

Overview

- What are community packages?
- Who installs what?
- How to compile and install?
 - Dependency hell
- Setup at FSU RCC
 - Where to install?
- Using RPMs vs regular install
 - Getting RPMs
 - How to build an RPM
- Automated package building
 - EasyBuild
 - Spack

What are community packages?

- Libraries
 - Scalapack (linear algebra routines)
 - SuperLU (solving sparse matrices)
- Languages
 - Python (2 and 3)
 - R (several versions per year)
 - Julia (relatively new yet powerful)
- Software packages
 - LAMMPS (molecular dynamics simulation)
 - TopHat (RNA sequencing)

Who Installs What?

- Two policies
 - Administrators install the basics and users install packages on their home directories
 - Cluster maintenance is relatively simple
 - User support could become complicated
 - Support staff install packages system-wide for users
 - Cluster upgrades and maintenance is complicated
 - Eliminates most package install and version related issues

How to compile and install?

- configure/cmake, make, make install
 - Most packages install this way
 - Best if only had to do once
 - cmake offers many configuration options
 - May need lot of researching (Google) to find best options
- Binaries from the developer
 - No need to compile
 - Library version incompatibilities (eg: boost)
 - Only use if source is not available
- Use RPMs (on RHEL and CentOS)

Setup at FSU RCC

- FSU RCC manages 550 custom packages
 - 171 R packages (mostly bioconductor)
 - Only install basic Python packages and Python 3
 - Users can install Python packages in their home directories via virtualenv (pip installs dependencies automatically)
- All packages are installed via RPMs
 - Few exceptions for very large packages installed on parallel file system (eg: orca)
- Only support the packages we install
 - WRF is widely used but managed by users and we respond to support requests

Where to install?

Using RPMs vs regular install

- Pros
 - No need to figure out how to install a package if a pre-built RPM exists
 - Self documenting
 - Easy file lookup (using yum provides ...)
 - Easy up/downgrade to different versions (using yum)
 - Clean uninstall
- Cons
 - Need local disks on every node
- Best practices
 - Local repo for custom built RPMs
 - Minimal (clean) system for building RPMs

Getting RPMs

- Multiple sources
 - Public repos (EPEL, fedora, rpmfusion, ...)
 - Some packages offer RPMs (eg: LAMMPS)
 - Customize an existing source RPM
- Create a custom RPM
 - Get the source
 - Find the installation instructions
 - Create a spec file
 - Use rpmbuild to create the RPM
 - Resulting source RPM contains the .spec file and all the source files
 - The RPM(s) preserve the install directory structure

How to build an RPM

• Need the package source and .spec file

Name:	R2spec
Version:	4.2.1
Release:	11%{?dist}
Summary:	Python script to generate R spec file
Group:	Development/Languages
License:	GPLv3+
URL:	https://fedorahosted.org/r2spec/
Source0:	https://fedorahosted.org/releases/r/2/r2spec/R2spec-%{version}.tar.gz
BuildRoot:	%{_tmppath}/%{name}-%{version}-%{release}-root-%(%{id_u} -n)
Requires:	R python-jinja2 wget fedora-packager
Requires:	python >= python-2.6 python-argparse >= python-argparse-1.2.1
Provides:	R2rpm >= 1.0.0

%description

R2spec is a small python tool that generates spec file for R libraries.

How to build an RPM

%prep %setup -q

```
%install
rm -rf %{buildroot}
%{__python} setup.py install --root=%{buildroot}
install r2spec/specfile.tpl %{buildroot}/%{python_sitelib}/r2spec/
chmod -x %{buildroot}/%{python_sitelib}/r2spec/specfile.tpl
```

```
%clean
rm -rf %{buildroot}
```

```
%files
%defattr(-,root,root,-)
%doc README LICENSE CHANGELOG
%{python_sitelib}/*
%config(noreplace) %{_sysconfdir}/%{name}/repos.cfg
%{_bindir}/%{name}
%{_bindir}/R2rpm
%{_mandir}/man1/%{name}.1.gz
%{_mandir}/man1/R2rpm.1.gz
```


Automated package building

- Dependencies make package building very tedious
- Fedora uses Koji RPM build system
 - https://pagure.io/koji
 - Used by CERN, Caltech, and, Amazon etc.
 - Very complicated and less flexible
- RPM building process can be scripted in many cases
 - R package RPM creation was completely automated
 - Recursively download all dependencies
 - R2spec package was used to create spec files for RPMs
 - General RPM creation at FSU RCC was mostly automated
 - Package source locations had to be manually supplied

EasyBuild

- Automatic build and installation of (scientific) programs
- Flexible and configurable (build recipes)
- Automatic dependency resolution
- Module file generation, logging, archiving
- Good documentation, increasing community acceptance
- Relatively simple to set up and use when using defaults
- Due to its flexibility, more complicated to customize
- Best deployed as a fresh build-out

Spack

- Package management tool designed to support multiple versions and configurations of software
- Designed for large HPC clusters
- Automatic installation of scientific packages through prebuilt recipes
- Strong CLI support
- Different versions of packages can coexist
- Easy to integrate with existing systems
- Module files are auto generated (Tcl and LMOD)

Demo