Benchmarking and Tuning

Charlie Peck, Samuel Leeman-Munk
Intermediate Parallel Programming and Cluster Computing
@ University of Oklahoma OSCER
August, 2010

Please copy the accompanying materials from ~leemasa/tuning
cp -r ~leemasa/tuning ~
Efficiency
• Time

• Resources
 - CPU
 - Memory
 - Disk
 - Network
Benchmarking – Measuring
Tuning – Optimizing
First-level Benchmarking

- time (/usr/bin/time -p)
- vmstat
- iostat
- top
Detailed Benchmarking

- printf() (Fortran: PRINT)
- gprof
- getrusage() (Fortran: CPU_TIME)
- Performance counters (C: PAPI)

Fortran CPU_TIME information
http://gcc.gnu.org/onlinedocs/gcc-4.0.4/gfortran/CPU_005fTIME.html
Tuning

- Resource limits
- Compiler choice (gcc, icc)
- Compiler optimizations (-O,-funroll-loops)

RECONSIDER THE ALGORITHM
MPI Tuning

- Network port contention
- Communication vs. Computation
- Load Balancing
MPI Tuning

- Network port contention
- Communication vs. Computation
- Load Balancing
Parallel Benchmarking with PetaKit

• Equip C source with pkit.h
 • See instructions in stats/README
 • Fortran users must code output manually
Running PetaKit

- perl stat.pl
- --cl
 'mpirun.lsf /home/<username>/tuning/area-mpi \
- s $problem_size'
- --problem_size 10000000000 --cores 1-8
- --ppn 8
- --scheduler lsf --database text --queue normal