Matrix Multiplication in CUDA

1

A case study

Matrix Multiplication: A Case Study

- Matrix multiplication illustrates many of the basic features of memory and thread management in CUDA
 - Usage of thread/block IDs
 - Memory data transfer between host and device
 - Motivates some performance issues:
 - shared memory usage
 - register usage
 - Assumptions:
 - Basic unoptimized sgemm
 - Matrices are square (for simplicity)

Programming Model: Square Matrix Multiplication Example

• P = M * N

Each is of size WIDTH x WIDTH

Basic Idea:

- One thread calculates one element of P
 - M and N are loaded WIDTH times from global memory

Step 1: Matrix Multiplication A Simple Host Version in C

// Matrix multiplication on the (CPU) host in double precision
void MatrixMulOnHost(float* M, float* N, float* P, int WIDTH)

```
int i, j, k;
double a, b, sum;
for (i = 0; i < WIDTH; ++i)
  for (j = 0; j < WIDTH; ++j) {
     sum = 0;
     for (k = 0; k < WIDTH; ++k) {
       a = M[i * WIDTH + k];
       b = N[k * WIDTH + j];
       sum += a * b;
     P[i * WIDTH + j] = sum;
                                  k
```



```
Step 2: Input Matrix Data Transfer
(Host-side Code)
```

```
void MatrixMulOnDevice(float* M, float* N, float* P, int WIDTH)
{
    int size = WIDTH * WIDTH * sizeof(float);
    float* Md, Nd, Pd;
    // 1. Allocate and Load M, N to device memory
    cudaMalloc(&Md, size);
    cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);
```

```
cudaMalloc(&Nd, size);
cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);
```

// Allocate P on the device
cudaMalloc(&Pd, size);

Step 3: Output Matrix Data Transfer (Host-side Code)

// 2. Kernel invocation code - to be shown later

// 3. Read P from the device cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);

// Free device matrices
cudaFree(Md); cudaFree(Nd); cudaFree (Pd);
}

. . .

Step 4: Kernel Function

_global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int WIDTH) float Pvalue = 0;

k

```
for (int k = 0; k < WIDTH; ++k) {
    float Melement = Md[threadIdx.y*WIDTH+k];
    float Nelement = Nd[k*WIDTH+threadIdx.x];
    Pvalue += Melement * Nelement;
}</pre>
```

Pd[threadIdx.y*WIDTH+threadIdx.x] = Pvalue;

Step 5: Kernel Invocation (Host-side Code)

// Setup the execution configuration
dim3 dimGrid(1, 1);
dim3 dimBlock(WIDTH, WIDTH);

// Launch the device computation threads!

MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, WIDTH);

Only One Thread Block Used

- One Block of threads compute the matrix Pd
 - Each thread computes one element of the matrix Pd
- Each thread
 - Loads a row of matrix Md
 - Loads a column of matrix Nd
 - Perform one multiply and addition for each pair of Md and Nd elements
- Compute to off-chip memory access ratio close to 1:1 (not very good)
- Size of matrix limited by the number of threads allowed in a thread block (512)

Block IDs and Thread IDs

- Each thread uses IDs to decide what data to work on
 - Block ID: ID or 2D
 - Thread ID: ID, 2D, or 3D
- Simplifies memory addressing when processing multidimensional data

 Kernel
 Block (0,0)
 Block (1,0)

 Block
 Block (0,1)
 Block (1,1)

 'Grid 2
 'Grid 2

 Block (1, 1)
 'Grid 2

 'Grid 2
 'Grid 2

 Block (1, 1)
 'Grid 2

 'Grid 2
 'Grid 2

Device

Grid 1

Host

Courtesy: NDVIA

- Image processing
- Solving PDEs on volumes

Figure 3.2. An Example of CUDA Thread Organization.

Matrix Multiplication Using Multiple Blocks

- Break-up Pd into tiles
- Each block calculates one tile
 - Each thread calculates one element

0 1 2

TILE WIDTH-1

Block size equal tile size

0

2

tv

by

11

Revised mmult Kernel using Multiple Blocks

_global___ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)

// Calculate the row index of the Pd element and M
int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
// Calculate the column idenx of Pd and N
int Col = blockIdx.x*TILE WIDTH + threadIdx.x;

```
float Pvalue = 0;
// each thread computes one element of the block sub-matrix
for (int k = 0; k < Width; ++k)
        Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];</pre>
```

Pd[Row*Width+Col] = Pvalue;

}

Ł

G80 Block Granularity Considerations

Q: For Matrix Multiplication using multiple blocks, should I use 8x8, 16x16 or 32x32 blocks?

