
Hybrid Redux: CUDA / MPI

1



CUDA / MPI Hybrid – Why?

2

 Harness more hardware

 16 CUDA GPUs > 1!

 You have a legacy MPI code that you’d like to accelerate. 



CUDA / MPI – Hardware?

3

 In a cluster environment, a typical configuration is one of:

 Tesla S1050 cards attached to (some) nodes.

 1 GPU for each node.

 Tesla S1070 server node (4 GPUs) connected to two different 

host nodes via PCI-E.

 2 GPUs per node.

 Sooner’s CUDA nodes are like the latter

 Those nodes are used when you submit a job to the queue “cuda”.

 You can also attach multiple cards to a workstation.



CUDA / MPI – Approach

4

 CUDA will likely be:

1. Doing most of the computational heavy lifting

2. Dictating your algorithmic pattern

3. Dictating your parallel layout

 i.e. which nodes have how many cards

 Therefore:

1. We want to design the CUDA portions first, and

2. We want to do most of the compute in CUDA, and use MPI 

to move work and results around when needed.



Writing and Testing

5

 Use MPI for what CUDA can’t do/does poorly

 communication!

 Basic Organization:

 Get data to node/CUDA card

 Compute

 Get result out of node/CUDA card

 Focus testing on these three spots to pinpoint bugs

 Be able to “turn off” either MPI or CUDA for testing

 Keep a serial version of the CUDA code around just for this



Compiling

6

 Basically, we need to use both mpicc and nvcc

 These are both just wrappers for other compilers

 Dirty trick – wrap mpicc with nvcc:

nvcc -arch sm_13 --compiler-bindir mpicc driver.c kernel.cu

 add -g and -G to add debug info for gdb



Running CUDA / MPI

7

 Run no more than one MPI process per GPU.

 On sooner, this means each cuda node should be running no 

more than 2 MPI processes.

 On Sooner, these cards can be reserved by using:

#BSUB -R "select[cuda > 0]“

#BSUB -R "rusage[cuda=2]“

in your .bsub file.


