Matrix Multiplication in CUDA

A case study
Matrix Multiplication: A Case Study

- Matrix multiplication illustrates many of the basic features of memory and thread management in CUDA
 - Usage of thread/block IDs
 - Memory data transfer between host and device
 - Motivates some performance issues:
 - shared memory usage
 - register usage

- Assumptions:
 - Basic unoptimized sgemm
 - Matrices are square (for simplicity)
Programming Model:
Square Matrix Multiplication Example

- \(P = M \times N \)
 - Each is of size \(WIDTH \times WIDTH \)

- Basic Idea:
 - One thread calculates one element of \(P \)
 - \(M \) and \(N \) are loaded \(WIDTH \) times from global memory
Step 1: Matrix Multiplication
A Simple Host Version in C

// Matrix multiplication on the (CPU) host in double precision
void MatrixMulOnHost(float* M, float* N, float* P, int WIDTH)
{
 int i, j, k;
 double a, b, sum;
 for (i = 0; i < WIDTH; ++i)
 for (j = 0; j < WIDTH; ++j) {
 sum = 0;
 for (k = 0; k < WIDTH; ++k) {
 a = M[i * WIDTH + k];
 b = N[k * WIDTH + j];
 sum += a * b;
 }
 P[i * WIDTH + j] = sum;
 }
}
void MatrixMulOnDevice(float* M, float* N, float* P, int WIDTH) {
 int size = WIDTH * WIDTH * sizeof(float);
 float* Md, Nd, Pd;
 ...
 // 1. Allocate and Load M, N to device memory
 cudaMalloc(&Md, size);
 cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

 cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

 // Allocate P on the device
 cudaMalloc(&Pd, size);
Step 3: Output Matrix Data Transfer (Host-side Code)

// 2. Kernel invocation code – to be shown later
...

// 3. Read P from the device
cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);

// Free device matrices
cudaFree(Md); cudaFree(Nd); cudaFree(Pd);
Step 4: Kernel Function

```c
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int WIDTH) {
    float Pvalue = 0;

    for (int k = 0; k < WIDTH; ++k) {
        float Melement = Md[threadIdx.y * WIDTH + k];
        float Nelement = Nd[k * WIDTH + threadIdx.x];
        Pvalue += Melement * Nelement;
    }

    Pd[threadIdx.y * WIDTH + threadIdx.x] = Pvalue;
}
```
Step 5:
Kernel Invocation (Host-side Code)

// Setup the execution configuration
dim3 dimGrid(1, 1);
dim3 dimBlock(WIDTH, WIDTH);

// Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, WIDTH);
Only One Thread Block Used

- One Block of threads compute the matrix P_d
 - Each thread computes one element of the matrix P_d

- Each thread
 - Loads a row of matrix M_d
 - Loads a column of matrix N_d
 - Perform one multiply and addition for each pair of M_d and N_d elements

- Compute to off-chip memory access ratio close to 1:1 (not very good)

- Size of matrix limited by the number of threads allowed in a thread block (512)
Block IDs and Thread IDs

- Each thread uses IDs to decide what data to work on
 - Block ID: 1D or 2D
 - Thread ID: 1D, 2D, or 3D

- Simplifies memory addressing when processing multidimensional data
 - Image processing
 - Solving PDEs on volumes
 - …
Matrix Multiplication Using Multiple Blocks

- Break-up Pd into tiles
- Each block calculates one tile
 - Each thread calculates one element
 - Block size equal tile size
Revised mmult Kernel using Multiple Blocks

```c
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
    // Calculate the row index of the Pd element and M
    int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
    // Calculate the column index of Pd and N
    int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

    float Pvalue = 0;
    // each thread computes one element of the block sub-matrix
    for (int k = 0; k < Width; ++k)
    {
        Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];
    }
    Pd[Row*Width+Col] = Pvalue;
}
```
G80 Block Granularity Considerations

Q: For Matrix Multiplication using multiple blocks, should I use 8x8, 16x16 or 32x32 blocks?

- For 8x8, we have 64 threads per Block. Since each SM can take up to 768 threads, there are 12 Blocks. However, each SM can only take up to 8 Blocks, only 512 threads will go into each SM!