- For 8x8, we have 64 threads per Block. Since each SM can take up to 768 threads, there are 12 Blocks. However, each SM can only take up to 8 Blocks, only 512 threads will go into each SM!
- For 16x16, we have 256 threads per Block. Since each SM can take up to 768 threads, it can take up to 3 Blocks and achieve full capacity unless other resource considerations overrule.
- For 32x32, we have 1024 threads per Block. Not even one can fit into an SM!

Taking CUDA to Ludicrous Speed

Getting Righteous Performance from your GPU

Performance: How Much Is Enough? (CPU Edition)

Could I be getting better performance?

Probably a little bit. Most of the performance is handled in HW

How much better?

- ▶ If you compile –O3, you can get faster (maybe 2x)
- If you are careful about tiling your memory, you can get faster on codes that benefit from that (maybe 2-3x)
- Is that much performance worth the work?
 - Compiling with optimizations is a no-brainer (and yet...)
 - Tiling is useful, but takes an investment

Performance: How Much Is Enough? (GPGPU Edition)

Could I be getting better performance?

Am I getting near peak GFLOP performance?

• How much better?

- Brandon's particle code, using several different code modifications
 - 148ms per time step \rightarrow 4ms per time step

Is that much worth the work?

- How much work would you do for 30-40x?
- Most of the modifications are fairly straightforward
 - You just need to know how the hardware works a bit more

What's Limiting My Code?

- Am I bandwidth bound? (How do I tell?)
 - Make sure I have high thread occupancy to tolerate latencies (lots of threads)
 - \Box These threads can get some work done while we wait for memory
 - Move re-used values to closer memories
 - □ <u>Shared</u>
 - □ Constant/Texture
- Am I not bandwidth bound what is now my limit?
 - Take a closer look at the instruction stream
 - Unroll loops
 - □ Minimize branch divergence

CUDA Memories

Locality Matters!

G80 Implementation of CUDA Memories

• Each thread can:

- Read/write per-thread registers
- Read/write per-thread local memory
- Read/write per-block shared memory
- Read/write per-grid global memory
- Read/only per-grid constant memory

CUDA Variable Type Qualifiers

 __device___ is optional when used with __local__, __shared__, or __constant___

- Automatic variables without any qualifier reside in a register
 - Except arrays that reside in local memory

Variable declaration			Memory	Scope	Lifetime
device	_local	<pre>int LocalVar;</pre>	local	thread	thread
device	shared	<pre>int SharedVar;</pre>	shared	block	block
device		<pre>int GlobalVar;</pre>	global	grid	application
device	constant	<pre>int ConstantVar;</pre>	constant	grid	application

A Common Programming Strategy

Global memory resides in device memory (DRAM)

- much slower access than shared memory (200x!)
- ...but also much larger
- So, a profitable way of performing computation on the device is to tile data to take advantage of fast shared memory:
 - Partition data into subsets that fit into shared memory
 - Each block will then:
 - Load its subset from global memory to shared memory
 - $\hfill\square$ using multiple threads to exploit memory-level parallelism
 - Perform the computation on the subset from shared memory
 - $\hfill\square$ each thread can efficiently multi-pass over any data element
 - Copy results from shared memory back to global memory

Matrix Multiplication using Shared Memory

Review

{

_global___ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)

// Calculate the row index of the Pd element and M
int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
// Calculate the column idenx of Pd and N
int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

```
float Pvalue = 0;
// each thread computes one element of the block sub-matrix
for (int k = 0; k < Width; ++k)
        Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];</pre>
```

Pd[Row*Width+Col] = Pvalue;

}

How about performance on G80?

