

Overview

● What are community packages?

● Who installs what?

● How to compile and install?

– Dependency hell

● Setup at FSU RCC

– Where to install?

● Using RPMs vs regular install

– Getting RPMs

– How to build an RPM

● Automated package building

– EasyBuild

– Spack

What are community packages?

● Libraries

– Scalapack (linear algebra routines)

– SuperLU (solving sparse matrices)

● Languages

– Python (2 and 3)

– R (several versions per year)

– Julia (relatively new yet powerful)

● Software packages

– LAMMPS (molecular dynamics simulation)

– TopHat (RNA sequencing)

Who Installs What?

● Two policies

– Administrators install the basics and users install packages on
their home directories

● Cluster maintenance is relatively simple
● User support could become complicated

– Support staff install packages system-wide for users
● Cluster upgrades and maintenance is complicated
● Eliminates most package install and version related issues

How to compile and install?

● configure/cmake, make, make install
– Most packages install this way

– Best if only had to do once

– cmake offers many configuration options

– May need lot of researching (Google) to find best options

● Binaries from the developer

– No need to compile

– Library version incompatibilities (eg: boost)

– Only use if source is not available

● Use RPMs (on RHEL and CentOS)

Dependency hell

Setup at FSU RCC

● FSU RCC manages 550 custom packages

– 171 R packages (mostly bioconductor)

– Only install basic Python packages and Python 3
● Users can install Python packages in their home directories via

virtualenv (pip installs dependencies automatically)

● All packages are installed via RPMs

– Few exceptions for very large packages installed on parallel file
system (eg: orca)

● Only support the packages we install

– WRF is widely used but managed by users and we respond to
support requests

Using RPMs vs regular install

● Pros

– No need to figure out how to install a package if a pre-built RPM
exists

– Self documenting

– Easy file lookup (using yum provides …)

– Easy up/downgrade to different versions (using yum)

– Clean uninstall

● Cons

– Need local disks on every node

● Best practices

– Local repo for custom built RPMs

– Minimal (clean) system for building RPMs

Getting RPMs

● Multiple sources

– Public repos (EPEL, fedora, rpmfusion, …)

– Some packages offer RPMs (eg: LAMMPS)

– Customize an existing source RPM

● Create a custom RPM

– Get the source

– Find the installation instructions

– Create a spec file

– Use rpmbuild to create the RPM

– Resulting source RPM contains the .spec file and all the source
files

– The RPM(s) preserve the install directory structure

How to build an RPM

Name: R2spec
Version: 4.2.1
Release: 11%{?dist}
Summary: Python script to generate R spec file

Group: Development/Languages
License: GPLv3+
URL: https://fedorahosted.org/r2spec/
Source0: https://fedorahosted.org/releases/r/2/r2spec/R2spec-%{version}.tar.gz
BuildRoot: %{_tmppath}/%{name}-%{version}-%{release}-root-%(%{__id_u} -n)

Requires: R python-jinja2 wget fedora-packager
Requires: python >= python-2.6 python-argparse >= python-argparse-1.2.1
Provides: R2rpm >= 1.0.0

%description
R2spec is a small python tool that generates spec file for R libraries.

● Need the package source and .spec file

How to build an RPM
%prep
%setup -q

%build
%{__python} setup.py build
sed -i '1i %%define Rver 3.4.0' r2spec/specfile.tpl
sed -i '2i %%define _prefix \/opt\/hpc\/R\/R-%{Rver}' r2spec/specfile.tpl
sed -i '3i %%define distnum %%(\/usr\/lib\/rpm\/redhat\/dist.sh --distnum)' r2spec/specfile.tpl
sed -i 's|%%{?dist}.*|%%{?dist}%%{distnum}3|' r2spec/specfile.tpl
sed -i 's|^Name: R-%%{packname}|Name: R-%%{Rver}-%%{packname}|' r2spec/specfile.tpl
sed -i '44i module purge;module load R/\%{Rver}' r2spec/specfile.tpl
sed -i '62,70d' r2spec/specfile.tpl
sed -i '62i %%{rlibdir}/%%{packname}/*' r2spec/specfile.tpl

%install
rm -rf %{buildroot}
%{__python} setup.py install --root=%{buildroot}
install r2spec/specfile.tpl %{buildroot}/%{python_sitelib}/r2spec/
chmod -x %{buildroot}/%{python_sitelib}/r2spec/specfile.tpl

%clean
rm -rf %{buildroot}

%files
%defattr(-,root,root,-)
%doc README LICENSE CHANGELOG
%{python_sitelib}/*
%config(noreplace) %{_sysconfdir}/%{name}/repos.cfg
%{_bindir}/%{name}
%{_bindir}/R2rpm
%{_mandir}/man1/%{name}.1.gz
%{_mandir}/man1/R2rpm.1.gz

Automated package building

● Dependencies make package building very tedious

● Fedora uses Koji RPM build system

– https://pagure.io/koji

– Used by CERN, Caltech, and, Amazon etc.

– Very complicated and less flexible

● RPM building process can be scripted in many cases

– R package RPM creation was completely automated
● Recursively download all dependencies
● R2spec package was used to create spec files for RPMs

– General RPM creation at FSU RCC was mostly automated
● Package source locations had to be manually supplied

https://pagure.io/koji

EasyBuild

● Automatic build and installation of (scientific) programs

● Flexible and configurable (build recipes)

● Automatic dependency resolution

● Module file generation, logging, archiving

● Good documentation, increasing community acceptance

● Relatively simple to set up and use when using defaults

● Due to its flexibility, more complicated to customize

● Best deployed as a fresh build-out

Spack

● Package management tool designed to support multiple
versions and configurations of software

● Designed for large HPC clusters

● Automatic installation of scientific packages through prebuilt
recipes

● Strong CLI support

● Different versions of packages can coexist

● Easy to integrate with existing systems

● Module files are auto generated (Tcl and LMOD)

Demo

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

