Using The CUDA Programming Model

Leveraging GPUs for Application Acceleration

Dan Ernst, Brandon Holt University of Wisconsin – Eau Claire

1

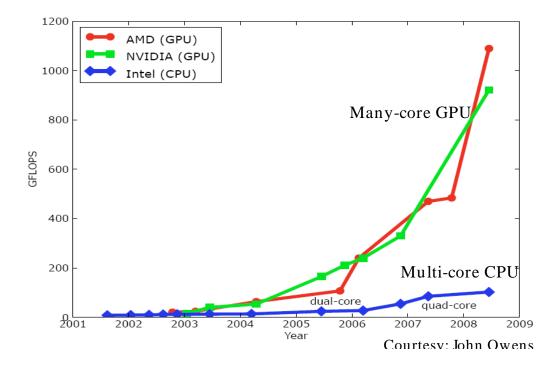
What is (Historical) GPGPU ?

- General Purpose computation using GPU and graphics API in applications other than 3D graphics
 - GPU accelerates critical path of application
- Data parallel algorithms leverage GPU attributes
 - Large data arrays, streaming throughput
 - Fine-grain SIMD parallelism
 - Low-latency floating point (FP) computation

- Applications see GPGPU.org
 - Game effects (FX) physics, image processing
 - Physical modeling, computational engineering, matrix algebra, convolution, correlation, sorting

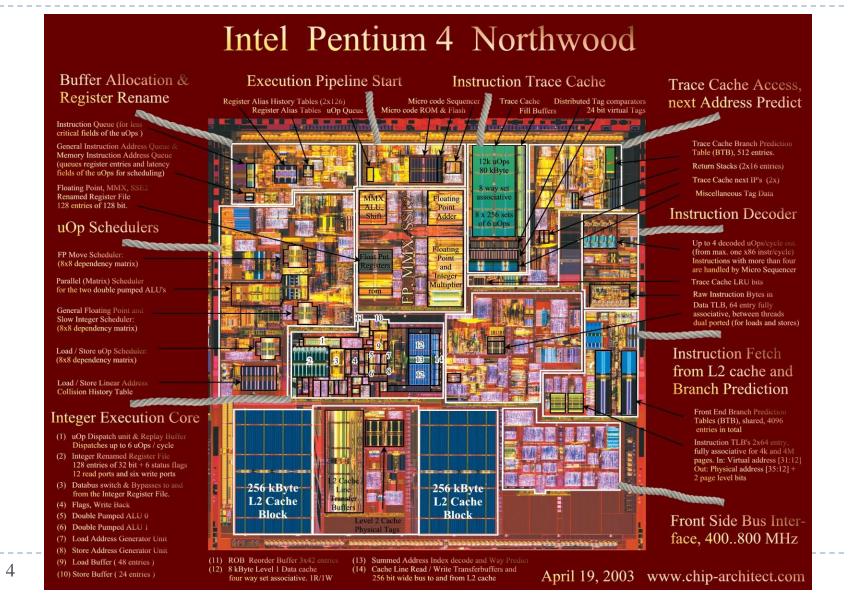
Why GPGPU Processing?

- A quiet revolution
 - Calculation: TFLOPS vs. 100 GFLOPS
 - Memory Bandwidth: ~10x

