:
= A little cake and candles means birthday
= A little tree or a Santa means Christmas

= A little menorah means Hanukkah

—p Sponsored b . . . -
;o_cCER Q| Q,.itﬁcmv DOD HPCP, Distributed Multiprocessing ﬁlﬁ ~~~~~~~~~
HAMP TONT Ncsmi Intermediate Parallel, July 31 — Aug 6 2011 t‘ "9 65

OK EPSCoR bl)SU

Y Message Tags

for (source = 0; source < num procs; source++) {
if (source !'= server rank) {
mpi error code =
MPI Recv (message, maximum message length + 1,
MPI CHAR, source, tag,
MPI COMM WORLD, &status);
fprintf (stderr, "%$s\n", message) ;
} /* if (source !'= server rank) */
} /* for source */

The greetings are printed in deterministic order not because
messages are sent and received in order, but because each has
a tag (message identifier), and MPI Recv asks for a

specific message (by tag) from a specific source (by rank).

—p Sponsored b . . . -
& oScER, Q| %i\f; FFFFFFFF V DOD HPCMP, Distributed Multiprocessing ﬁlﬁ ----------
y TECHNOLOG SCll/ACM -
CHAMPION wiey icsio Intermediate Parallel, July 31 - Aug 6 2011 t. ‘F 66

OK EPSCoR bl)SU

V| Parallelism is Nondeterministic

for (source = 0; source < num procs; source++) {
if (source !'= server rank) {
mpi error code =

MPI_Recv(messa-e maximum message length + 1,
MPI COMM WOR D Lsta us) ;
fprlntf(stderr "°s\n", message) ;

} /* if (source !'= server rank) */
} /* for source */

But here the greetings are printed in non-deterministic order.

— Sponsored b . .
& oScER, @ %iﬂmggv DOD HPCMP, Distributed Multiprocessing m ;
H AM v IUN A Intermediate Parallel, July 31 — Aug 6 2011 t.

OK EPSCoR bl)bU

Y Communicators

An MPI communicator is a collection of processes that can
send messages to each other.

MPI COMM WORLD Is the default communicator; it contains
all of the processes. It’s probably the only one you’ll need.

Some libraries create special library-only communicators,
which can simplify keeping track of message tags.

—2 Sponsored b
& oScER, Q| @iﬁm‘év DOD HPCMP, Distributed Multiprocessing ﬁm ----------
HAMP LON e SCLIACH, Intermediate Parallel, July 31 — Aug 6 2011 t. rg 68

OK EPSCoR bl)bU

\74 Broadcasting

What happens if one process has data that everyone else needs
to know?

For example, what if the server process needs to send an input
value to the others?

MPI Bcast(length, 1, MPI INTEGER,
source, MPI COMM WORLD)

Note that MPI Bcast doesn’t use a tag, and that the call is
the same for both the sender and all of the receivers.

All processes have to call MPI Bcast at the same time;
everyone waits until everyone is done.

& oScER, Q| @i&‘vV 50D HPCME Distributed Multiprocessing ﬁm{ \\\\\\\\\\\
HAMP IUN A Intermediate Parallel, July 31 — Aug 6 2011 t‘ rg 69

OK EPSCoR b[)bU

\74 Broadcast Example: Setup

PROGRAM broadcast
IMPLICIT NONE
INCLUDE "mpif.h"
INTEGER, PARAMETER :: server = 0
INTEGER, PARAMETER :: source = server
INTEGER,DIMENSION(:) ,ALLOCATABLE :: array
INTEGER :: length, memory status
INTEGER :: num procs, my rank, mpi error code

CALL MPI Init(mpi error code)
CALL MPI Comm rank (MPI_COMM WORLD, my rank, &
& mpi_ error code)
CALL MPI Comm size (MPI_COMM WORLD, num procs, &
& mpi_ error code)
[input]
[broadcast]
CALL MPI Finalize (mpi_ error code)
END PROGRAM broadcast

: Sponsored b f
(HoScerty % rmﬂgv BOD HPCWP, Distributed Multiprocessing ﬁﬁ =
¢ HAMPION wimer nosmd Intermediate Parallel, July 31 — Aug 6 2011 “! P 70

UNIVERSITY OK EPSCoR SDSU

\74 Broadcast Example: Input

PROGRAM broadcast
IMPLICIT NONE
INCLUDE "mpif.h"

