
Matrix Multiplication in CUDA

A case study

1

Matrix Multiplication: A Case Study

2

 Matrix multiplication illustrates many of the basic features

of memory and thread management in CUDA

 Usage of thread/block IDs

 Memory data transfer between host and device

 Motivates some performance issues:

 shared memory usage

 register usage

 Assumptions:

 Basic unoptimized sgemm

 Matrices are square (for simplicity)

Programming Model:

Square Matrix Multiplication Example

3

 P = M * N

 Each is of size WIDTH x WIDTH

 Basic Idea:

 One thread calculates one element of P

 M and N are loaded WIDTH times from global

memory

M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

Step 1: Matrix Multiplication

A Simple Host Version in C

4

M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

// Matrix multiplication on the (CPU) host in double precision

void MatrixMulOnHost(float* M, float* N, float* P, int WIDTH)

{

int i, j, k;

double a, b, sum;

for (i = 0; i < WIDTH; ++i)

for (j = 0; j < WIDTH; ++j) {

sum = 0;

for (k = 0; k < WIDTH; ++k) {

a = M[i * WIDTH + k];

b = N[k * WIDTH + j];

sum += a * b;

}

P[i * WIDTH + j] = sum;

}

}

i

k

k

j

Step 2: Input Matrix Data Transfer

(Host-side Code)

5

void MatrixMulOnDevice(float* M, float* N, float* P, int WIDTH)

{

int size = WIDTH * WIDTH * sizeof(float);

float* Md, Nd, Pd;

…

// 1. Allocate and Load M, N to device memory

cudaMalloc(&Md, size);

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMalloc(&Nd, size);

cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

// Allocate P on the device

cudaMalloc(&Pd, size);

Step 3: Output Matrix Data Transfer

(Host-side Code)

6

// 2. Kernel invocation code – to be shown later

…

// 3. Read P from the device

cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);

// Free device matrices

cudaFree(Md); cudaFree(Nd); cudaFree (Pd);

}

Step 4: Kernel Function

7

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int WIDTH)

{

float Pvalue = 0;

for (int k = 0; k < WIDTH; ++k) {

float Melement = Md[threadIdx.y*WIDTH+k];

float Nelement = Nd[k*WIDTH+threadIdx.x];

Pvalue += Melement * Nelement;

}

Pd[threadIdx.y*WIDTH+threadIdx.x] = Pvalue;

}

Nd

Md Pd

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

ty

tx

ty

tx

k

k

Step 5:

Kernel Invocation (Host-side Code)

8

// Setup the execution configuration

dim3 dimGrid(1, 1);

dim3 dimBlock(WIDTH, WIDTH);

// Launch the device computation threads!

MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, WIDTH);

Only One Thread Block Used

 One Block of threads compute the
matrix Pd
 Each thread computes one element of

the matrix Pd

 Each thread
 Loads a row of matrix Md

 Loads a column of matrix Nd

 Perform one multiply and addition for
each pair of Md and Nd elements

 Compute to off-chip memory access
ratio close to 1:1 (not very good)

 Size of matrix limited by the number
of threads allowed in a thread block
(512)

9

Grid 1

Block 1

3 2 5 4

2

4

2

6

48

Thread

(2, 2)

WIDTH

Md
Pd

Nd

Block IDs and Thread IDs

Host

Kernel

1

Kernel

2

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(0, 1)

Block

(1, 1)

Grid 2

Courtesy: NDVIA

Figure 3.2. An Example of CUDA Thread Organization.

Block (1, 1)

Thread

(0,1,0)

Thread

(1,1,0)

Thread

(2,1,0)

Thread

(3,1,0)

Thread

(0,0,0)

Thread

(1,0,0)

Thread

(2,0,0)

Thread

(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

10

 Each thread uses IDs to
decide what data to work on

 Block ID: 1D or 2D

 Thread ID: 1D, 2D, or 3D

 Simplifies memory
addressing when processing
multidimensional data

 Image processing

 Solving PDEs on volumes

 …

Matrix Multiplication

Using Multiple Blocks

 Break-up Pd into tiles

 Each block calculates one tile

 Each thread calculates one element

 Block size equal tile size

11

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTHWIDTH

bx

tx
01 TILE_WIDTH-12

0 1 2

by ty
2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_

W
ID

T
H

E

W
ID

T
H

W
ID

T
H

Revised mmult Kernel using Multiple Blocks

12

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd,

int Width)

{

// Calculate the row index of the Pd element and M

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;

// Calculate the column idenx of Pd and N

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

float Pvalue = 0;

// each thread computes one element of the block sub-matrix

for (int k = 0; k < Width; ++k)

Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

Pd[Row*Width+Col] = Pvalue;

}

G80 Block Granularity Considerations

13

Q: For Matrix Multiplication using multiple blocks, should I

use 8x8, 16x16 or 32x32 blocks?