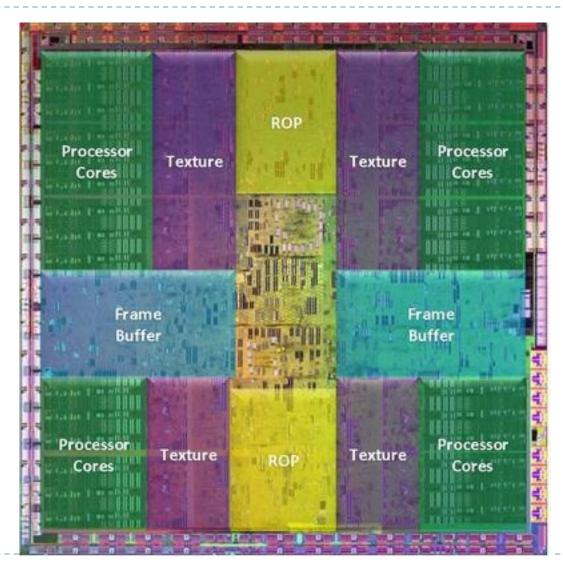


GPU in every PC– massive volume and potential impact

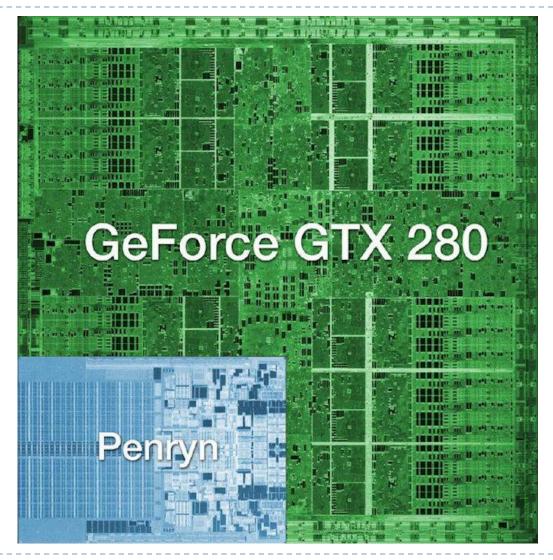
Intel P4 Northwood



NVIDIA GT200

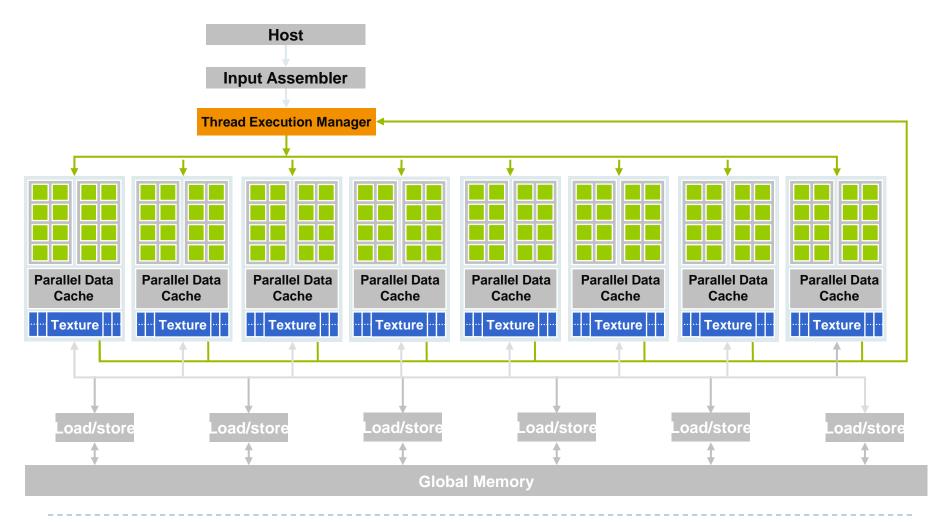


NVIDIA GT200



6

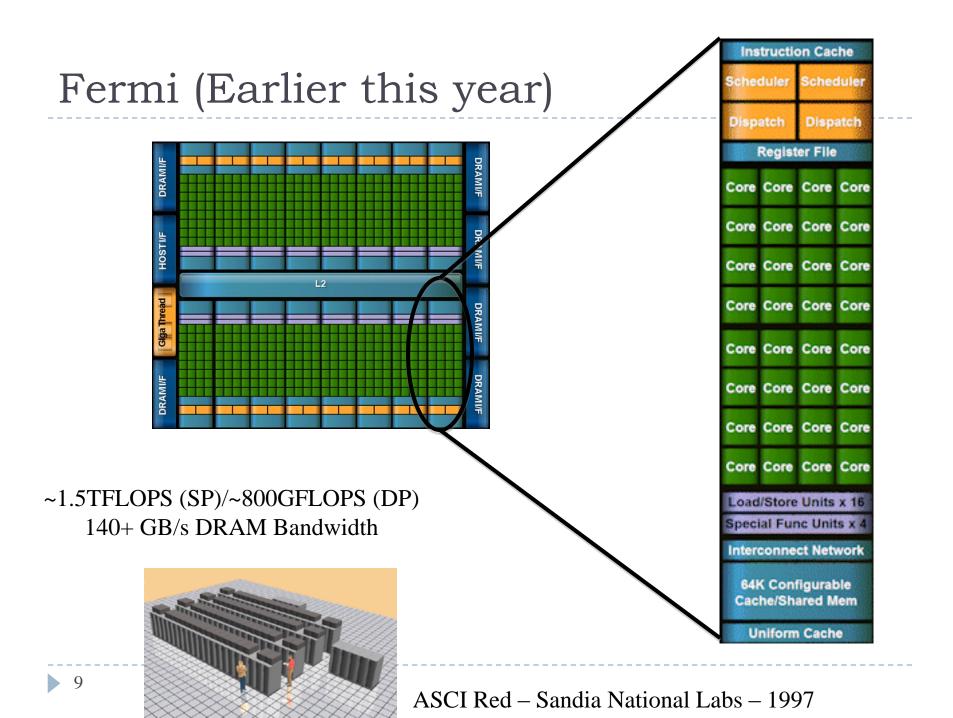
GeForce 8800 (2007)



7

G80 Characteristics

- 367 GFLOPS peak performance (25-50 times of current highend microprocessors)
- ▶ 265 GFLOPS sustained for apps such as VMD
- Massively parallel, 128 cores, 90W
- Massively threaded, sustains 1000s of threads per app
- B0-100 times speedup over high-end microprocessors on scientific and media applications: medical imaging, molecular dynamics
- "I think they're right on the money, but the huge performance differential (currently 3 GPUs ~= 300 SGI Altix Itanium2s) will invite close scrutiny so I have to be careful what I say publically until I triple check those numbers."
 - John Stone, VMD group, Physics, UIUC



