
Matrix Multiplication in CUDA

A case study
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Matrix Multiplication: A Case Study
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 Matrix multiplication illustrates many of the basic features 

of memory and thread management in CUDA

 Usage of thread/block IDs

 Memory data transfer between host and device

 Motivates some performance issues:

 shared memory usage

 register usage

 Assumptions:

 Basic unoptimized sgemm

 Matrices are square (for simplicity)



Programming Model:

Square Matrix Multiplication Example
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 P = M * N 

 Each is of size WIDTH x WIDTH

 Basic Idea:

 One thread calculates one element of P

 M and N are loaded WIDTH times from global 

memory
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Step 1: Matrix Multiplication

A Simple Host Version in C
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// Matrix multiplication on the (CPU) host in double precision

void MatrixMulOnHost(float* M, float* N, float* P, int WIDTH)

{   

int i, j, k;

double a, b, sum;

for (i = 0; i < WIDTH; ++i)

for (j = 0; j < WIDTH; ++j) {

sum = 0;

for (k = 0; k < WIDTH; ++k) {

a = M[i * WIDTH + k];

b = N[k * WIDTH + j];

sum += a * b;

}

P[i * WIDTH + j] = sum;

}

}
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Step 2: Input Matrix Data Transfer

(Host-side Code)
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void MatrixMulOnDevice(float* M, float* N, float* P, int WIDTH)

{

int size = WIDTH * WIDTH * sizeof(float); 

float* Md, Nd, Pd;

…

// 1. Allocate and Load M, N to device memory 

cudaMalloc(&Md, size);

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMalloc(&Nd, size);

cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

// Allocate P on the device

cudaMalloc(&Pd, size);



Step 3: Output Matrix Data Transfer

(Host-side Code)
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// 2. Kernel invocation code – to be shown later

…

// 3. Read P from the device

cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);

// Free device matrices

cudaFree(Md); cudaFree(Nd); cudaFree (Pd);

}



Step 4: Kernel Function
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__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int WIDTH)

{

float Pvalue = 0;

for (int k = 0; k < WIDTH; ++k) {

float Melement = Md[threadIdx.y*WIDTH+k];

float Nelement = Nd[k*WIDTH+threadIdx.x];

Pvalue += Melement * Nelement;

}

Pd[threadIdx.y*WIDTH+threadIdx.x] = Pvalue;

}
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Step 5: 

Kernel Invocation (Host-side Code) 
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// Setup the execution configuration

dim3 dimGrid(1, 1);

dim3 dimBlock(WIDTH, WIDTH);

// Launch the device computation threads!

MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, WIDTH);



Only One Thread Block Used

 One Block of threads compute the 
matrix Pd
 Each thread computes one element of 

the matrix Pd

 Each thread
 Loads a row of matrix Md

 Loads a column of matrix Nd

 Perform one multiply and addition for 
each pair of Md and Nd elements

 Compute to off-chip memory access 
ratio close to 1:1 (not very good)

 Size of matrix limited by the number 
of threads allowed in a thread block 
(512)
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Block IDs and Thread IDs
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Figure 3.2. An Example of CUDA Thread Organization.
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 Each thread uses IDs to 
decide what data to work on

 Block ID: 1D or 2D

 Thread ID: 1D, 2D, or 3D 

 Simplifies memory
addressing when processing
multidimensional data

 Image processing

 Solving PDEs on volumes

 …



Matrix Multiplication 

Using Multiple Blocks

 Break-up Pd into tiles

 Each block calculates one tile

 Each thread calculates one element

 Block size equal tile size
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Revised mmult Kernel using Multiple Blocks
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__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, 

int Width)

{

// Calculate the row index of the Pd element and M

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;

// Calculate the column idenx of Pd and N

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

float Pvalue = 0;

// each thread computes one element of the block sub-matrix

for (int k = 0; k < Width; ++k)

Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

Pd[Row*Width+Col] = Pvalue;

}



G80 Block Granularity Considerations
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Q: For Matrix Multiplication using multiple blocks, should I 

use 8x8, 16x16 or 32x32 blocks?