- For 16x16, we have 256 threads per Block. Since each SM can take up to 768 threads, it can take up to 3 Blocks and achieve full capacity unless other resource considerations overrule.

- For 32x32, we have 1024 threads per Block. Not even one can fit into an SM!
Taking CUDA to Ludicrous Speed

Getting Righteous Performance from your GPU
Could I be getting better performance?
- Probably a little bit. Most of the performance is handled in HW

How much better?
- If you compile –O3, you can get faster (maybe 2x)
- If you are careful about tiling your memory, you can get faster on codes that benefit from that (maybe 2-3x)

Is that much performance worth the work?
- Compiling with optimizations is a no-brainer (and yet…)
- Tiling is useful, but takes an investment

- Could I be getting better performance?
 - Am I getting near peak GFLOP performance?

- How much better?
 - Brandon’s particle code, using several different code modifications
 - 148ms per time step → 4ms per time step

- Is that much worth the work?
 - How much work would you do for 30-40x?
 - Most of the modifications are fairly straightforward
 - You just need to know how the hardware works a bit more
What’s Limiting My Code?

- Am I bandwidth bound? (How do I tell?)
 - Make sure I have high thread occupancy to tolerate latencies (lots of threads)
 - These threads can get some work done while we wait for memory
 - **Move re-used values to closer memories**
 - **Shared**
 - **Constant/Texture**

- Am I not bandwidth bound – what is now my limit?
 - Take a closer look at the instruction stream
 - Unroll loops
 - Minimize branch divergence
CUDA Memories

Locality Matters!
G80 Implementation of CUDA Memories

Each thread can:
- Read/write per-thread registers
- Read/write per-thread local memory
- Read/write per-block shared memory
- Read/write per-grid global memory
- Read/only per-grid constant memory
CUDA Variable Type Qualifiers

- `__device__` is optional when used with `__local__`, `__shared__`, or `__constant__`

- Automatic variables without any qualifier reside in a register
 - Except arrays that reside in local memory

<table>
<thead>
<tr>
<th>Variable declaration</th>
<th>Memory</th>
<th>Scope</th>
<th>Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>__device__ __local__</code> int LocalVar;</td>
<td>local</td>
<td>thread</td>
<td>thread</td>
</tr>
<tr>
<td><code>__device__ __shared__</code> int SharedVar;</td>
<td>shared</td>
<td>block</td>
<td>block</td>
</tr>
<tr>
<td><code>__device__</code> int GlobalVar;</td>
<td>global</td>
<td>grid</td>
<td>application</td>
</tr>
<tr>
<td><code>__device__ __constant__</code> int ConstantVar;</td>
<td>constant</td>
<td>grid</td>
<td>application</td>
</tr>
</tbody>
</table>
A Common Programming Strategy

- Global memory resides in device memory (DRAM)
 - much slower access than shared memory (200x!)
 - …but also much larger
- So, a profitable way of performing computation on the device is to tile data to take advantage of fast shared memory:
 - Partition data into subsets that fit into shared memory
 - Each block will then:
 - Load its subset from global memory to shared memory
 - using multiple threads to exploit memory-level parallelism
 - Perform the computation on the subset from shared memory
 - each thread can efficiently multi-pass over any data element
 - Copy results from shared memory back to global memory
Matrix Multiplication using Shared Memory
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width) {

 // Calculate the row index of the Pd element and M
 int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;

 // Calculate the column index of Pd and N
 int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

 float Pvalue = 0;

 // each thread computes one element of the block sub-matrix
 for (int k = 0; k < Width; ++k)
 {
 Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];
 }

 Pd[Row*Width+Col] = Pvalue;
}

How about performance on G80?