NVIDIA Tesla C2050 Card Specs

- 448 GPU cores
- ▶ 1.15 GHz

- Single precision floating point performance: 1030.4 GFLOPs
 - (2 single precision flops per clock per core)
- Double precision floating point performance: 515.2 GFLOPs
 - (I double precision flop per clock per core)
- Internal RAM: 3 GB DDR5
- Internal RAM speed: 144 GB/sec (compared 21-25 GB/sec for regular RAM)
- Has to be plugged into a PCIe slot (at most 8 GB/sec)

NVIDIA Tesla S2050 Server Specs

- 4 C2050 cards inside a IU server (looks like a Sooner node)
- ▶ 1.15 GHz

- Single Precision (SP) floating point performance: 4121.6 GFLOPs
- Double Precision (DP) floating point performance: 2060.8 GFLOPs
- Internal RAM: 12 GB total (3 GB per GPU card)
- Internal RAM speed: 576 GB/sec aggregate
- Has to be plugged into two PCle slots (at most 16 GB/sec)

Compare x86 vs S2050

• Let's compare the best dual socket x86 server today vs S2050.

	Dual socket, AMD 2.3 GHz 12-core	NVIDIA Tesla S2050
Peak DP FLOPs	220.8 GFLOPs DP	2060.8 GFLOPs DP (9.3x)
Peak SP FLOPS	441.6 GFLOPs SP	4121.6 GFLOPs SP (9.3x)
Peak RAM BW	25 GB/sec	576 GB/sec (23x)
Peak PCIe BW	N/A	16 GB/sec
Needs x86 server to attach to?	No	Yes
Power/Heat	~450 W	\sim 900 W + \sim 400 W (\sim 2.9x)
Code portable?	Yes	No (CUDA)
		Yes (PGI, OpenCL)

Compare x86 vs S2050

• Here are some interesting measures:

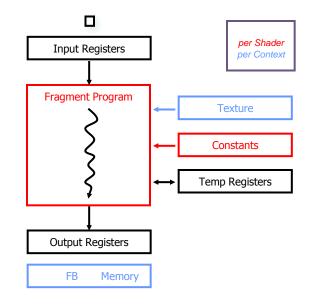
	Dual socket, AMD 2.3 GHz 12-core	NVIDIA Tesla S2050
DP GFLOPs/Watt	~0.5 GFLOPs/Watt	~1.6 GFLOPs/Watt (~3x)
SP GFLOPS/Watt	~1 GFLOPs/Watt	~3.2 GFLOPs/Watt (~3x)
DP GFLOPs/sq ft	~590 GFLOPs/sq ft	~2750 GFLOPs/sq ft (4.7x)
SP GFLOPs/sq ft	~1180 GFLOPs/sq ft	~5500 GFLOPs/sq ft (4.7x)
Racks per PFLOP DP	142 racks/PFLOP DP	32 racks/PFLOP DP (23%)
Racks per PFLOP SP	71 racks/PFLOP SP	16 racks/PFLOP SP (23%)

OU's Sooner is 34.5 TFLOPs DP, which is just over <u>1 rack</u> of S2050.

13

Previous GPGPU Constraints

- Dealing with graphics API
 - Working with the corner cases of the graphics API
 - Essentially re-write entire program as a collection of shaders and polygons

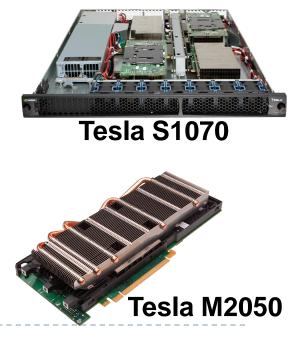


CUDA

- "Compute Unified Device Architecture"
- General purpose programming model
 - User kicks off batches of threads on the GPU
 - GPU = dedicated super-threaded, massively data parallel co-processor
- Targeted software stack
 - Compute oriented drivers, language, and tools
- Driver for loading computation programs onto GPU

Parallel Computing on a GPU

- 400-series GPUs deliver 450 to 1,400+ GFLOPS on compiled parallel C applications
 - Available in laptops, desktops, and clusters
- GPU parallelism is doubling every year
- Programming model scales transparently
- Programmable in C with CUDA tools
- Multithreaded SPMD model uses application data parallelism and thread parallelism



Overview

- CUDA programming model
 - Basic concepts and data types
- CUDA application programming interface (API) basics
- A couple of simple examples
- Performance features will be covered this afternoon

