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Introduction
GPU

100s of cores
Programmable
Can be installed in most desktops

Figure: Tesla C1060

Central to the second fastest computer on Earth
(top500.org)
Similar in price to CPU
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GPU H/W
mem. hier

Procs have 32-bit regs & canst/text caches are R/O & are
faster that shared mem

Figure: nvidia.com

MPs have shared mem, const. & texture caches
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GPU H/W
GTX 280 specs

933 GFLOPS peak performance
10 thread processing clusters (TPC)
3 multiprocessors per TPC
8 cores per multiprocessor
16384 registers per multiprocessor
16 KB shared memory per multiprocessor
64 KB constant cache per multiprocessor
6 KB < texture cache < 8 KB per multiprocessor
1.3 GHz clock rate
Single and double-precision floating-point calculation
1 GB DDR3 dedicated memory

Figure: nvidia.com
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GPU H/W
Parallel Computing Arch

thread scheduler
thread processing clusters
atomic Tex L2
Memory
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GPU H/W
thread scheduler

Hardware-based
Manages scheduling threads across thread processing
clusters
Nearly 100% utilization: If a thread is waiting for memory
access, the scheduler can perform a zero-cost, immediate
context switch to another thread
Up to 30,720 threads on the GPU
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GPU H/W
thread proc cluster

TF - texture filtering
IU - instruction unit

Figure: nvidia.com
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GPU H/W
atomic/Tex L2

Level 2 Cache
Shared by all thread processing clusters
Atomic

Ability to perform read-modify-write operations to memory
Allows granular access to memory locations
Provides parallel reductions and parallel data structure
management
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GPU H/W
power usage

Dynamic power management
Power consumption is based on utilization

Idle/2D power mode: 25 W
Blu-ray DVD playback mode: 35 W
Full 3D performance mode: worst case 236 W ?
HybridPower mode: 0 W

On an nForce motherboard, when not performing, the GPU
can be powered off and computation can be diverted to the
motherboard GPU (mGPU)
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GPU H/W
240 core GPU

10 Thread Processing Clusters (TPC)
3 multiprocessors per TPC
8 cores per multiprocessor
RPO - raster operation processors (for graphics)
1024 MB frame buffer for displaying images
Texture (L2) Cache
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GPU H/W
240 core GPU image

Figure: nvidia.com
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Programming Model
Past & Present

PAST
The GPU was intended for graphics only, not general
purpose computing.
The programmer needed to rewrite the program in a
graphics language, such as OpenGL
Complicated

PRESENT
NVIDIA developed CUDA, a language for general purpose
GPU computing
Simple
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Programming Model
CUDA

Compute Unified Device Architecture
Extension of the C language
Used to control the device
The programmer specifies CPU and GPU functions

The host code can be C++
Device code may only be C

The programmer specifies thread layout
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Programming Model
thread layout

Threads are organized into blocks.
Blocks are organized into a grid.
A multiprocessor executes one block at a time.
A warp is the set of threads executed in parallel.
32 threads in a warp
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thread layout

Figure: nvidia.com
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Programming Model
heterogeneous computing

GPU and CPU execute different types of code.
CPU runs the main program, sending tasks to the GPU in
the form of kernel functions
Multiple kernel functions may be declared and called.
Only one kernel may be called at a time.
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Programming Model
hetero comp

Figure: nvidia.com
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Programming Model
GPU vs. CPU

Figure: nvidia.com
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Conclusion

SIMD causes some problems
GPU computing is a good choice for fine-grained
data-parallel programs with limited communication
GPU computing is not so good for coarse-grained
programs with a lot of communication
The GPU has become a co-processor to the CPU
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