
Using The CUDA Programming Model

1

Leveraging GPUs for Application Acceleration

Dan Ernst, Brandon Holt

University of Wisconsin – Eau Claire

What is (Historical) GPGPU ?

2

 General Purpose computation using GPU and graphics API in
applications other than 3D graphics

 GPU accelerates critical path of application

 Data parallel algorithms leverage GPU attributes

 Large data arrays, streaming throughput

 Fine-grain SIMD parallelism

 Low-latency floating point (FP) computation

 Applications – see GPGPU.org

 Game effects (FX) physics, image processing

 Physical modeling, computational engineering, matrix algebra,
convolution, correlation, sorting

Why GPGPU Processing?

3

 A quiet revolution
 Calculation: TFLOPS vs. 100 GFLOPS

 Memory Bandwidth: ~10x

 GPU in every PC– massive volume and potential impact
Figure 1.1. Enlarging Performance Gap between GPUs and CPUs.

Multi-core CPU

Many-core GPU

Courtesy: John Owens

Intel P4 Northwood

4

NVIDIA GT200

5

NVIDIA GT200

6

GeForce 8800 (2007)

7

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Load/store Load/store Load/store Load/store Load/store

G80 Characteristics

8

 367 GFLOPS peak performance (25-50 times of current high-
end microprocessors)

 265 GFLOPS sustained for apps such as VMD

 Massively parallel, 128 cores, 90W

 Massively threaded, sustains 1000s of threads per app

 30-100 times speedup over high-end microprocessors on
scientific and media applications: medical imaging, molecular
dynamics

 “I think they're right on the money, but the huge performance
differential (currently 3 GPUs ~= 300 SGI Altix Itanium2s) will
invite close scrutiny so I have to be careful what I say publically
until I triple check those numbers.”
 John Stone, VMD group, Physics, UIUC

Fermi (Earlier this year)

9

~1.5TFLOPS (SP)/~800GFLOPS (DP)

140+ GB/s DRAM Bandwidth

ASCI Red – Sandia National Labs – 1997

NVIDIA Tesla C2050 Card Specs

10

 448 GPU cores

 1.15 GHz

 Single precision floating point performance:
1030.4 GFLOPs

(2 single precision flops per clock per core)

 Double precision floating point performance:
515.2 GFLOPs

(1 double precision flop per clock per core)

 Internal RAM: 3 GB DDR5

 Internal RAM speed: 144 GB/sec (compared 21-25
GB/sec for regular RAM)

 Has to be plugged into a PCIe slot (at most 8 GB/sec)

NVIDIA Tesla S2050 Server Specs

11

 4 C2050 cards inside a 1U server

(looks like a Sooner node)

 1.15 GHz

 Single Precision (SP) floating point performance:
4121.6 GFLOPs

 Double Precision (DP) floating point performance:
2060.8 GFLOPs

 Internal RAM: 12 GB total (3 GB per GPU card)

 Internal RAM speed: 576 GB/sec aggregate

 Has to be plugged into two PCIe slots

(at most 16 GB/sec)

Compare x86 vs S2050

12

 Let’s compare the best dual socket x86 server today vs S2050.
Dual socket, AMD

2.3 GHz 12-core

NVIDIA Tesla S2050

Peak DP FLOPs 220.8 GFLOPs DP 2060.8 GFLOPs DP (9.3x)

Peak SP FLOPS 441.6 GFLOPs SP 4121.6 GFLOPs SP (9.3x)

Peak RAM BW 25 GB/sec 576 GB/sec (23x)

Peak PCIe BW N/A 16 GB/sec

Needs x86 server to

attach to?

No Yes

Power/Heat ~450 W ~900 W + ~400 W (~2.9x)

Code portable? Yes No (CUDA)

Yes (PGI, OpenCL)

Compare x86 vs S2050

13

 Here are some interesting measures:
Dual socket, AMD

2.3 GHz 12-core

NVIDIA Tesla S2050

DP GFLOPs/Watt ~0.5 GFLOPs/Watt ~1.6 GFLOPs/Watt (~3x)

SP GFLOPS/Watt ~1 GFLOPs/Watt ~3.2 GFLOPs/Watt (~3x)

DP GFLOPs/sq ft ~590 GFLOPs/sq ft ~2750 GFLOPs/sq ft (4.7x)

SP GFLOPs/sq ft ~1180 GFLOPs/sq ft ~5500 GFLOPs/sq ft (4.7x)

Racks per PFLOP DP 142 racks/PFLOP DP 32 racks/PFLOP DP (23%)

Racks per PFLOP SP 71 racks/PFLOP SP 16 racks/PFLOP SP (23%)

OU’s Sooner is 34.5 TFLOPs DP, which is just over 1 rack of S2050.

