Numerical Weather Prediction Science and HPC at CAPS University of Oklahoma

Keith Brewster, PhD Senior Research Scientist and CAPS Associate Director <u>kbrewster@ou.edu</u>

> Advanced Cyberinfrastructure Research & Education Facilitators Virtual Residency 2017 31-July-2017

The UNIV

AHOMA

CAPS Introduction

Center for Analysis and Prediction of Storms

• <u>History</u>:

- Established 1989 as
 - NSF Science and Technology Center
- A leader in convective-scale data assimilation and numerical weather prediction (NWP)

• <u>People:</u>

- 2 Primary Faculty, ~10 Affiliated
- o 7 Research scientists
- 15 Graduate students & Post-Docs
- 2 Administrative & IT support staff

• Research:

- ~50 publications per year (author or co-author)
- ~ \$3 million supported research per year

CAPS Research Areas

The UNIVERSITY of OKLAHOMA

Current US Severe Weather Warning Paradigm Warnings are a natural culmination of weather information generated and distributed over a period of several days... Convective Outlook: Day 2 Convective Outlook: Day 1 Convective Outlook: Day 3 Possible Tornado **SPC Watch** developing warning.... 1-6 hours tornado Tornado WFO Warning Watch 15 mins **1810 UTC** Tornado Watch # 191 - Valid from 110

CAPS Research-to-Operations (R20)

Hazardous Weather Testbed (HWT)

- Collaboration with NOAA Storm Prediction Center, NSSL, Aviation Weather Center, others
- 2015 2017: 3-km CONUS Forecast Ensembles
- Probabilistic NWP for Severe Weather : 0-2.5 Day Forecasts

Probability of Storm Tops > 35 kft 24h Forecast

Storm-Scale Ensemble Forecasts

- Weather Research and Forecasting Model (WRF)
 - Community model developed with goal of having researchers and operational forecasting based on same model framework
 - Finite Difference Model on a staggered grid
 - Fortran 90
 - MPI via Domain Decomposition
 - Different flavors of the core developed (ARW and NMM)
 - Multiple options for sub-grid parameterizations
- CAPS Perl-based job control
- CAPS Observation Analysis Programs (ARPS-based)
- Ensemble: Multiple runs with different initial conditions, core and/or sub-grid parameterizations

Workflow (Readers Digest Version)

2016 CAPS SSEF for HWT Highlights

Storm Scale Ensemble Forecasts (SSEF)

- 18 April 2016 through 3 June 2016
- 3-km horizontal grid spacing (ARW: 1680×1152; NMMB: 1568x1120)
- WRF version 3.7.1 (coupled with ARPS v5.4)
- 1) 3DVAR SSEF: 18 ARW members, 6 NMMB members, initiated with 3DVAR analysis & Cloud/Hydrometeor Analysis at 0000 UTC, with 36- to 60-h forecast, running on Stampede at TACCTACC
- 2) GSI+EnKF SSEF: 40-member storm-scale ensemble background, a 5-hour GSI+EnKF hourly cycling and 1-hour EnKF radar data at 15 min interval, and a 9-member ensemble forecast starting at 0000 UTC. Running on Darter at NICS
- 3D Visualization demonstration (VAPOR)

Supported by NWS CSTAR & HWT grants and NSF XSEDE computing resources

The UNIVERSITY of OKLAHOMA

2016 CAPS SSEF for HWT Computing

- 1) 3DVAR SSEF: Stampede at TACC 686 nodes/10096 cores Dell C8220 running CentOS Each Node: Intel E5 Sandy Bridge (Dual 8-core processor) MIC Co-processor
- 2) GSI+EnKF SSEF: Darter at NICS 360 nodes/5760 physical cores/11520 hyperthreaded Cray XC30 running CLE 5.2 Each Node: Intel E5 Sandy Bridge (dual 8-core processor)
- 3D Visualization demonstration (VAPOR)
 Data merge and segment on Stampede TACC on single node Transfer: Internet-2 and Oklahoma Friction-Free Research Network Visualization production on Intel Core-i7 Laptop