CUDA Devices and Threads

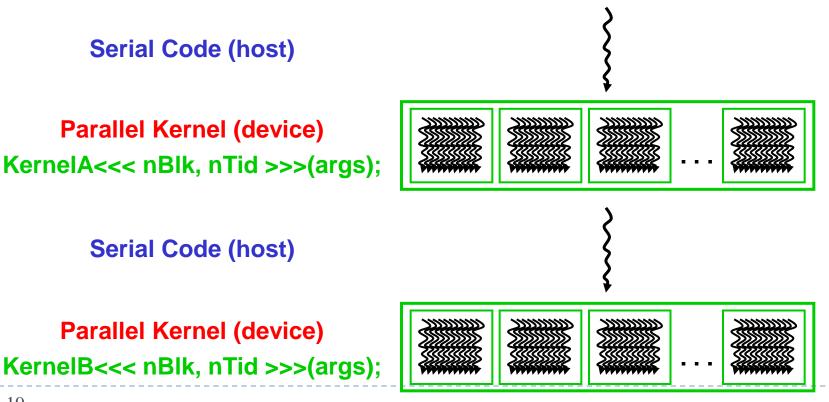
A CUDA compute device

- Is a coprocessor to the CPU or host
- Has its own DRAM (device memory)
- Runs many threads in parallel
- Is typically a GPU but can also be another type of parallel processing device
- Data-parallel portions of an application are expressed as device kernels which run on many threads
- Differences between GPU and CPU threads
 - GPU threads are extremely lightweight
 - Very little creation overhead
 - GPU needs 1000s of threads for full efficiency
 - Multi-core CPU needs only a few (and is hurt by having too many)

CUDA – C with a Co-processor

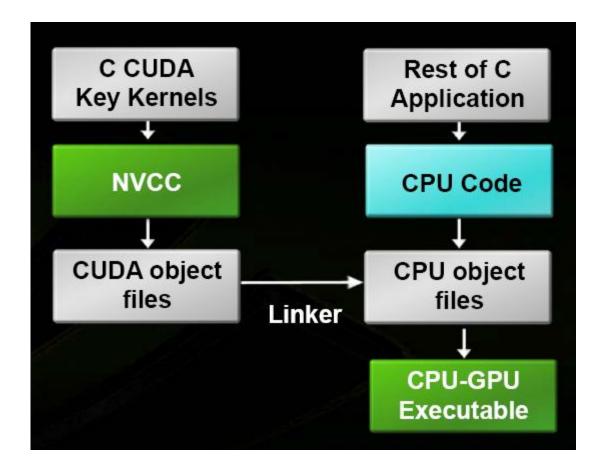
One program, two devices

- Serial or modestly parallel parts in host C code
- Highly parallel parts in device kernel C code



Extended C

D



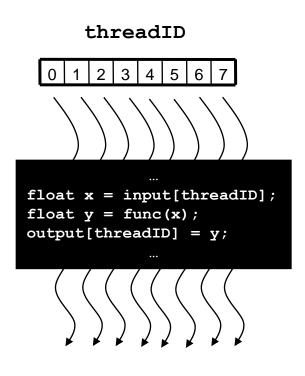
Buzzword: Kernel

- In CUDA, a kernel is code (typically a function) that can be run inside the GPU.
- The kernel code runs on the many stream processors in the GPU in parallel.
 - Each processor runs the code over different data (SPMD)

Buzzword: Thread

In CUDA, a thread is an execution of a kernel with a given index.

- Each thread uses its index to access a specific subset of the data, such that the collection of all threads cooperatively processes the entire data set.
- Think: MPI Process ID
- These are very much like threads in OpenMP
 - they even have shared and private variables.
- So what's the difference with CUDA?
 - Threads are free



Buzzword: Block

In CUDA, a block is a group of threads.

- Blocks are used to organize threads into manageable chunks.
 - Can organize threads in ID, 2D, or 3D arrangements
 - What best matches your data?
 - Some restrictions, based on hardware
- Threads within a block can do a bit of synchronization, if necessary.

Buzzword: Grid

In CUDA, a grid is a group of blocks

- no synchronization at all between the blocks.
- Grids are used to organize blocks into manageable chunks.
 - Can organize blocks in ID or 2D arrangements
 - What best matches your data?
- A Grid is the set of threads created by a call to a CUDA kernel

Mapping Buzzwords to GPU Hardware

- <u>Grids</u> map to GPUs
- <u>Blocks</u> map to the MultiProcessors (MP)
 - Blocks are never split across MPs, but an MP can have multiple blocks
- <u>Threads</u> map to Stream Processors (SP)
- <u>Warps</u> are groups of (32) threads that execute simultaneously
 - Completely forget about these until later