- All threads access global memory for their input matrix elements
 - Two memory accesses (8 bytes) per floating point multiply-add
 - 4 B/s of memory bandwidth/FLOPS
 - 4*346.5 = 1386 GB/s required to achieve peak FLOP rating
 - 86.4 GB/s limits the code at 21.6 GFLOPS
- The actual code runs at about Host I5 GFLOPS
- Need to drastically cut down memory accesses to get closer to the peak 346.5 GFLOPS

Idea: Use Shared Memory to reuse global memory data

- Each input element is read by WIDTH threads.
- Load each element into Shared Memory and have several threads use the local version to reduce the memory bandwidth
 - Tiled algorithms

Tiled Multiply

 Break up the execution of the kernel into phases so that the data accesses in each phase is focused on one subset (tile) of Md and Nd

> 0 1 2

0

2

by 1

tv

Tiled Multiply

Two Step process

steps I and 2!

- I. Threads load all M and N values in the tile into shared memory
- 2. Compute all the multiply-adds within that tile and add them to the sum

1

TILE WIDTH

TILE WIDTH

tν

by 1

2

hx

0

2

Device Runtime Component: Synchronization Function

- void ____syncthreads();
- Synchronizes all threads in a block (similar: MPI_Barrier)
 - Once all threads have reached this point, execution resumes normally
- Used to avoid race conditions when accessing shared or global memory
- Allowed in conditional constructs only if the conditional is uniform across the entire thread block

First-order Size Considerations in G80

- Each thread block should have many threads
 TILE_WIDTH of 16 gives 16*16 = 256 threads
- There should be many thread blocks
 - A 1024*1024 Pd gives 64*64 = 4096 Thread Blocks
- Each thread block perform 2*256 = 512 float loads from global memory for 256 * (2*16) = 8,192 mul/add operations.
 - Compute to memory ratio is now 16:1 !!
 - Memory bandwidth no longer a limiting factor

CUDA Code: Kernel Execution Configuration

// Setup the execution configuration

- dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);
- dim3 dimGrid(Width / TILE_WIDTH,

Width / TILE_WIDTH);

Tiled Matrix Multiplication Kernel

```
_global___ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
      shared float Mds[TILE WIDTH][TILE WIDTH];
      shared float Nds[TILE WIDTH][TILE WIDTH];
     int bx = blockIdx.x; int by = blockIdx.y;
     int tx = threadIdx.x; int ty = threadIdx.y;
// Identify the row and column of the Pd element to work on
     int Row = by * TILE WIDTH + ty;
     int Col = bx * TILE WIDTH + tx;
     float Pvalue = 0;
// Loop over the Md and Nd tiles required to compute the Pd element
     for (int m = 0; m < Width/TILE WIDTH; ++m) {</pre>
// Collaborative loading of Md and Nd tiles into shared memory
         Mds[ty][tx] = Md[Row*Width + (m*TILE WIDTH + tx)];
         Nds[ty][tx] = Nd[Col + (m*TILE WIDTH + ty)*Width];
         syncthreads();
         for (int k = 0; k < TILE WIDTH; ++k)
                   Pvalue += Mds[ty][k] * Nds[k][tx];
         syncthreads();
     }
     Pd[Row*Width+Col] = Pvalue;
```

}

G80 Shared Memory and Threading

- Each SM in G80 has 16KB shared memory
 - SM size is implementation dependent!
 - For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB of shared memory.
 - Can potentially have up to 8 Thread Blocks actively executing
 - This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256 threads per block)
 - TILE_WIDTH 32 would lead to 2*32*32*4B= 8KB shared memory usage per thread block, allowing only up to two thread blocks active at the same time per SM
- Using I6xI6 tiling, we reduce the accesses to the global memory by a factor of I6
 - The 86.4B/s bandwidth can now support (86.4/4)*16 = 347.6 GFLOPS!

Tiling Size Effects

What's Limiting My Code?

- Am I bandwidth bound? (How do I tell?)
 - Make sure I have high thread occupancy to tolerate latencies (lots of threads)
 - \Box These threads can get some work done while we wait for memory
 - Move re-used values to closer memories
 - □ <u>Shared</u>
 - □ Constant/Texture
- Am I not bandwidth bound what is now my limit?
 - Take a closer look at the instruction stream
 - Unroll loops
 - □ Minimize branch divergence

Exercise: Particles (n-Body)

cp -r ~ernstdj/NCSI2010 .

go to "particles" directory.

less README.txt

(we give you the basic kernel – now make it fast!)