Supported by NWS CSTAR & HWT grants and NSF XSEDE computing resources

U2017 CAPS SSEF for HWT Computing

- 1) 3DVAR SSEF: Lonestar-5 at TACC 483 Nodes Cray XC40 Aries Dragonfly Interconnect Each Node: Intel E5 Haswell (dual 12-core processor)
- 3D Visualization demonstration (VAPOR)
 Data merge and segment on Lonestar-5 TACC on single node
 Transfer: Internet-2 and Oklahoma Friction-Free Research Network
 Visualization production on Intel Core-i7 Laptop

Supported by NWS CSTAR & HWT grants and TACC computing resources

Extreme Science and Engineering Discovery Environment

AHOMA

The UNIVE

UNIVERSITY & OKLAHOM

			PBL	LSM	Microphy	Radar data	BC	IC	Member
	ן	Thompson Noah MYJ		yes	00Z NAMf	00Z ARPSa	arw_cn		
			YSU	Noah	Р3	yes	21Z SREF arw-p1	arw_cn + arw-p1_pert	arw_m3
•••			MYNN	Noah	MY	yes	21Z SREF arw-n1	arw_cn + arw-n1_pert	arw_m4
20			MYJ	Noah	Morrison	yes	21Z SREF arw-p2	arw_cn + arw-p2_pert	arw_m5
ARW			YSU	Noah	Р3	yes	21Z SREF arw-n2	arw_cn + arw-n2_pert	arw_m6
,			MYNN	Noah	MY	yes	21Z SREF nmmb-p1	arw_cn + nmmb-p1_pert	arw_m7
			YSU	Noah	Morrison	yes	21Z SREF nmmb-n1	arw_cn + nmmb-n1_pert	arw_m8
			МҮЈ	Noah	Р3	yes	21Z SREF nmmb-p2	arw_cn + nmmb-p2 pert	arw_m9
		•	MYNN	Noah	Thompson	yes	21Z SREF nmmb-n2	arw_cn + nmmb-n2_pert	arw_m10
	ĺ			Noah	Thompson	yes	21Z SREF arw-p1	arw_cn + arw-p1 pert	arw_m11
			MYJ	Noah	Thompson	yes	21Z SREF arw-n1	arw_cn + arw-n1 pert	arw_m12
			MYJ	Noah	Thompson	yes	21Z SREF arw-p2	arw_cn + arw-p2 pert	arw_m13
			MYJ	Noah	Thompson	yes	21Z SREF arw-n2	arw_cn + arw-n2 pert	arw_m14
ARW	<u> </u>		MYJ	Noah	Thompson	yes	21Z SREF arw-p3	arw_cn + arw-p3 pert	arw_m15
			MYJ	Noah	Thompson	yes	21Z SREF nmmb-p1	arw_cn + nmmb-p1_pert	arw_m16
	mber	me	МҮЈ	Noah	Thompson	yes	21Z SREF nmmb-n1	arw_cn + nmmb-n1_pert	arw_m17
007			МҮЈ	Noah	Thompson	yes	21Z SREF nmmb-p2	arw_cn + nmmb-p2_pert	arw_m18
002	nb_cn		МҮЈ	Noah	Thompson	yes	21Z SREF nmmb-n2	arw_cn + nmmb-n2_pert	arw_m19
00Z	nb_m1	nmr							
00Z I nmmt	mb_m2	nmr	_	6)	ЛМВ (6	NN			
00Z I nmmb	nb_m3	nmr							
00Z I nmmb	nb_m4	nmr							
00Z]	nb_m5_	nmr							

2016 CAPS SSEF Ensemble Members

ARW mixed (9)