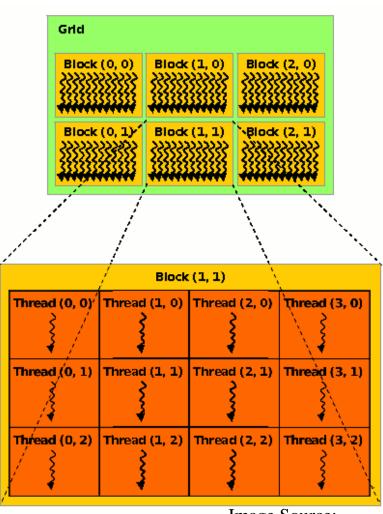
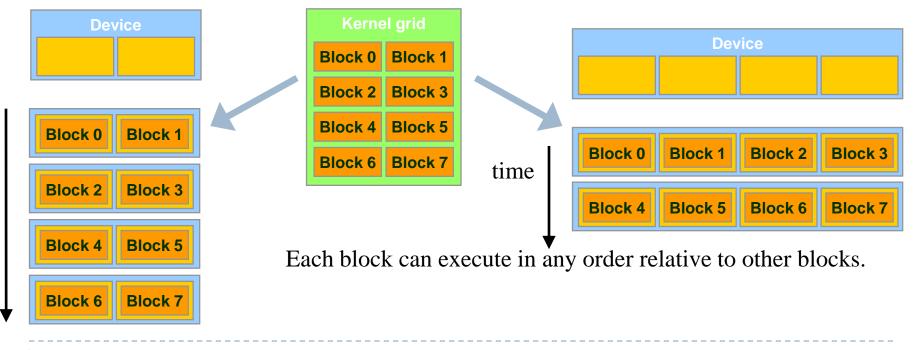


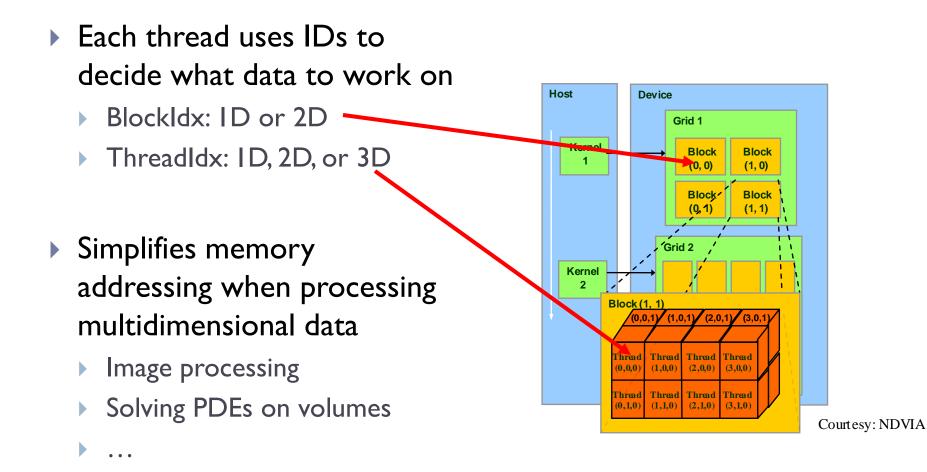
Image Source: NVIDIA CUDA Programming Guide

Transparent Scalability

- Hardware is free to assign blocks to any SM (processor)
 - A kernel scales across any number of parallel processors



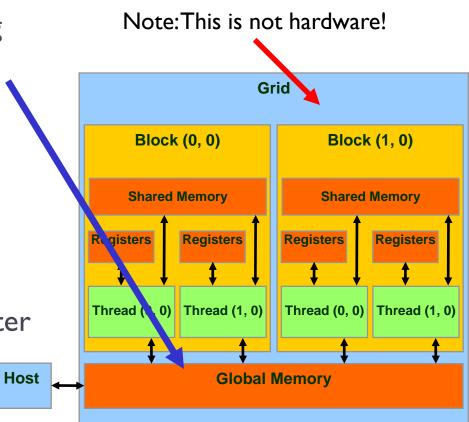
Block IDs and Thread IDs



CUDA Memory Model Overview

Global memory

- Main means of communicating R/W Data between host and device
- Contents visible to all threads
- Long latency access
- We will focus on global memory for now
 - Other memories will come later



CUDA Device Memory Allocation

cudaMalloc()

- Allocates object in the device Global Memory
- Requires two parameters
 - Address of a pointer to the allocated object
 - Size of of allocated object
- > cudaFree()
 - Frees object from device Global Memory
 - Pointer to freed object

CUDA Device Memory Allocation (cont.)

Code example:

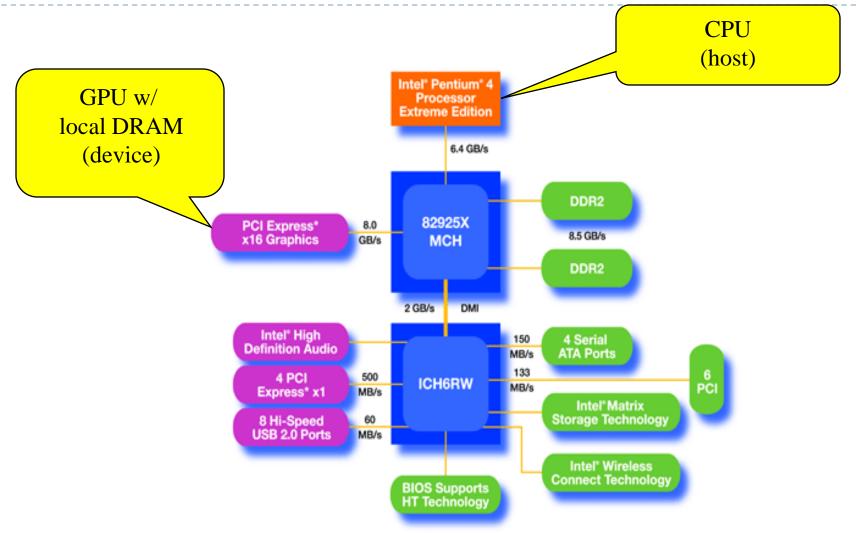
- Allocate a 64 * 64 single precision float array
- Attach the allocated storage to pointer named Md
- "d" is often used in naming to indicate a device data structure

```
TILE_WIDTH = 64;
float* Md;
int size = TILE_WIDTH * TILE_WIDTH * sizeof(float);
```