INTEGER, PARAMETER :: server = 0

INTEGER, PARAMETER :: source = server
INTEGER,DIMENSION(:) ,ALLOCATABLE :: array
INTEGER :: length, memory status

INTEGER :: num procs, my rank, mpi error code
[MPI startup]

IF (my rank == server) THEN

OPEN (UNIT=99,FILE="broadcast in.txt")
READ (99,*) length
CLOSE (UNIT=99)
ALLOCATE (array (length) , STAT=memory status)
array(l:length) = 0

END IF !! (my rank == server)...ELSE

[broadcast]

CALL MPI Finalize (mpi_ error code)

END PROGRAM broadcast

Sponsored by

(foscenth Q| it V DOD HPCMP, Distributed Multiprocessing ﬁi’n =
s SCLI/ACM, :
s HAMP ION WIDENER NCS! and Intermediate Parallel, July 31 — Aug 6 2011 ﬁE
OK EPSCoR

SDsSU

Broadcast Example: Broadcast

PROGRAM broadcast
IMPLICIT NONE
INCLUDE "mpif.h"
INTEGER, PARAMETER :: server = 0
INTEGER, PARAMETER :: source = server
[other declarations]

[MP1 startup and input]
IF (num procs > 1) THEN
CALL MPI Bcast(length, 1, MPI INTEGER, source, &

& MPI COMM WORLD, mpi error code)
IF (my rank /= server) THEN
ALLOCATE (array (length) , STAT=memory status)
END IF !! (my rank /= server)
CALL MPI Bcast(array, length, MPI_ INTEGER, source, &
MPI COMM WORLD, mpi error code)
WRITE (0,*) my rank, ": broadcast length = ", length
END IF !! (num procs > 1)
CALL MPI Finalize (mpi_ error code)
END PROGRAM broadcast

S — Sponsored b _ . - f
(osceny) @ Q’iﬂﬁzmzv DOD HPCMP, Distributed Multiprocessing ﬁﬁl =
& HAMP TON WIDENER ScripeM. Intermediate Parallel, July 31 — Aug 6 2011 P ‘!

UNIVERSITY OK EPSCoR SDSU

\74 Broadcast Compile & Run

% mpif90 -o broadcast broadcast.£90
% mpirun -np 4 broadcast

0 : broadcast length = 16777216

1 : broadcast length = 16777216

2 : broadcast length = 16777216

3 : broadcast length = 16777216

Sponsored b
C: o_ccER, % Q"ii/t’azmzv bOD HPCMP, Distributed Multiprocessing m
HAMP IUN A Intermediate Parallel, July 31 — Aug 6 2011 t. rg 73

OK EPSCoR SI)SU

\74 Reductions

A reduction converts an array to a scalar: for example,
sum, product, minimum value, maximum value, Boolean
AND, Boolean OR, etc.

Reductions are so common, and so important, that MPI has two
routines to handle them:

MPI Reduce: sends result to a single specified process

MPI Allreduce: sends result to all processes (and therefore
takes longer)

—p Sponsored b . . . -
& oScER, Q| %i\f; FFFFFFFF V DOD HPCMP, Distributed Multiprocessing ﬁlﬁ ----------
y TECHNOLOG SCll/ACM -
CHAMPION wiey icsio Intermediate Parallel, July 31 - Aug 6 2011 t. ‘F 74

OK EPSCoR bl)bU

\74 Reduction Example

PROGRAM reduce
IMPLICIT NONE

INCLUDE "mpif.h"

INTEGER, PARAMETER :: server = 0
INTEGER :: value, value sum
INTEGER :: num procs, my rank, mpi error code

CALL MPI Init(mpi_ error code)

CALL MPI Comm rank (MPI_COMM WORLD, my rank,
mpi_ error code)

CALL MPI Comm size (MPI_COMM WORLD, num procs,
mpi_ error code)

value sum = 0

value = my rank * num procs

CALL MPI Reduce(value, value sum, 1, MPI INT, MPI SUM, &

& server, MPI COMM WORLD, mpi error code)

WRITE (0,*) my rank ": reduce value sum = ", value_ sum
CALL MPI Allreduce(value, value sum, 1 MPI INT, MPI SUM &
& MPI COMM WORLD, mpl_error_code)

WRITE (0,*) my rank, ": allreduce value sum = ", value sum

CALL MPI Finalize (mpi_ error code)
END PROGRAM reduce

- J Sponsored by

‘oScER, Q| %iﬂmgv DOD HPCMP, Distributed Multiprocessing ﬁm ;
HAMP IUN A Intermediate Parallel, July 31 — Aug 6 2011 t.