- All threads access global memory for their input matrix elements
 - Two memory accesses (8 bytes) per floating point multiply-add
 - 4 B/s of memory bandwidth/FLOPS
 - $4 \times 346.5 = 1386$ GB/s required to achieve peak FLOP rating
 - 86.4 GB/s limits the code at 21.6 GFLOPS
- The actual code runs at about 15 GFLOPS
- Need to drastically cut down memory accesses to get closer to the peak 346.5 GFLOPS
Idea: Use Shared Memory to reuse global memory data

- Each input element is read by WIDTH threads.
- Load each element into Shared Memory and have several threads use the local version to reduce the memory bandwidth
- Tiled algorithms
Tiled Multiply

- Break up the execution of the kernel into phases so that the data accesses in each phase is focused on one subset (tile) of Md and Nd.
Tiled Multiply

- **Two Step process**
 1. Threads load all M and N values in the tile into shared memory
 2. Compute all the multiply-adds within that tile and add them to the sum

- **Note:** must enforce barrier between steps 1 and 2!
Device Runtime Component: Synchronization Function

```c
void __syncthreads();
```

- Synchronizes all threads in a block (similar: MPI_Barrier)
 - Once all threads have reached this point, execution resumes normally

- Used to avoid race conditions when accessing shared or global memory

- Allowed in conditional constructs only if the conditional is uniform across the entire thread block
First-order Size Considerations in G80

- Each thread block should have many threads
 - TILE_WIDTH of 16 gives $16 \times 16 = 256$ threads

- There should be many thread blocks
 - A 1024×1024 Pd gives $64 \times 64 = 4096$ Thread Blocks

- Each thread block perform $2 \times 256 = 512$ float loads from global memory for $256 \times (2 \times 16) = 8192$ mul/add operations.
 - Compute to memory ratio is now 16:1 !!
 - Memory bandwidth no longer a limiting factor
CUDA Code:
Kernel Execution Configuration

// Setup the execution configuration
dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);
dim3 dimGrid(Width / TILE_WIDTH,
 Width / TILE_WIDTH);
Tiled Matrix Multiplication Kernel

```c
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
    __shared__ float Mds[TILE_WIDTH][TILE_WIDTH];
    __shared__ float Nds[TILE_WIDTH][TILE_WIDTH];

    int bx = blockIdx.x; int by = blockIdx.y;
    int tx = threadIdx.x; int ty = threadIdx.y;

    // Identify the row and column of the Pd element to work on
    int Row = by * TILE_WIDTH + ty;
    int Col = bx * TILE_WIDTH + tx;
    float Pvalue = 0;

    // Loop over the Md and Nd tiles required to compute the Pd element
    for (int m = 0; m < Width/TILE_WIDTH; ++m) {
        // Collaborative loading of Md and Nd tiles into shared memory
        Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];
        Nds[ty][tx] = Nd[Col + (m*TILE_WIDTH + ty)*Width];
        __syncthreads();

        for (int k = 0; k < TILE_WIDTH; ++k)
            Pvalue += Mds[ty][k] * Nds[k][tx];
        __syncthreads();
    }

    Pd[Row*Width+Col] = Pvalue;
}
```
G80 Shared Memory and Threading

- Each SM in G80 has 16KB shared memory
 - SM size is implementation dependent!
 - For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB of shared memory.
- Can potentially have up to 8 Thread Blocks actively executing
 - This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256 threads per block)
 - TILE_WIDTH 32 would lead to 2*32*32*4B= 8KB shared memory usage per thread block, allowing only up to two thread blocks active at the same time per SM
- Using 16x16 tiling, we reduce the accesses to the global memory by a factor of 16
 - The 86.4B/s bandwidth can now support (86.4/4)*16 = 347.6 GFLOPS!
Tiling Size Effects

![Graph showing the effects of tiling size on GFLOPS]

- 4x4 tiles: not tiled
- 8x8 tiles: tiled only
- 12x12 tiles: tiled & unrolled
- 16x16 tiles: tiled only
What’s Limiting My Code?

- Am I bandwidth bound? (How do I tell?)
 - Make sure I have high thread occupancy to tolerate latencies (lots of threads)
 - These threads can get some work done while we wait for memory
 - Move re-used values to closer memories
 - Shared
 - Constant/Texture

- Am I not bandwidth bound – what is now my limit?
 - Take a closer look at the instruction stream
 - Unroll loops
 - Minimize branch divergence
Exercise: Particles (n-Body)

cp -r ~ernstdj/NCSI2010 .
go to “particles” directory.
less README.txt

(we give you the basic kernel – now make it fast!)