ARW	sing	le-phys	(9)
-----	------	---------	-----

_	member	IC	BC	Radar data	mp_phy	lw_phy	sw-phy	sf_phy
	nmmb_cn	00Z ARPSa	00Z NAMf	yes	Ferrier- Aligo	GFDL	GFDL	Noah
	nmmb_m1	00Z NAMa+ arw-p3_pert	21Z SREF arw-p3	no	Ferrier- Aligo	GFDL	GFDL	Noah
	nmmb_m2	00Z NAMa+ nmmb-p1_pert	21Z SREF nmmb-p1	no	Ferrier- Aligo	GFDL	GFDL	Noah
	nmmb_m3	00Z NAMa+ nmmb-n1_pert	21Z SREF nmmb-n1	no	Ferrier- Aligo	GFDL	GFDL	Noah
	nmmb_m4	00Z NAMa+ nmmb-p2_pert	21Z SREF nmmb-p2	no	Ferrier- Aligo	GFDL	GFDL	Noah
			21Z SREF nmmb-n2	no	Ferrier- 	ERGFPLf O	KL GFD MA	Noah

20 May 2013 Moore Tornado - 20h forecast

Sample SSEF Ensemble Products

15-May-2017

Probability SuperCell Composite > 3

Ensemble Max Sfc Wind Speed

ETS of 1-hourly QPF (mixed ARW)

FV3 Overview

- FV3 Finite-Volume Cubed Sphere <u>https://www.gfdl.noaa.gov/fv3/</u>
- Developed at NOAA Geophysical Fluid Dynamics Lab (Princeton, NJ) by former CAPS Post-Doc, S.J. Lin
- Chosen as the NWS "Next Generation Global Prediction System"
- Plan: Blend global-scale prediction and regional prediction
- Cubed-sphere grid (with stretching and nesting capabilities)
- No specialized data assimilation yet (initialized from T1534 GFS analysis)
- A stand-alone regional model is a work in progress (limited by human resources)

VFV3 CONUS grid configuration

- Global grid spacing: 13 km avg (9 km on CONUS face)
- Nest grid spacing: 3 km avg
- CAPS Added Thompson Microphysics Scheme

CAPS FV3 Computing

- OSCER Schooner
 - Intel Xeon Haswell w/Infiniband Interconnect
 - Each node: Dual 10-Core processors
- 1920 Cores over 112-115 Nodes
- 9 Hours wallclock time for 5-day forecast
- First Operational Runs of FV3 Outside NOAA!
- Many thanks to OSCER Staff for making this possible!

Preliminary Impressions

- GFDL Microphysics has a low-reflectivity bias
- Thompson Scheme seems better in that regard
- Model has trouble developing convection in weakly-forced regimes (possible consequence of the GFS PBL scheme?)
- Model sometimes evolves convection too quickly (as in the 5 April example)

Visualization Experimentation

- VAPOR from NCAR
- 3D subsection of 4 selected members extracted
- Visualization domain is 600 km x 600 km
- 6-minute time resolution 18h-30h
- Python functions installed for variables such as Updraft Helicity
- Sample results for each day posted to web: <u>http://www.caps.ou.edu/~kbrews/hwt_2017/</u>

CAPS Research-to-Operations

Hydrometeorology Testbed

- Collaboration with NOAA Weather Prediction Center & others
- 2016-2017: 3-km CONUS Forecast Ensembles
- Probabilistic NWP for Flash Flood Guidance 1-60 hours

<u>CAPS</u>

2016 CAPS SSEF for HMT Highlights

Storm Scale Ensemble Forecasts (SSEF)

- 20 June 1 July ; 11 22 July (4 weeks)
- 3-km horizontal grid spacing (1680×1152)
- WRF version 3.7.1 (coupled with ARPS v5.3.6)
- 3DVAR SSEF, 15-member: 13 ARW members, 2 NMMB members initiated with 3DVAR analysis & Complex Cloud/Hydrometeor Analysis at 0000 UTC, with 60-h forecast

Supported by NWS CSTAR & HMT grants and NSF XSEDE computing resources

4016 CAPS SSEF for HMT Computing

First 2 weeks on Darter at NICS
 388 nodes/5488 physical cores/10976 hyperthreaded