Previous GPGPU Constraints

14

 Dealing with graphics API

 Working with the corner cases of

the graphics API

 Essentially – re-write entire program

as a collection of shaders and

polygons

Input Registers

Fragment Program

Output Registers

Constants

Texture

Temp Registers

per thread

per Shader

per Context

FB Memory

CUDA

15

 “Compute Unified Device Architecture”

 General purpose programming model

 User kicks off batches of threads on the GPU

 GPU = dedicated super-threaded, massively data

parallel co-processor

 Targeted software stack

 Compute oriented drivers, language, and tools

 Driver for loading computation programs onto

GPU

http://www.opengl.org/

Parallel Computing on a GPU

 400-series GPUs deliver 450 to 1,400+ GFLOPS

on compiled parallel C applications

 Available in laptops, desktops, and clusters

 GPU parallelism is doubling every year

 Programming model scales transparently

 Programmable in C with CUDA tools

 Multithreaded SPMD model uses application data

parallelism and thread parallelism

16

GeForce GTX 460

Tesla M2050

Tesla S1070

Overview

17

 CUDA programming model

 Basic concepts and data types

 CUDA application programming interface (API) basics

 A couple of simple examples

 Performance features will be covered this afternoon

CUDA Devices and Threads

18

 A CUDA compute device

 Is a coprocessor to the CPU or host

 Has its own DRAM (device memory)

 Runs many threads in parallel

 Is typically a GPU but can also be another type of parallel processing
device

 Data-parallel portions of an application are expressed as
device kernels which run on many threads

 Differences between GPU and CPU threads

 GPU threads are extremely lightweight

 Very little creation overhead

 GPU needs 1000s of threads for full efficiency

 Multi-core CPU needs only a few (and is hurt by having too many)

CUDA – C with a Co-processor

 One program, two devices

 Serial or modestly parallel parts in host C code

 Highly parallel parts in device kernel C code

19

Serial Code (host)

. . .

. . .

Parallel Kernel (device)

KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)

Parallel Kernel (device)

KernelB<<< nBlk, nTid >>>(args);

Extended C

Buzzword: Kernel

21

 In CUDA, a kernel is code (typically a function) that can

be run inside the GPU.

 The kernel code runs on the many stream processors in

the GPU in parallel.

 Each processor runs the code over different data (SPMD)

Buzzword: Thread

22

 In CUDA, a thread is an execution of
a kernel with a given index.
 Each thread uses its index to access a specific

subset of the data, such that the collection of all
threads cooperatively processes the entire data
set.

 Think: MPI Process ID

 These are very much like threads in
OpenMP
 they even have shared and private variables.

 So what’s the difference with CUDA?
 Threads are free

76543210

…

float x = input[threadID];

float y = func(x);

output[threadID] = y;

…

threadID

Buzzword: Block

23

 In CUDA, a block is a group of threads.

 Blocks are used to organize threads into manageable

chunks.

 Can organize threads in 1D, 2D, or 3D arrangements

 What best matches your data?

 Some restrictions, based on hardware

 Threads within a block can do a bit of synchronization, if

necessary.

Buzzword: Grid

24

 In CUDA, a grid is a group of blocks

 no synchronization at all between the blocks.

 Grids are used to organize blocks into manageable

chunks.

 Can organize blocks in 1D or 2D arrangements

 What best matches your data?

 A Grid is the set of threads created by a call to a CUDA

kernel

Mapping Buzzwords to GPU Hardware

 Grids map to GPUs

 Blocks map to the
MultiProcessors (MP)

 Blocks are never split across
MPs, but an MP can have
multiple blocks

 Threads map to Stream
Processors (SP)

 Warps are groups of (32)
threads that execute
simultaneously

 Completely forget about these
until later

Image Source:
NVIDIA CUDA Programming Guide

Transparent Scalability

26

 Hardware is free to assign blocks to any SM (processor)

 A kernel scales across any number of parallel processors

Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Each block can execute in any order relative to other blocks.

time

Block IDs and Thread IDs

 Each thread uses IDs to

decide what data to work on

 BlockIdx: 1D or 2D

 ThreadIdx: 1D, 2D, or 3D

 Simplifies memory

addressing when processing

multidimensional data

 Image processing

 Solving PDEs on volumes

 …

Host

Kernel

1

Kernel

2

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(0, 1)

Block

(1, 1)

Grid 2

Courtesy: NDVIA

Figure 3.2. An Example of CUDA Thread Organization.

