
Preventing and Finding Bugs in Parallel
Programs

Charlie Peck, Samuel Leeman-Munk

Intermediate Parallel Programming and Cluster Computing

@ University of Oklahoma OSCER

August, 2010

1



How Did We Get Here?

Debugging serial programs can be hard; debugging parallel

programs is usually about -np X times harder than that.

This material is as much about software engineering and

debugging generally as it is about techniques unique to

debugging parallel programs. This reflects the nature of the

work at–hand.

2



Strategies for Preventing Bugs in Parallel
Programs

• Enbug rather than debug.

• Practice defensive programming:

1. Check all return codes

2. Check all function arguments (--pedantic)

3. Use layout to infer structure

4. Choose meaningful variable names

• Think carefully about how shared data elements are read

and written. All parallel programs are strong candidates to

exhibit race conditions.

3



• Build, run, and test your program incrementally as you go,

this usually reduces the amount of code you have to

examine when something does go belly–up (and it most

likely will).

• Code deleted is code debugged, or put another way less is

often more in software engineering.

• Make the program correct, then make the program fast.



Strategies for Finding Bugs in Parallel Programs

• The basic process:

1. Characterize the bug

(a) If possible run the program serially, make sure it works
correctly in that mode.

(b) Run the program with 2–4 processes on a single core,
make sure it works correctly in that mode. In general
the fewer processes the easier it is to debug and on
one core many race conditions are prevented.

(c) Run the program with 2–4 processes on 2–4 cores.
This configuration begins to expose potential race
conditions and allows you to verify synchronization and
timing in a simple case.

2. Fix the bug
3. Test the fix

4



• Change the input and then study the output to characterize

the bug. Do not keep the input constant, change the code

and then study the output to characterize the bug. An

exception to this is the addition of statements to examine

variables at runtime (see below).

• Work with the smallest problem size possible which

exercises all of the functionality. This allows you to examine

entire data structures, all loop iterations, etc.

• Suspect that it’s a race condition, setup test cases to prove

that the software doesn’t have any.

• The non–deterministic nature of parallel programs can lead

to a false impression of what’s actually going on.



• Use guarded print statements (e.g. #ifdef DEBUG

printf("var = ...) and leave them in the program when

you are done, you’ll probably need them again. Most bugs

can found using this approach.

• Make DEBUG a symbol that can easily be set from the

command line of your program at runtime.

• Beware of lost output when a program terminates

abnormally, this leads to false impressions about what is

actually going on. Use fflush(stdout), or write to stderr

(which isn’t buffered) or use setbuf(STREAM, 0) to prevent

messages from being lost in a buffer when the program

crashes or deadlocks.

• Learn about the C constructs FILE , LINE , FUNCTION

and use them with an error handling routing to improve the

quality of your debugging output.



• Learn how to use gdb, it’s a powerful tool that can help find

some types of bugs.

• When you do start changing the code make one logical set

of changes at a time and then re–test. Keep your focus,

don’t wander off and start futzing with unrelated code

while working on a particular bug.

• Each time you go on a debugging tour document and

preserve the test script(s) that you develop. Add these to

the regression testing suite for that program.



Strategies for Preventing Bugs in MPI Programs

• Synchronization

– Problem - Only a single process calls a collective

communication function, e.g. MPI Reduce or MPI Bcast

– Solution - Do not put collective calls inside conditionally

executed code.

– Problem - Two or more processes are trying to exchange

data but all call a blocking receive function before any

calls a send function.

– Solution - Always call send before you call receive; use

MPI Sendrecv; use non-blocking send and receive calls.

5



– Problem - A process tries to receive data from a process

that will never send it, or send it to a process that will

never receive it.

– Solution - Use collective communications functions

whenever possible; if you need point-to-point

communications keep the communication pattern as

simple as possible.

– Problem - A process tries to receive data from itself.

– Solution - Carefully examine your source code.

– NOTE - This issue will cause a hangup only in some

bindings of MPI, such as MPICH. OpenMPI will not fail.



• Incorrect Results

– Problem - Data type mismatch between send and

receive, e.g. MPI INT on the send and MPI CHAR on the

receive.

– Solution - Make it easy to match–up your sends and

receives, check the message length and type.

– Problem - Mis–ordered parameters to MPI function calls.

– Solution - Check them closely and use a man page or

another MPI reference when coding.

• In general there are more opportunities for bugs with

point–to–point communications than with collective

communications.



Strategies for Finding Bugs in MPI Programs

• For point-to-point messages print the data elements before

the send and after the receive, make sure you are sending

and receiving what you think you are.

• Don’t assume the order of received messages when they

come from more than one process.

• Use the MPI functions MPI <type> set name and

MPI <type> get name, where <type> can be: Comm, Win, or

Type. These give human readable names to MPI’s

structures which makes debugging much easier.

• Always use fprintf(stderr, "rank=%d, ...", my rank, ...)

or cout statements, guarded with conditionals (see

Debugging Parallel Programs), so that it’s easy to identify

where particular output is coming from.

6



• Test your code with every MPI binding you can! You want

your code to work in as many different environments as

possible!



Resources

1. Appendix C of Quinn’s Parallel Programming in C with MPI

and OpenMP

2. Chapter 5 of Kernighan and Pike’s The Practice of

Programming

3. http://www.open-mpi.org/faq/?category=debugging

4. http://www.hlrs.de/organization/av/amt/research/marmot -

Marmot, an MPI call syntax and behavior analyzer

5. Geist et al., Debugging Parallel Programs, 1994

6. Electric Fence

7. Valgrind

7