 For 8x8, we have 64 threads per Block. Since each SM can take

up to 768 threads, there are 12 Blocks. However, each SM can

only take up to 8 Blocks, only 512 threads will go into each SM!

 For 16x16, we have 256 threads per Block. Since each SM can

take up to 768 threads, it can take up to 3 Blocks and achieve

full capacity unless other resource considerations overrule.

 For 32x32, we have 1024 threads per Block. Not even one can

fit into an SM!

Taking CUDA to Ludicrous Speed

Getting Righteous Performance from your GPU

14

Performance: How Much Is Enough?

(CPU Edition)

15

 Could I be getting better performance?

 Probably a little bit. Most of the performance is handled in HW

 How much better?

 If you compile –O3, you can get faster (maybe 2x)

 If you are careful about tiling your memory, you can get faster

on codes that benefit from that (maybe 2-3x)

 Is that much performance worth the work?

 Compiling with optimizations is a no-brainer (and yet…)

 Tiling is useful, but takes an investment

Performance: How Much Is Enough?

(GPGPU Edition)

16

 Could I be getting better performance?

 Am I getting near peak GFLOP performance?

 How much better?

 Brandon’s particle code, using several different code

modifications

 148ms per time step  4ms per time step

 Is that much worth the work?

 How much work would you do for 30-40x?

 Most of the modifications are fairly straightforward

 You just need to know how the hardware works a bit more

What’s Limiting My Code?

17

 Am I bandwidth bound? (How do I tell?)

 Make sure I have high thread occupancy to tolerate latencies (lots of

threads)

 These threads can get some work done while we wait for memory

 Move re-used values to closer memories

 Shared

 Constant/Texture

 Am I not bandwidth bound – what is now my limit?

 Take a closer look at the instruction stream

 Unroll loops

 Minimize branch divergence

CUDA Memories

Locality Matters!

18

G80 Implementation of CUDA Memories

19

 Each thread can:

 Read/write per-thread registers

 Read/write per-thread local memory

 Read/write per-block shared memory

 Read/write per-grid global memory

 Read/only per-grid constant memory

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

CUDA Variable Type Qualifiers

20

 __device__ is optional when used with __local__,

__shared__, or __constant__

 Automatic variables without any qualifier reside in a

register

 Except arrays that reside in local memory

Variable declaration Memory Scope Lifetime

__device__ __local__ int LocalVar; local thread thread

__device__ __shared__ int SharedVar; shared block block

__device__ int GlobalVar; global grid application

__device__ __constant__ int ConstantVar; constant grid application

A Common Programming Strategy

21

 Global memory resides in device memory (DRAM)

 much slower access than shared memory (200x!)

 …but also much larger

 So, a profitable way of performing computation on the

device is to tile data to take advantage of fast shared

memory:

 Partition data into subsets that fit into shared memory

 Each block will then:

 Load its subset from global memory to shared memory

 using multiple threads to exploit memory-level parallelism

 Perform the computation on the subset from shared memory

 each thread can efficiently multi-pass over any data element

 Copy results from shared memory back to global memory

Matrix Multiplication using

Shared Memory

22

Review

23

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd,

int Width)

{

// Calculate the row index of the Pd element and M

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;

// Calculate the column idenx of Pd and N

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

float Pvalue = 0;

// each thread computes one element of the block sub-matrix

for (int k = 0; k < Width; ++k)

Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

Pd[Row*Width+Col] = Pvalue;

}

How about performance on G80?

24

 All threads access global
memory for their input matrix
elements
 Two memory accesses (8 bytes)

per floating point multiply-add

 4 B/s of memory
bandwidth/FLOPS

 4*346.5 = 1386 GB/s required to
achieve peak FLOP rating

 86.4 GB/s limits the code at 21.6
GFLOPS

 The actual code runs at about
15 GFLOPS

 Need to drastically cut down
memory accesses to get closer
to the peak 346.5 GFLOPS

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

Idea: Use Shared Memory to reuse global

memory data

25

 Each input element is read by WIDTH

threads.

