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Introduction
N-body problem

P2P - point to point: taken pairwise is order n2

start with the first of n points and form pairs with the other
n − 1 points
perform this step for all n point
asymptotically n2 pairings are formed - dipoles
this does not consider tri-poles, quad-poles upto multi-poles

there are basically two categories:
macro: massive objects >1010, galaxies and cosmological
phenomena - Einstein (relativity; gravity)
micro: small objects <10−10, quarks, and nano-scale
phenomena - Dirac (quantum mechanics; strong, weak &
EM forces)

Stephen V. Providence Ph.D. High Performance Computing Modernization Program



Hampton University-logo

Introduction
N-body problem

P2P - point to point: taken pairwise is order n2

start with the first of n points and form pairs with the other
n − 1 points
perform this step for all n point
asymptotically n2 pairings are formed - dipoles
this does not consider tri-poles, quad-poles upto multi-poles

there are basically two categories:
macro: massive objects >1010, galaxies and cosmological
phenomena - Einstein (relativity; gravity)
micro: small objects <10−10, quarks, and nano-scale
phenomena - Dirac (quantum mechanics; strong, weak &
EM forces)

Stephen V. Providence Ph.D. High Performance Computing Modernization Program



Hampton University-logo

Introduction
N-body problem

P2P - point to point: taken pairwise is order n2

start with the first of n points and form pairs with the other
n − 1 points
perform this step for all n point
asymptotically n2 pairings are formed - dipoles
this does not consider tri-poles, quad-poles upto multi-poles

there are basically two categories:
macro: massive objects >1010, galaxies and cosmological
phenomena - Einstein (relativity; gravity)
micro: small objects <10−10, quarks, and nano-scale
phenomena - Dirac (quantum mechanics; strong, weak &
EM forces)

Stephen V. Providence Ph.D. High Performance Computing Modernization Program



Hampton University-logo

Introduction
approaches

O(n2) requires straightforward translation of simple data
structures to arrays for BLAS 1, 2 computations
O(n log n) is challenging

1 CON: repeatedly builds and traverses (in-order) an irregular
tree-based data structure

2 CON: performs a great deal of pointer chasing memory
operations

3 CON: the Barnes-Hut approach is typically expressed
recursively

4 PRO: this approach makes interesting problem sizes
computationally tractable

5 PRO: GPUs can be used ti accelerate irregular problems
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Core Methods
Barnes-Hut

widely used, starts with all N bodies in a computational box
hierarchically decomposes the space around the bodies
into successively smaller boxes called cels
hierarchical decomposition is recorded in octrees (3D
equivalent to binary tree), resembles tic-tac-toe grid

Figure: GPU Gems: Emerald Edition
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Core Methods
pseudo code

1 read input data and transfer to GPU
for each time step do {

1 compute computational box around all bodies
2 build hierarchical decomposition by inserting each body into

octree
3 summarize body information in each internal octree node
4 approximately sort the bodies by spatial distance
5 compute forces acting on each body with help of ochre
6 update body positions and velocity

}
2 transfer result to CPU and output
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Core Methods
hierarchical decomposition

2D view

Figure: GPU Gems: Emerald Edition
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Core Methods
hierarchical decomposition

tree view

Figure: GPU Gems: Emerald Edition
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Core Methods
hierarchical decomposition

center of gravity (or forces)
force calculation depicted

Figure: GPU Gems: Emerald Edition
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Core Methods
hierarchical decomposition

runtime per simulated tome step in milliseconds of GPU
O(n2) vs. GPU Barnes-Hut vs. CPU Barnes-Hut

Figure: GPU Gems: Emerald Edition
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Algorithms and Implementations
Fast N-body

1 the following expressions for the potential and force, resp. on a
body i , and rij = xj − xi is a vec from body i to body j

Φi = mi

N∑
j=1

mj

rij
, Fi = −∇Φi

this results in O(n2) computational complexity
2 here the sum for the potential is factored into a near-field and a

far-field expansion as follows:

Φi =
∞∑

n=0

n∑
m=−n

mi r−n−1
j Y m

n (θi , φi )
N∑

j=1

mjρ
n
j Y−m

n (αj , βj )︸ ︷︷ ︸
Mm

n

.

Mm
n clusters particles to far field, Y m

n is spherical harmonic funct
and (r , θ, φ); (ρ, α, β) are dist vecs from center of the expansion
to bodies i , and j resp.
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Algorithms and Implementations
Fast N-body

1 here the sum for the potential is factored into a far-field and a
near-field expansion as follows:

Φi =
∞∑

n=0

n∑
m=−n

mi r−n−1
i Y m

n (θi , φi )
N∑

j=1

mjρ
n
j Y−m

n (αj , βj )︸ ︷︷ ︸
Mm

n

.

Mm
n clusters particles to far field, Y m

n is spherical harmonic funct
and (r , θ, φ); (ρ, α, β) are dist vecs from center of the expansion
to bodies i , and j resp.

Φi =
∞∑

n=0

n∑
m=−n

mi rn
i Y m

n (θi , φi )
N∑

j=1

mjρ
−n−1
j Y−m

n (αj , βj )︸ ︷︷ ︸
Lm

n

.

Lm
n clusters particles to near field, use of FMM, O(N): fast

multipole method and the tree structure list of log N cells
interacting with N particles, yields O(N log N) complexity.
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Algorithms and Implementations
Fast N-body

flow of tree code and FMM calculation

Figure: GPU Gems: Emerald Edition
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Conclusion
modest evaluation

No implementation of an entire N-body algorithm runs on
the GPU
Inputs: 5,000 to 50,000,000 galaxies
System: 2.53 GHz Xeon E5540 CPU with 12GB RAM per
node and !.66 GHz TESLA GPU with 240 cores
Compilers: CUDA codes with nvcc v.4.1 and the "-O3
-arch=sm_13", "-O2" is used with icc.
Metric: runtimes appear close together
Validation: O(n2) is more accurate than Barnes-Hut
algorithms because the CPUs floating point arithmetic is
more precise than the GPUs
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Appendix For Further Reading

For Further Reading I

Michael J. Quinn,
Parallel Programming in C with MPI and OpenMP
McGraw-Hill, 2004

J. Sanders, E. Kandrot,
CUDA By Example: An Introduction to General-Purpose
GPU Programming,
Nvidia, 2011

Board of Trustees of the University of Illinois, 2011
NCSA News,
http://www.ncsa.ilinois.edu/BlueWaters/systems.html

B. Sinharoy,et al.
IBM POWER7 Multicore Server Processor
IBM J. Res. & Dev. Vol. 55 No. 3 Paper 1 May/June 2011
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Appendix For Further Reading

For Further Reading II

Jeffrey Vetter, Dick Glassbrook, Jack Dongarra, Richard
Fujimoto, Thomas Schulthess, Karsten Schwan
Keeneland - Enabling Heterogenous Computing for the
Open Science Community
Supercomputing Conference 2010, New Orleans, Louisiana

C. Zeller, Nvidia Corporation
C. Zeller - CUDA C Basics
Supercomputing Conference 2010, New Orleans, Louisiana
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