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e Fast O(nlog n) version [Barnes-Hut]
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Introduction
N-body problem

@ P2P - point to point: taken pairwise is order n?
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Introduction
N-body problem

@ P2P - point to point: taken pairwise is order n?
o start with the first of n points and form pairs with the other
n— 1 points
e perform this step for all n point
e asymptotically n? pairings are formed - dipoles
e this does not consider tri-poles, quad-poles upto multi-poles
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Introduction
N-body problem

@ P2P - point to point: taken pairwise is order n?
o start with the first of n points and form pairs with the other
n— 1 points
e perform this step for all n point
e asymptotically n? pairings are formed - dipoles
e this does not consider tri-poles, quad-poles upto multi-poles
@ there are basically two categories:
e macro: massive objects >10'°, galaxies and cosmological
phenomena - Einstein (relativity; gravity)
e micro: small objects <10~'°, quarks, and nano-scale
phenomena - Dirac (quantum mechanics; strong, weak &
EM forces)

Stephen V. Providence Ph.D. High Performance Computing Modernization Program



Introduction

approaches

@ O(rP) requires straightforward translation of simple data
structures to arrays for BLAS 1, 2 computations
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Introduction

approaches

@ O(rP) requires straightforward translation of simple data
structures to arrays for BLAS 1, 2 computations
@ O(nlog n) is challenging
@ CON: repeatedly builds and traverses (in-order) an irregular
tree-based data structure
@ CON: performs a great deal of pointer chasing memory
operations
© CON: the Barnes-Hut approach is typically expressed
recursively
© PRO: this approach makes interesting problem sizes
computationally tractable
© PRO: GPUs can be used ti accelerate irregular problems
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Core Methods

Barnes-Hut

@ widely used, starts with all N bodies in a computational box

@ hierarchically decomposes the space around the bodies
into successively smaller boxes called cels

@ hierarchical decomposition is recorded in octrees (3D
equivalent to binary tree), resembles tic-tac-toe grid
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Figure: GPU Gems: Emerald Edition
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Core Methods

pseudo code

@ read input data and transfer to GPU
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Core Methods

pseudo code

@ read input data and transfer to GPU
for each time step do {

000 ©00

compute computational box around all bodies

build hierarchical decomposition by inserting each body into
octree

summarize body information in each internal octree node
approximately sort the bodies by spatial distance

compute forces acting on each body with help of ochre
update body positions and velocity
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Core Methods

pseudo code

@ read input data and transfer to GPU
for each time step do {

compute computational box around all bodies

build hierarchical decomposition by inserting each body into
octree

summarize body information in each internal octree node
approximately sort the bodies by spatial distance
compute forces acting on each body with help of ochre
update body positions and velocity

000 ©00

}
@ transfer result to CPU and output
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Core Methods

hierarchical decomposition

@ 2D view

Figure: GPU Gems: Emerald Edition
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Core Methods

hierarchical decomposition

@ tree view
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Core Methods

hierarchical decomposition

@ center of gravity (or forces)
@ force calculation depicted
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Core Methods

hierarchical decomposition

@ runtime per simulated tome step in milliseconds of GPU
O(r?) vs. GPU Barnes-Hut vs. CPU Barnes-Hut

Figure: GPU Gems: Emerald Edition
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Algorithms and Implementations
Fast N-body

@ the following expressions for the potential and force, resp. on a
body i, and r; = x; — x; is a vec from body i to body j
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Algorithms and Implementations
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@ the following expressions for the potential and force, resp. on a
body i, and r; = x; — x; is a vec from body i to body j

N

m.
O =my ley Fi=-Vo,
j=1 "

this results in O(n?) computational complexity

@ here the sum for the potential is factored into a near-field and a
far-field expansion as follows:

Z Z mir; r" 1Ym (0, i) ijpj a])ﬁj)
—/_/

n=0 m=—n M
M clusters particles to far field, Y, is spherical harmonic funct
and (r, 0, ¢); (p, «, 8) are dist vecs from center of the expansion
to bodies /, and j resp.
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Algorithms and Implementations
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@ here the sum for the potential is factored into a far-field and a
near-field expansion as follows:

Z Z mir " Y (01, 1) Zm,p, (e, 3y) -
_,_/

n=0 m=—n

M7 clusters particles to far field, Y;" is spherical harmonic funct
and (r, 0, ¢); (p, «, 3) are dist vecs from center of the expansion
to bodies i, and j resp.

Z Z mir"Y™(6;, ¢;) Zm,pj_" VY™, 5)) -

n=0 m=—n

Lm

L™ clusters particles to near field, use of FMM, O(N): fast
multipole method and the tree structure list of log N cells
interacting with N particles, yields O(N log N) complexity.
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Algorithms and Implementations
Fast N-body

@ flow of tree code and FMM calculation

Figure: GPU Gems: Emerald Edition
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@ flow of tree code and FMM calculation

Figure: GPU Gems: Emerald Edition
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Conclusion

modest evaluation

@ No implementation of an entire N-body algorithm runs on
the GPU
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Conclusion
modest evaluation

@ No implementation of an entire N-body algorithm runs on
the GPU

@ Inputs: 5,000 to 50,000,000 galaxies

@ System: 2.53 GHz Xeon E5540 CPU with 12GB RAM per
node and .66 GHz TESLA GPU with 240 cores

@ Compilers: CUDA codes with nvcc v.4.1 and the "-O3
-arch=sm_13", "-02" is used with icc.

@ Metric: runtimes appear close together

@ Validation: O(n?) is more accurate than Barnes-Hut

algorithms because the CPUs floating point arithmetic is
more precise than the GPUs
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Appendix For Further Reading

For Further Reading |

¥ Michael J. Quinn,
Parallel Programming in C with MPI and OpenMP
McGraw-Hill, 2004

¥ J. Sanders, E. Kandrot,
CUDA By Example: An Introduction to General-Purpose
GPU Programming,
Nvidia, 2011

[§ Board of Trustees of the University of lllinois, 2011
NCSA News,
http://www.ncsa.ilinois.edu/Blue Waters/systems.html

[§ B. Sinharoy,et al.
IBM POWER7 Multicore Server Processor
IBM J. Res. & Dev. Vol. 55 No. 3 Paper 1 May/June 2011
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Appendix For Further Reading

For Further Reading I

[§ Jeffrey Vetter, Dick Glassbrook, Jack Dongarra, Richard
Fujimoto, Thomas Schulthess, Karsten Schwan
Keeneland - Enabling Heterogenous Computing for the
Open Science Community
Supercomputing Conference 2010, New Orleans, Louisiana

@ C. Zeller, Nvidia Corporation
C. Zeller - CUDA C Basics
Supercomputing Conference 2010, New Orleans, Louisiana
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