cudaMalloc((void**)&Md, size);

cudaFree(Md) ;

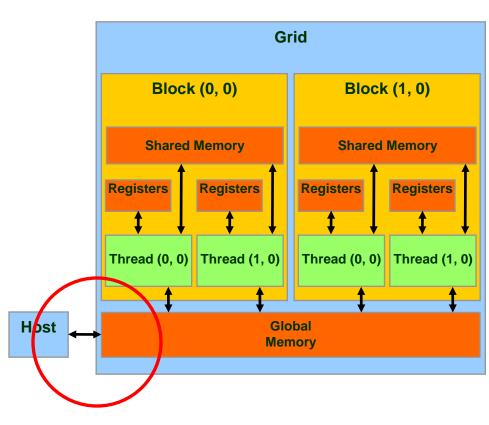
The Physical Reality Behind CUDA



CUDA Host-Device Data Transfer

cudaMemcpy()

- memory data transfer
- Requires four parameters
 - Pointer to destination
 - Pointer to source
 - Number of bytes copied
 - Type of transfer
 - □ Host to Host
 - □ Host to Device
 - Device to Host
 - Device to Device
- Asynchronous transfer



CUDA Host-Device Data Transfer (cont.)

Code example:

- Transfer a 64 * 64 single precision float array
- M is in host memory and Md is in device memory
- cudaMemcpyHostToDevice and cudaMemcpyDeviceToHost are symbolic constants

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMemcpy(M, Md, size, cudaMemcpyDeviceToHost);

CUDA Kernel Template

```
> In C:
void foo(int a, float b)
{
    // slow code goes here
}
```

```
In CUDA:
__global___void foo(int a, float b)
{
    // fast code goes here!
}
```

Calling a Kernel Function

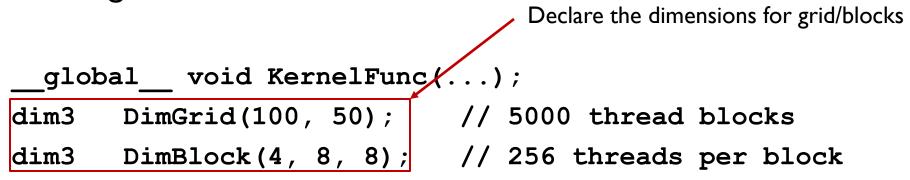
A kernel function must be called with an execution configuration:

__global___void KernelFunc(...);
dim3 DimGrid(100, 50); // 5000 thread blocks
dim3 DimBlock(4, 8, 8); // 256 threads per block

KernelFunc(...); // invoke a function

Calling a Kernel Function

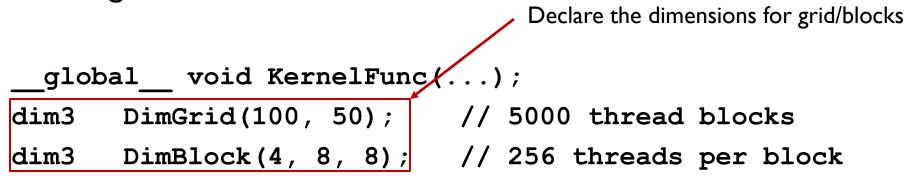
A kernel function must be called with an execution configuration:



KernelFunc(...); // invoke a function

Calling a Kernel Function

A kernel function must be called with an execution configuration:



KernelFunc<<<DimGrid, DimBlock>>>(...);

//invoke a kernel

Any call to a kernel function is asynchronous from CUDA
 I.0 on, explicit synch needed for blocking

C SAXPY

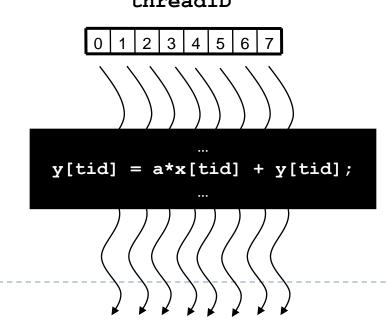
```
void
saxpy_serial(int n, float a, float *x, float *y)
{
    int i;
    for(i=0; i < n; i++) {
        y[i] = a*x[i] + y[i];
    }
}</pre>
```

//invoke the kernel
saxpy_serial(n, 2.0, x, y);

...