 For 8x8, we have 64 threads per Block. Since each SM can take 

up to 768 threads, there are 12 Blocks. However, each SM can 

only take up to 8 Blocks, only 512 threads will go into each SM!

 For 16x16, we have 256 threads per Block. Since each SM can 

take up to 768 threads, it can take up to 3 Blocks and achieve 

full capacity unless other resource considerations overrule.

 For 32x32, we have 1024 threads per Block. Not even one can 

fit into an SM!



Taking CUDA to Ludicrous Speed

Getting Righteous Performance from your GPU
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Performance: How Much Is Enough?

(CPU Edition)
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 Could I be getting better performance?

 Probably a little bit.  Most of the performance is handled in HW

 How much better?

 If you compile –O3, you can get faster (maybe 2x)

 If you are careful about tiling your memory, you can get faster 

on codes that benefit from that (maybe 2-3x)

 Is that much performance worth the work?

 Compiling with optimizations is a no-brainer (and yet…)

 Tiling is useful, but takes an investment



Performance: How Much Is Enough?

(GPGPU Edition)
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 Could I be getting better performance?

 Am I getting near peak GFLOP performance?

 How much better?

 Brandon’s particle code, using several different code 

modifications

 148ms per time step  4ms per time step

 Is that much worth the work?

 How much work would you do for 30-40x?

 Most of the modifications are fairly straightforward

 You just need to know how the hardware works a bit more



What’s Limiting My Code?
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 Am I bandwidth bound? (How do I tell?)

 Make sure I have high thread occupancy to tolerate latencies (lots of 

threads)

 These threads can get some work done while we wait for memory

 Move re-used values to closer memories

 Shared

 Constant/Texture

 Am I not bandwidth bound – what is now my limit?

 Take a closer look at the instruction stream

 Unroll loops

 Minimize branch divergence



CUDA Memories

Locality Matters!
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G80 Implementation of  CUDA Memories
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 Each thread can:

 Read/write per-thread registers

 Read/write per-thread local memory

 Read/write per-block shared memory

 Read/write per-grid global memory

 Read/only per-grid constant memory
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CUDA Variable Type Qualifiers
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 __device__ is optional when used with __local__,  

__shared__, or  __constant__

 Automatic variables without any qualifier reside in a 

register

 Except arrays that reside in local memory

Variable declaration Memory Scope Lifetime

__device__ __local__    int LocalVar; local thread thread

__device__ __shared__   int SharedVar; shared block block

__device__              int GlobalVar; global grid application

__device__ __constant__ int ConstantVar; constant grid application



A Common Programming Strategy
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 Global memory resides in device memory (DRAM)

 much slower access than shared memory (200x!)

 …but also much larger

 So, a profitable way of performing computation on the 

device is to tile data to take advantage of fast shared 

memory:

 Partition data into subsets that fit into shared memory

 Each block will then:

 Load its subset from global memory to shared memory

 using multiple threads to exploit memory-level parallelism

 Perform the computation on the subset from shared memory

 each thread can efficiently multi-pass over any data element

 Copy results from shared memory back to global memory



Matrix Multiplication using 

Shared Memory
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Review
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__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, 

int Width)

{

// Calculate the row index of the Pd element and M

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;

// Calculate the column idenx of Pd and N

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

float Pvalue = 0;

// each thread computes one element of the block sub-matrix

for (int k = 0; k < Width; ++k)

Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

Pd[Row*Width+Col] = Pvalue;

}



How about performance on G80?
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 All threads access global 
memory for their input matrix 
elements
 Two memory accesses (8 bytes) 

per floating point multiply-add

 4 B/s of memory 
bandwidth/FLOPS

 4*346.5 = 1386 GB/s required to 
achieve peak FLOP rating

 86.4 GB/s limits the code at 21.6 
GFLOPS

 The actual code runs at about 
15 GFLOPS

 Need to drastically cut down 
memory accesses to get closer 
to the peak 346.5 GFLOPS
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Idea: Use Shared Memory to reuse global 

memory data
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 Each input element is read by WIDTH 

threads.