Block (1, 1)

Thread

(0,1,0)

Thread

(1,1,0)

Thread

(2,1,0)

Thread

(3,1,0)

Thread

(0,0,0)

Thread

(1,0,0)

Thread

(2,0,0)

Thread

(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

27

CUDA Memory Model Overview

28

 Global memory

 Main means of communicating

R/W Data between host and

device

 Contents visible to all threads

 Long latency access

 We will focus on global

memory for now

 Other memories will come later

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Note: This is not hardware!

CUDA Device Memory Allocation

 cudaMalloc()

 Allocates object in the device Global Memory

 Requires two parameters

 Address of a pointer to the allocated object

 Size of of allocated object

 cudaFree()

 Frees object from device Global Memory

 Pointer to freed object

29

CUDA Device Memory Allocation (cont.)

 Code example:

 Allocate a 64 * 64 single precision float array

 Attach the allocated storage to pointer named Md

 “d” is often used in naming to indicate a device data structure

30

TILE_WIDTH = 64;

float* Md;

int size = TILE_WIDTH * TILE_WIDTH * sizeof(float);

cudaMalloc((void**)&Md, size);

cudaFree(Md);

The Physical Reality Behind CUDA

31

CPU

(host)

GPU w/

local DRAM

(device)

CUDA Host-Device Data Transfer

32

 cudaMemcpy()

 memory data transfer

 Requires four parameters

 Pointer to destination

 Pointer to source

 Number of bytes copied

 Type of transfer

 Host to Host

 Host to Device

 Device to Host

 Device to Device

 Asynchronous transfer

Grid

Global

Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

CUDA Host-Device Data Transfer (cont.)

 Code example:

 Transfer a 64 * 64 single precision float array

 M is in host memory and Md is in device memory

 cudaMemcpyHostToDevice and cudaMemcpyDeviceToHost are

symbolic constants

33

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMemcpy(M, Md, size, cudaMemcpyDeviceToHost);

CUDA Kernel Template

 In C:
void foo(int a, float b)

{

// slow code goes here

}

 In CUDA:
__global__ void foo(int a, float b)

{

// fast code goes here!

}

Calling a Kernel Function

35

 A kernel function must be called with an execution

configuration:

__global__ void KernelFunc(...);

dim3 DimGrid(100, 50); // 5000 thread blocks

dim3 DimBlock(4, 8, 8); // 256 threads per block

KernelFunc(...); // invoke a function

Calling a Kernel Function

36

 A kernel function must be called with an execution

configuration:

__global__ void KernelFunc(...);

dim3 DimGrid(100, 50); // 5000 thread blocks

dim3 DimBlock(4, 8, 8); // 256 threads per block

KernelFunc(...); // invoke a function

Declare the dimensions for grid/blocks

Calling a Kernel Function

37

 A kernel function must be called with an execution

configuration:

__global__ void KernelFunc(...);

dim3 DimGrid(100, 50); // 5000 thread blocks

dim3 DimBlock(4, 8, 8); // 256 threads per block

KernelFunc<<<DimGrid, DimBlock>>>(...);

//invoke a kernel

 Any call to a kernel function is asynchronous from CUDA

1.0 on, explicit synch needed for blocking

Declare the dimensions for grid/blocks

C SAXPY

38

void

saxpy_serial(int n, float a, float *x, float *y)

{

int i;

for(i=0; i < n; i++) {

y[i] = a*x[i] + y[i];

}

}

…

//invoke the kernel

saxpy_serial(n, 2.0, x, y);

SAXPY on a GPU

39

 Doing anything across an entire vector is perfect for

massively parallel computing.

 Instead of one function looping over the data set,

we’ll use many threads, each doing one calculation

76543210

…

y[tid] = a*x[tid] + y[tid];

…

threadID

CUDA SAXPY

40

__global__ void

saxpy_cuda(int n, float a, float *x, float *y)

{

int i = (blockIdx.x * blockDim.x) + threadIdx.x;

if(i < n)

y[i] = a*x[i] + y[i];

}

…

int nblocks = (n + 255) / 256;

//invoke the kernel with 256 threads per block

saxpy_cuda<<<nblocks, 256>>>(n, 2.0, x, y);

Matrix Multiplication in CUDA

A case study

41

Matrix Multiplication: A Case Study

42

 Matrix multiplication illustrates many of the basic features

of memory and thread management in CUDA

 Usage of thread/block IDs

 Memory data transfer between host and device

 Motivates some performance issues:

 shared memory usage

 register usage

 Assumptions:

 Basic unoptimized sgemm

 Matrices are square (for simplicity)

Programming Model:

Square Matrix Multiplication Example

43

 P = M * N

 Each is of size WIDTH x WIDTH

 Basic Idea:

 One thread calculates one element of P

 M and N are loaded WIDTH times from global

memory

M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

Step 1: Matrix Multiplication

A Simple Host Version in C

44

M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

// Matrix multiplication on the (CPU) host in double precision

void MatrixMulOnHost(float* M, float* N, float* P, int WIDTH)