SAXPY on a GPU

- Doing anything across an entire vector is perfect for massively parallel computing.
- Instead of <u>one</u> function <u>looping</u> over the data set, we'll use <u>many</u> threads, each doing <u>one</u> calculation threadID



```
CUDA SAXPY
__global__ void
saxpy_cuda(int n, float a, float *x, float *y)
{
    int i = (blockIdx.x * blockDim.x) + threadIdx.x;
    if(i < n)
        y[i] = a*x[i] + y[i];
}</pre>
```

int nblocks = (n + 255) / 256;

//invoke the kernel with 256 threads per block
saxpy_cuda<<<nblocks, 256>>>(n, 2.0, x, y);

Matrix Multiplication in CUDA

A case study

Matrix Multiplication: A Case Study

- Matrix multiplication illustrates many of the basic features of memory and thread management in CUDA
 - Usage of thread/block IDs
 - Memory data transfer between host and device
 - Motivates some performance issues:
 - shared memory usage
 - register usage
 - Assumptions:
 - Basic unoptimized sgemm
 - Matrices are square (for simplicity)

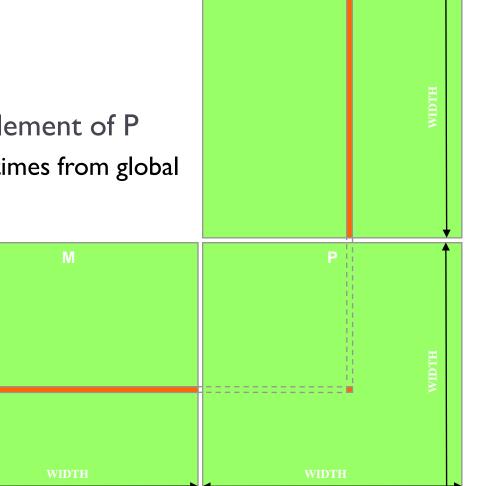
Programming Model: Square Matrix Multiplication Example

• P = M * N

Each is of size WIDTH x WIDTH

Basic Idea:

- One thread calculates one element of P
 - M and N are loaded WIDTH times from global memory

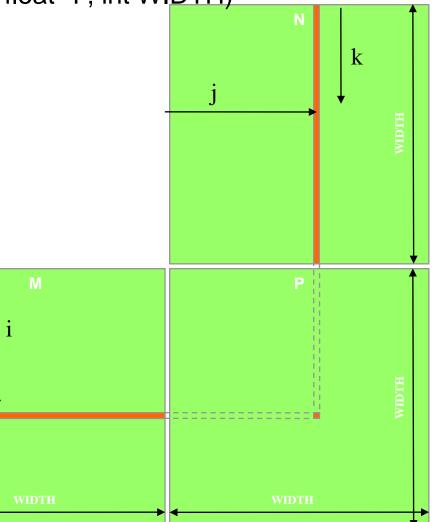


Step 1: Matrix Multiplication A Simple Host Version in C

// Matrix multiplication on the (CPU) host in double precision void MatrixMulOnHost(float* M, float* N, float* P, int WIDTH)

```
int i, j, k;
double a, b, sum;
for (i = 0; i < WIDTH; ++i)
  for (j = 0; j < WIDTH; ++j) {
     sum = 0;
     for (k = 0; k < WIDTH; ++k) {
       a = M[i * WIDTH + k];
        b = N[k * WIDTH + j];
        sum += a * b;
     P[i * WIDTH + j] = sum;
                                  k
```

44



```
Step 2: Input Matrix Data Transfer
(Host-side Code)
```

```
void MatrixMulOnDevice(float* M, float* N, float* P, int WIDTH)
{
    int size = WIDTH * WIDTH * sizeof(float);
    float* Md, Nd, Pd;
    // 1. Allocate and Load M, N to device memory
    cudaMalloc(&Md, size);
    cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);
```

```
cudaMalloc(&Nd, size);
cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);
```

// Allocate P on the device
cudaMalloc(&Pd, size);

Step 3: Output Matrix Data Transfer (Host-side Code)

// 2. Kernel invocation code - to be shown later

// 3. Read P from the device cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);

// Free device matrices
cudaFree(Md); cudaFree(Nd); cudaFree (Pd);
}

. . .