 Load each element into Shared Memory

and have several threads use the local

version to reduce the memory bandwidth

 Tiled algorithms
M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

ty

tx

Tiled Multiply

26

 Break up the execution of the kernel into

phases so that the data accesses in each

phase is focused on one subset (tile) of

Md and Nd

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTHWIDTH

TILE_WIDTHTILE_WIDTH

bx

tx
01 TILE_WIDTH-12

0 1 2

by ty
2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_

W
ID

T
H

T
IL

E
_

W
ID

T
H

T
IL

E
_

W
ID

T
H

E

W
ID

T
H

W
ID

T
H

Tiled Multiply

27

 Two Step process

1. Threads load all M and N values in the tile

into shared memory

2. Compute all the multiply-adds within that

tile and add them to the sum

 Note: must enforce barrier between

steps 1 and 2! Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTHWIDTH

TILE_WIDTHTILE_WIDTH

bx

tx
01 TILE_WIDTH-12

0 1 2

by ty
2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_

W
ID

T
H

T
IL

E
_

W
ID

T
H

T
IL

E
_

W
ID

T
H

E

W
ID

T
H

W
ID

T
H

Device Runtime Component:

Synchronization Function

28

void __syncthreads();

 Synchronizes all threads in a block (similar: MPI_Barrier)

 Once all threads have reached this point, execution resumes

normally

 Used to avoid race conditions when accessing shared or

global memory

 Allowed in conditional constructs only if the conditional

is uniform across the entire thread block

First-order Size Considerations in G80

29

 Each thread block should have many threads

 TILE_WIDTH of 16 gives 16*16 = 256 threads

 There should be many thread blocks

 A 1024*1024 Pd gives 64*64 = 4096 Thread Blocks

 Each thread block perform 2*256 = 512 float loads from

global memory for 256 * (2*16) = 8,192 mul/add

operations.

 Compute to memory ratio is now 16:1 !!

 Memory bandwidth no longer a limiting factor

CUDA Code:

Kernel Execution Configuration

30

// Setup the execution configuration

dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);

dim3 dimGrid(Width / TILE_WIDTH,

Width / TILE_WIDTH);

Tiled Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)

{
__shared__float Mds[TILE_WIDTH][TILE_WIDTH];

__shared__float Nds[TILE_WIDTH][TILE_WIDTH];

int bx = blockIdx.x; int by = blockIdx.y;

int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the Pd element to work on

int Row = by * TILE_WIDTH + ty;

int Col = bx * TILE_WIDTH + tx;

float Pvalue = 0;

// Loop over the Md and Nd tiles required to compute the Pd element

for (int m = 0; m < Width/TILE_WIDTH; ++m) {

// Collaborative loading of Md and Nd tiles into shared memory

Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];

Nds[ty][tx] = Nd[Col + (m*TILE_WIDTH + ty)*Width];

__syncthreads();

for (int k = 0; k < TILE_WIDTH; ++k)

Pvalue += Mds[ty][k] * Nds[k][tx];

__syncthreads();

}

Pd[Row*Width+Col] = Pvalue;

}

G80 Shared Memory and Threading

32

 Each SM in G80 has 16KB shared memory

 SM size is implementation dependent!

 For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB of
shared memory.

 Can potentially have up to 8 Thread Blocks actively executing

 This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256 threads
per block)

 TILE_WIDTH 32 would lead to 2*32*32*4B= 8KB shared memory
usage per thread block, allowing only up to two thread blocks active
at the same time per SM

 Using 16x16 tiling, we reduce the accesses to the global
memory by a factor of 16

 The 86.4B/s bandwidth can now support (86.4/4)*16 = 347.6
GFLOPS!

Tiling Size Effects
G

F
L

O
P

S

0

10

20

30

40

50

60

70

80

90

100

ti
le

d

o
n

ly

ti
le

d
 &

u
n

ro
ll
e

d

ti
le

d

o
n

ly

ti
le

d
 &

u
n

ro
ll
e

d

ti
le

d

o
n

ly

ti
le

d
 &

u
n

ro
ll
e

d

ti
le

d

o
n

ly

ti
le

d
 &

u
n

ro
ll
e

d

no t tiled 4x4 tile s 8x8 tile s 1 2 x1 2 tile s 16 x1 6 tile s

33

What’s Limiting My Code?

34

 Am I bandwidth bound? (How do I tell?)

 Make sure I have high thread occupancy to tolerate latencies (lots of

threads)

 These threads can get some work done while we wait for memory

 Move re-used values to closer memories

 Shared

 Constant/Texture

 Am I not bandwidth bound – what is now my limit?

 Take a closer look at the instruction stream

 Unroll loops

 Minimize branch divergence

Exercise: Particles (n-Body)

35

cp -r ~ernstdj/NCSI2010 .

go to “particles” directory.

less README.txt

(we give you the basic kernel – now make it fast!)