{

int i, j, k;

double a, b, sum;

for (i = 0; i < WIDTH; ++i)

for (j = 0; j < WIDTH; ++j) {

sum = 0;

for (k = 0; k < WIDTH; ++k) {

a = M[i * WIDTH + k];

b = N[k * WIDTH + j];

sum += a * b;

}

P[i * WIDTH + j] = sum;

}

}

i

k

k

j

Step 2: Input Matrix Data Transfer

(Host-side Code)

45

void MatrixMulOnDevice(float* M, float* N, float* P, int WIDTH)

{

int size = WIDTH * WIDTH * sizeof(float);

float* Md, Nd, Pd;

…

// 1. Allocate and Load M, N to device memory

cudaMalloc(&Md, size);

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMalloc(&Nd, size);

cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

// Allocate P on the device

cudaMalloc(&Pd, size);

Step 3: Output Matrix Data Transfer

(Host-side Code)

46

// 2. Kernel invocation code – to be shown later

…

// 3. Read P from the device

cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);

// Free device matrices

cudaFree(Md); cudaFree(Nd); cudaFree (Pd);

}

Step 4: Kernel Function

47

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int WIDTH)

{

float Pvalue = 0;

for (int k = 0; k < WIDTH; ++k) {

float Melement = Md[threadIdx.y*WIDTH+k];

float Nelement = Nd[k*WIDTH+threadIdx.x];

Pvalue += Melement * Nelement;

}

Pd[threadIdx.y*WIDTH+threadIdx.x] = Pvalue;

}

Nd

Md Pd

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

ty

tx

ty

tx

k

k

Step 5:

Kernel Invocation (Host-side Code)

48

// Setup the execution configuration

dim3 dimGrid(1, 1);

dim3 dimBlock(WIDTH, WIDTH);

// Launch the device computation threads!

MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, WIDTH);

Only One Thread Block Used

 One Block of threads compute the
matrix Pd
 Each thread computes one element of

the matrix Pd

 Each thread
 Loads a row of matrix Md

 Loads a column of matrix Nd

 Perform one multiply and addition for
each pair of Md and Nd elements

 Compute to off-chip memory access
ratio close to 1:1 (not very good)

 Size of matrix limited by the number
of threads allowed in a thread block
(512)

49

Grid 1

Block 1

3 2 5 4

2

4

2

6

48

Thread

(2, 2)

WIDTH

Md
Pd

Nd

Block IDs and Thread IDs

Host

Kernel

1

Kernel

2

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(0, 1)

Block

(1, 1)

Grid 2

Courtesy: NDVIA

Figure 3.2. An Example of CUDA Thread Organization.

Block (1, 1)

Thread

(0,1,0)

Thread

(1,1,0)

Thread

(2,1,0)

Thread

(3,1,0)

Thread

(0,0,0)

Thread

(1,0,0)

Thread

(2,0,0)

Thread

(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

50

 Each thread uses IDs to
decide what data to work on

 Block ID: 1D or 2D

 Thread ID: 1D, 2D, or 3D

 Simplifies memory
addressing when processing
multidimensional data

 Image processing

 Solving PDEs on volumes

 …

Matrix Multiplication

Using Multiple Blocks

 Break-up Pd into tiles

 Each block calculates one tile

 Each thread calculates one element

 Block size equal tile size

51

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTHWIDTH

bx

tx
01 TILE_WIDTH-12

0 1 2

by ty
2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_

W
ID

T
H

E

W
ID

T
H

W
ID

T
H

Revised mmult Kernel using Multiple Blocks

52

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd,

int Width)

{

// Calculate the row index of the Pd element and M

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;

// Calculate the column idenx of Pd and N

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

float Pvalue = 0;

// each thread computes one element of the block sub-matrix

for (int k = 0; k < Width; ++k)

Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

Pd[Row*Width+Col] = Pvalue;

}

G80 Block Granularity Considerations

53

Q: For Matrix Multiplication using multiple blocks, should I

use 8x8, 16x16 or 32x32 blocks?

 For 8x8, we have 64 threads per Block. Since each SM can take

up to 768 threads, there are 12 Blocks. However, each SM can

only take up to 8 Blocks, only 512 threads will go into each SM!

 For 16x16, we have 256 threads per Block. Since each SM can

take up to 768 threads, it can take up to 3 Blocks and achieve

full capacity unless other resource considerations overrule.

 For 32x32, we have 1024 threads per Block. Not even one can

fit into an SM!

Exercise: Area Under the Curve

54

cp -r ~ernstdj/NCSI2010 .

go to “cuda_trap” directory.

less README.txt