OK EPSCoR bDSU

Y Compiling and Running

% mpif90 -o reduce reduce.£f90

% mpirun -np 4 reduce

I
o

reduce value_sum
reduce value_sum = 0
reduce value_sum = 0

reduce value_sum = 24

24

allreduce value_sum = 24

allreduce value_sum

allreduce value_sum = 24

W NP OO DMNdDNRERkER W

allreduce value_sum = 24

Sy, 3 Sponsored b . . - - fi
ot Q) Ol N/ S0 Distributed Multiprocessing M E
Bpyene® SC11/ACM, :
s HAMP ION WIDENER NCS! and Intermediate Parallel, July 31 — Aug 6 2011 ﬂE

UNIVERSITY OK EPSCoR SDSU

VY| Why Two Reduction Routines?

MPI has two reduction routines because of the high cost of
each communication.

If only one process needs the result, then it doesn’t make sense
to pay the cost of sending the result to all processes.

But if all processes need the result, then it may be cheaper to
reduce to all processes than to reduce to a single process and
then broadcast to all.

—2 Sponsored b
& oScER, Q| @iﬁm‘év DOD HPCMP, Distributed Multiprocessing ﬁm ----------
HAMP ION e Ncsmi Intermediate Parallel, July 31 — Aug 6 2011 t. rg 77

OK EPSCoR bl)SU

V| Non-blocking Communication

MPI allows a process to start a send, then go on and do work
while the message is in transit.

This is called non-blocking or immediate communication.

Here, “immediate” refers to the fact that the call to the MPI
routine returns immediately rather than waiting for the
communication to complete.

— Sponsored b . . - -
& oScER, Q| Q’ift'é?ézmzv bOD HPCMP, Distributed Multiprocessing ﬁm{ ‘‘‘‘‘‘‘‘‘‘‘
H AMPION Wesr Nesimd Intermediate Parallel, July 31 — Aug 6 2011 t‘ ‘E 78

OK EPSCoR b[)bU

\74 Immediate Send

mpi error code =
MPI Isend(array, size, MPI FLOAT,

destination, tag, communicator, request);
Likewise:
mpi error code =
MPI Irecv(array, size, MPI FLOAT,

source, tag, communicator, request);

This call starts the send/receive, but the send/receive won’t be
complete until:

MPI Wait (request, status);
What’s the advantage of this?

Sy, 3 Sponsored b .. - - fi
(foscerdh @ Q"Iﬂﬁz ‘WV 5O HPCMP, Distributed Multiprocessing ﬁﬁl 5
&H AMPION wimvir Nesiaa Intermediate Parallel, July 31 — Aug 6 2011 ﬂE P

OK EPSCoR SDSU

Y Communication Hiding

In between the call to MPI Isend/Irecv and the call to
MPI Wait, both processes can do work!

If that work takes at least as much time as the communication,
then the cost of the communication is effectively zero, since
the communication won’t affect how much work gets done.

This is called communication hiding.

& oScER, @ Q’iﬂ‘mv 50D HPCME Distributed Multiprocessing m \\\\\\\\\\\
HAMP IUN A Intermediate Parallel, July 31 — Aug 6 2011 t. rg 80

OK EPSCoR bl)bU

\74 Rule of Thumb for Hiding

When you want to hide communication:
= as soon as you calculate the data, send it;

= don’t receive it until you need 1it.

That way, the communication has the maximal amount of time
to happen in background (behind the scenes).

& oScER, @ Q’iﬂ‘mv 50D HPCME Distributed Multiprocessing m \\\\\\\\\\\
HAMP IUN A Intermediate Parallel, July 31 — Aug 6 2011 t. rg 81

OK EPSCoR

bl)bU

Thanks for your
attention!

V|

Questions?

\74 References

[1] P.S. Pacheco, Parallel Programming with MPI1, Morgan Kaufmann
Publishers, 1997.

[2] W. Gropp, E. Lusk and A. Skjellum, Using MPI: Portable Parallel
Programming with the Message-Passing Interface, 2" ed. MIT
Press, 1999.

oscER; Q| @ﬂmgv 50D HPCME Distributed Multiprocessing
HAMP IUN A Intermediate Parallel, July 31 — Aug 6 2011 t. ‘F 83

OK EPSCoR SDSU