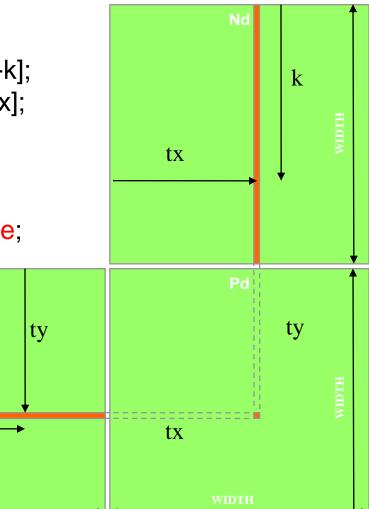
Step 4: Kernel Function

_global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int WIDTH) float Pvalue = 0;

k

```
for (int k = 0; k < WIDTH; ++k) {
    float Melement = Md[threadIdx.y*WIDTH+k];
    float Nelement = Nd[k*WIDTH+threadIdx.x];
    Pvalue += Melement * Nelement;
}</pre>
```

Pd[threadIdx.y*WIDTH+threadIdx.x] = Pvalue;



Step 5: Kernel Invocation (Host-side Code)

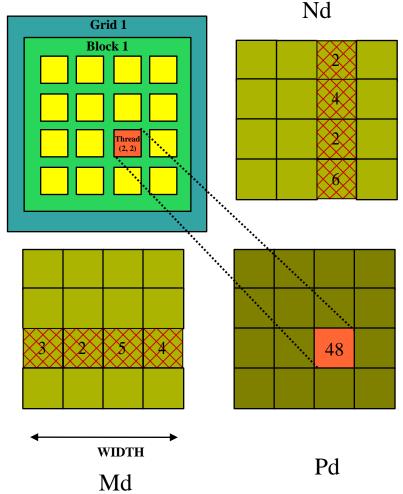
// Setup the execution configuration
dim3 dimGrid(1, 1);
dim3 dimBlock(WIDTH, WIDTH);

// Launch the device computation threads!

MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, WIDTH);

Only One Thread Block Used

- One Block of threads compute the matrix Pd
 - Each thread computes one element of the matrix Pd
- Each thread
 - Loads a row of matrix Md
 - Loads a column of matrix Nd
 - Perform one multiply and addition for each pair of Md and Nd elements
- Compute to off-chip memory access ratio close to 1:1 (not very good)
- Size of matrix limited by the number of threads allowed in a thread block (512)



Block IDs and Thread IDs

- Each thread uses IDs to decide what data to work on
 - Block ID: ID or 2D
 - Thread ID: ID, 2D, or 3D
- Simplifies memory addressing when processing multidimensional data

 Kernel
 Block (0, 0)
 Block (1, 0)

 Block
 Block (0, 1)
 Block (1, 1)

 Grid 2
 Grid 2

 Block (1, 1)
 Glock (1, 1)

 (0, 0)
 Thread Thread Thread (0, 0, 0)

 Thread Thread Thread Thread (0, 0, 0)
 Thread Thread Thread Thread (0, 0, 0)

Device

Grid 1

Host

Courtesy: NDVIA

- Image processing
- Solving PDEs on volumes

Figure 3.2. An Example of CUDA Thread Organization.

Matrix Multiplication Using Multiple Blocks

- Break-up Pd into tiles
- Each block calculates one tile
 - Each thread calculates one element

0 1 2

TILE WIDTH-1

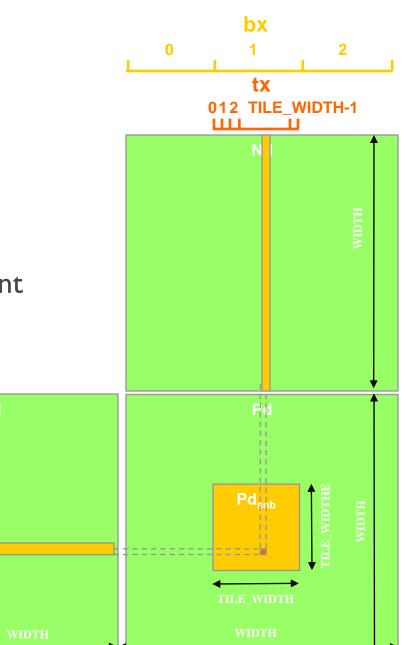
Block size equal tile size

0

2

tv

by



Revised mmult Kernel using Multiple Blocks

_global___ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)

// Calculate the row index of the Pd element and M
int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
// Calculate the column idenx of Pd and N
int Col = blockIdx.x*TILE WIDTH + threadIdx.x;

```
float Pvalue = 0;
// each thread computes one element of the block sub-matrix
for (int k = 0; k < Width; ++k)
        Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];</pre>
```

Pd[Row*Width+Col] = Pvalue;

}

Ł

G80 Block Granularity Considerations

Q: For Matrix Multiplication using multiple blocks, should I use 8x8, 16x16 or 32x32 blocks?

- For 8x8, we have 64 threads per Block. Since each SM can take up to 768 threads, there are 12 Blocks. However, each SM can only take up to 8 Blocks, only 512 threads will go into each SM!
- For 16x16, we have 256 threads per Block. Since each SM can take up to 768 threads, it can take up to 3 Blocks and achieve full capacity unless other resource considerations overrule.
- For 32x32, we have 1024 threads per Block. Not even one can fit into an SM!

Exercise: Area Under the Curve

cp -r ~ernstdj/NCSI2010 .

go to "cuda_trap" directory.

less README.txt