Second 2 weeks on Stampede at TACC TACC
 528 nodes/7968 cores

Supported by NWS CSTAR & HMT grants and NSF XSEDE computing resources

$\mathbf{\cap}$	Member	IC	BC	Rad dat	dar Mic ita		rophy	LSM		PBL		
	arw_cn	00Z ARPSa	00Z NAMf	ye	s	Tho	npson	Noah		MYJ		
	arw_m2	arw_cn + arw-p1_pert	21Z SREF arw-p1	ye	S	Mo	rrison	Noah	Ν	MYNN		
_	arw_m3	arw_cn + arw-n1_pert	21Z SREF arw-n1	yes	8	N	ſΥ	Noah	N	MYNN		
	arw_m4	arw_cn + arw-p2_pert	21Z SREF arw-p2	ye	s	Mo	rrison	Noah		MYJ		
	arw_m5	arw_cn + arw-n2_pert	21Z SREF arw-n2	ye	s	Tho	npson	Noah		YSU		
	arw_m6	arw_cn + nmmb-p1_pert	21Z SREF nmmb-p1	ye	s	N	ſΥ	Noah	N	MYNN		
ARW	arw_m7	arw_cn + nmmb-n1_pert	21Z SREF nmmb-n1	ye	s	Mo	rrison	Noah		YSU		
	arw_m8	arw_cn + nmmb-p2_pert	21Z SREF nmmb-p2	ye	s	Morrison		Noah		MYJ		
	arw_m9	arw_cn + nmmb-n2_pert	21Z SREF nmmb-n2	ye	s	Thompson		Noah	N	MYNN		
	arw_m10	00Z ARPSa	00Z NAMf	ye	s	1	23	Noah		MYJ		
	arw_m11	00Z ARPSa	00Z NAMf	yes	s Morris		rrison	Noah		MYJ		
	arw_m12	00Z ARPSa	00Z NAMf	ye	s	N	4Y	Noah		MYJ		
	arw_m13	arw_cn + arw-n2_pert	21Z SREF arw-n2	yes	8	Tho	npson	Noah		MYJ		
	member	IC	BC	Radar data	mp_pł	ny	lw_phy	sw-ph	ny	sf_phy		
NMMB	nmmb_cn	00Z ARPSa	00Z NAMf	yes	Ferrie Aligo	r-	GFDL	GFD	L	Noah		
	nmmb_m 1	00Z NAMa+ arw-p3_pert	21Z SREF arw-p3	no	Ferrie Aligo	r-	GFDL	GFD	L	Noah		
								Th	be UN	IVERSITY	of OKLAHOMA -	_

West Virginia Flash Floods

- 23-24 June 2016
- Max Gauge 9.37 inches (238 mm) at Maxwelton, WV
- Elk River all time high 33.37 ft
- 23 Fatalities
 15 in Greenbrier Co.
- 44 of 55 WV counties placed in state of emergency

24-h Precip 00Z June 23 - 00Z June 24

12-h Precip 12Z June 23 - 00Z June 24

12-h Precip 12Z June 23 - 00Z June 24

250.

200.

75.

50.

25.

20.

15.

10.

5.

2.

0.25

0.10

0.01

100. 90.

80,

70.

60.

50.

40.

30. 20*.*

10.

San Marallin

T=172800.0 s (48:00:00) 00:00Z Fri 24 Jun 2016 00:00Z Fri 24 Jun 2016 T=86400.0 s (24:00:00) 250. 200. 75. 50. 40N 25. 40N 20. 15. 10. 2 5. 30N 30N 2, 0.25 QPE ΈΜ 0.10 0.01 201 201 110W 100W 90W 80W 110W 100W 90W 80W 00:00Z Fri 24 Jun 2016 T=86400.0 s (24:00:00) 00:00Z Fri 24 Jun 2016 T=86400.0 s (24:00:00) 100. 90. 80, 70. 40N 40N 60. 1 1 50. 40. 30N 30N 30. 20. QPF ≥ 12h FFG OPF > 10. 20N 201 110W 100W 100W 90W 80W 110W 90W 80W