 Load each element into Shared Memory 

and have several threads use the local 

version to reduce the memory bandwidth

 Tiled algorithms
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Tiled Multiply
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 Break up the execution of the kernel into 

phases so that the data accesses in each 

phase is focused on one subset (tile) of 

Md and Nd
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Tiled Multiply
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 Two Step process

1. Threads load all M and N values in the tile 

into shared memory

2. Compute all the multiply-adds within that 

tile and add them to the sum

 Note: must enforce barrier between 

steps 1 and 2! Md
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Device Runtime Component:

Synchronization Function
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void __syncthreads();

 Synchronizes all threads in a block (similar: MPI_Barrier)

 Once all threads have reached this point, execution resumes 

normally

 Used to avoid race conditions when accessing shared or 

global memory

 Allowed in conditional constructs only if the conditional 

is uniform across the entire thread block



First-order Size Considerations in G80
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 Each thread block should have many threads

 TILE_WIDTH of 16 gives 16*16 = 256 threads

 There should be many thread blocks

 A 1024*1024 Pd gives 64*64 = 4096 Thread Blocks

 Each thread block perform 2*256 = 512 float loads from 

global memory for 256 * (2*16) = 8,192 mul/add 

operations. 

 Compute to memory ratio is now 16:1 !!

 Memory bandwidth no longer a limiting factor



CUDA Code:

Kernel Execution Configuration
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// Setup the execution configuration

dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);

dim3 dimGrid(Width / TILE_WIDTH, 

Width / TILE_WIDTH);



Tiled Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)

{
__shared__float Mds[TILE_WIDTH][TILE_WIDTH];

__shared__float Nds[TILE_WIDTH][TILE_WIDTH];

int bx = blockIdx.x;  int by = blockIdx.y;

int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the Pd element to work on

int Row = by * TILE_WIDTH + ty;

int Col = bx * TILE_WIDTH + tx;

float Pvalue = 0;

// Loop over the Md and Nd tiles required to compute the Pd element

for (int m = 0; m < Width/TILE_WIDTH; ++m) {

// Collaborative loading of Md and Nd tiles into shared memory

Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];

Nds[ty][tx] = Nd[Col + (m*TILE_WIDTH + ty)*Width];

__syncthreads();

for (int k = 0; k < TILE_WIDTH; ++k)

Pvalue += Mds[ty][k] * Nds[k][tx];

__syncthreads();

}

Pd[Row*Width+Col] = Pvalue;

}



G80 Shared Memory and Threading
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 Each SM in G80 has 16KB shared memory

 SM size is implementation dependent!

 For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB of 
shared memory. 

 Can potentially have up to 8 Thread Blocks actively executing 

 This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256 threads 
per block)

 TILE_WIDTH 32 would lead to 2*32*32*4B= 8KB shared memory 
usage per thread block, allowing only up to two thread blocks active 
at the same time per SM

 Using 16x16 tiling, we reduce the accesses to the global 
memory by a factor of 16

 The 86.4B/s bandwidth can now support (86.4/4)*16 = 347.6 
GFLOPS!



Tiling Size Effects
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What’s Limiting My Code?
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 Am I bandwidth bound? (How do I tell?)

 Make sure I have high thread occupancy to tolerate latencies (lots of 

threads)

 These threads can get some work done while we wait for memory

 Move re-used values to closer memories

 Shared

 Constant/Texture

 Am I not bandwidth bound – what is now my limit?

 Take a closer look at the instruction stream

 Unroll loops

 Minimize branch divergence



Exercise: Particles (n-Body)
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cp -r ~ernstdj/NCSI2010 .

go to “particles” directory.

less README.txt

(we give you the basic kernel – now make it fast!)