Observation Summary

Conventional Observations	Non-Conventional Observations
ASOS	EarthNetworks (WxBug)
AWOS	CWOP
	GST MoPED
	Oklahoma & W Texas Mesonets
S-band WSR-88D Radars	X-band Radars
	C-band TDWR Radars
Radiosondes	SODARs
	Radiometers

Surface Observations

WxBUG & CWOP

al & Non-conventional Observations

The UNIVERSITY of OKLAHOMA

Dec 2015 Operational Computing

OSCER Boomer Xeon64 Oct-core SandyBridge 2.0 GHz

- Analyses at 400 m Resolution Dedicated Queue
 - 3DVAR and Cloud Analysis
 - Sfc, Profilers, VAD, Radar Wind and Reflectivity
 - 5-minute Interval
 - 400-m grid spacing Grid Size 448 x 456 x 28
 - Processors: 8 x 24 = 192
 - Obs Processing & Analysis Wallclock ~8 min
- Assimilation/Forecasts On-Demand
 - 3DVAR and ARPS with 10-min IAU
 - Sfc, Profilers, VAD, Radar Wind and Reflectivity Assimilation
 - 2-hour Forward Forecast
 - 15 minute interval
 - 1-km grid spacing Grid Size 363 x 323 x 53
 - Processors: 12 x 16 = 192
 - Obs Processing + Analysis + Forecast Wallclock ~20-25 min

D/FW Metro Tornado Tracks, 26 Dec 2015

AUO-m ∆x Analysis

400-m Grid Scale Analyses

Research: Running OSE's to determine data impacts

1-km ∆x Forecast

1-km Grid Resolution 2-hour Forecast

SUPERCOMPUTING CENT SUPERC

- The UNIVERSITY of OKLAHOMA

UCASA 2.0 Summary/Future Plans

- Realtime Data Analyses and Forecasts Operating with Low Latency
- Updated Hydrometeor Retrieval for Multiple Microphysics Schemes
- 2017: Implemented 2-Moment Microphysics on OSCER Schooner
- Thanks to CASA Colleagues from UMass, CSU, NCTCoG, and OSCER Staff
- Funded by NWS National Mesonet Program, NOAA OS&T

Fine Scale Prediction Challenges

• Data Latency

Many legacy observation and communications systems built for 12-h or 1-h data cycles.

• Data Quantity vs Quality Many new data sources but must handle non-optimal siting, non-independent errors, etc.

Poor Man's Ensembles

A well designed ensemble has dozens of members. Due to CPU limitations some operational systems today attempting ensembles with fewer than 10 and/or using time-lagged members.

HPC Challenges

- Multiple Hardware Platforms
 Each Platform has unique features, compiler options.
 - Some help from community when using community software
 - Using cutting-edge computing sometimes means we are the beta-testers or even alpha testers
 - Research computing resources not ideally suited for real-time quasi-operational forecast experiments, but we have gotten good support

• NWP Utilization of Co-processors Limited

- Domain decomposition is most often used for MPI.
- Mixed results from combining MPI and OpenMP directives
- Too much memory swapping and inter-processor communications required by mathematics of Navier-Stokes equations.

Q

HPC Challenges

• All Steps Contribute to Latency

Model system must finish before the weather.

- Includes observation data receipt and pre-processing
- Post-processing steps: graphics and ensemble statistics
- Transmission to end-users
 - Science DMZs help, but connection to NOAA a challenge

Education

- Fortran not taught to undergraduates
- Recent grad students more experienced with MATLAB and Python

Our Focus is Science, but HPC Details Need to be Addressed

- MPI and optimization of code not normally supported by research grants.
- MPI code often difficult to debug

AHOMA

The UNIV

For more information...

CAPS Real-Time Forecasts and Ensemble Products Online: <u>http://forecast.ou.edu</u>

Contact Info: <u>kbrewster@ou.edu</u> 405-325-6115

<u>CAPS</u>

AHOMA