Exploring OpenDaylight

younkinsm(@ou.edu

Presenter
Presentation Notes
Advanced Cyberinfrastructure Research & Education Facilitator
(ACI-REF) Virtual Residency Summer Workshop 2015

SDN, NFV and OpenDaylight

New Revenue

Service Agility
Orchestration, Automation and MANO

Virtualization and Abstraction Layer

Lower Cost

Presenter
Presentation Notes

Software Defined Networking (SDN) separates the control plane from the data plane within the network, allowing the intelligence and state of the network to be managed centrally while abstracting the complexity of the underlying physical network. Great strides have been made within the industry toward this goal with standardized protocols such as OpenFlow. However, greater collaboration leveraging open source development best practices will significantly accelerate real, deployable solutions for the industry at large.

Similarly, by evolving network services from an appliance model to one that leverages virtual compute, storage, and networking, Network Functions Virtualization (NFV) promises to drastically improve both the agility of when and where to run network functions as well as the cost structure of doing so.

SDN and NFV are a new way of deploying network infrastructure. A software-defined network adapts to the requirements of applications deployed on the network. Current generation networks and architectures are statically configured and vertically integrated. New generation applications such as Hadoop, video delivery, and virtualized network functions require networks to be agile and to flexibly adapt to application requirements.

Why SDN?

I
. - @ g s ® e

* New architecture with separate @:2@ &9 .

Control and Data planes Enterprise apps o o o s
* Open Programmable Networks

APIs
and APIS Software-Defined Network (SDN)
. Platform

® NCW buSIHeSS mOdels and revenue Open protocols with enablement for proprietary extensions

opportunities

* Efficiency in both capital and
operational expenses

Focus Area
for OpenDaylight

Physical Network

Presenter
Presentation Notes

http://go.linuxfoundation.org/l/6342/2015-05-29/2fy2s9/6342/126488/OpenDaylight_Briefing_Deck_052815.pptx

SDN Architecture Characteristics

* Directly programmable

* Agile

* Centrally managed

* Programmatically configure

* Open standards-based and vendor-neutral

Presenter
Presentation Notes
https://www.opennetworking.org/sdn-resources/sdn-definition

Directly programmable: Network control is directly programmable because it is decoupled from forwarding functions.
Agile: Abstracting control from forwarding lets administrators dynamically adjust network-wide traffic flow to meet changing needs.
Centrally managed: Network intelligence is (logically) centralized in software-based SDN controllers that maintain a global view of the network, which appears to applications and policy engines as a single, logical switch.
Programmatically configured: SDN lets network managers configure, manage, secure, and optimize network resources very quickly via dynamic, automated SDN programs, which they can write themselves because the programs do not depend on proprietary software.
Open standards-based and vendor-neutral: When implemented through open standards, SDN simplifies network design and operation because instructions are provided by SDN controllers instead of multiple, vendor-specific devices and protocols.

.

SDN Overview

SDN application

SDN application

SDN northbound interfaces (NBls)

A-CPI: Application-controller plane interface

SDN controller

D-CPI: Data-controller plane interface

Network

SDN southbound interface

Network

element

Network
element

element

Application layer
Application plane

Control layer
Controller plane

Infrastructure layer
Data plane

Presenter
Presentation Notes
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN_ARCH_1.0_06062014.pdf

Page 13

What 1s OpenDaylight?

* Open soutce project

* Modular, pluggable, and flexible controller at its core

* Implemented strictly in software
* Contained within its own Java Virtual Machine (JVM)

* Deployable on any hardware and OS that supports Java

Who is in OpenDaylight Project?

PLATINUM MEMBERS

BROCADE = CIsSCO.
I=s: JuniPer

1

GOLD MEMBERS

NEC wvmware

_— —

SILVER MEMBERS

COWND Ao
Covieyiinew Coriants
guavus H3C
KEMP .

LOAD BALANCERS i

& prumg % QOSMOS

CiTRIX

B® Microsoft

-— ——

nuagenetworks

_— o

I radware

— ——

—_— —

@ redrat

ARISTA

-_— —

= Extr\e:rm_ﬁ

—_— C—

“infinera

VERSA

NETWOREKSD

-_— ——

z,

AVAYA ciena

—_— —

o)
FLEXNTRONICS 3 FUI ITSU

—_— C—

necvee (intel)

—_— — e —_—

rantHESN PLEKI

—_— o

LTE®

Presenter
Presentation Notes
http://www.opendaylight.org/project/members

http://go.linuxfoundation.org/l/6342/2015-05-29/2fy2s9/6342/126488/OpenDaylight_Briefing_Deck_052815.pptx

Slide 11

Who makes products based on Open Daylight?

[

; - s AANRAL
ADVA AVAYA 03 clena Cpiuilh

o>
=’CYAN CONTEY(TREAM ’ = Extreme

ERICSSON
W

=LY

INOCYBE MERU” ORACLE

.|'I

Presenter
Presentation Notes

http://go.linuxfoundation.org/l/6342/2015-05-29/2fy2s9/6342/126488/OpenDaylight_Briefing_Deck_052815.pptx

Slide 13

OPEN

Base Network
L2 Switch

\Y K¢,
OpenFlow Stats Manager

OpenFlow Switch Manager

Topology Processing

OpenFlow

[1.0] [1.3] 1T

OpenFlow Enabled
Devices

DAY LIGHT

N —————

4t Release “Beryllium”
Production-Ready Open SDN Platform

Graphical User Interface Application and Toolkit (DLUX / NeXT UI)

AAA AuthN Filter

OpenDaylight APIs REST/RESTCONF/NETCONF/AMQP

Enhanced Network Services

D e

Network Abstractions
Policy/Intent
ALTO Protocol Manager
Group Based Policy Setvice

NEMO
Network Intent Composition

Additional Virtual &
Physical Devices

Controller Platform
Services/Applications

Southbound Interfaces &
Protocol Plugins

Data Plane Elements
(Virtual Switches, Physical
Device Interfaces)

Presenter
Presentation Notes
Lithium Diagram, July 2015

Is Opendaylight the only Open Source SDN
Controller Available?

Controllers
se-Cases

Trema |Mox/Pox |RYU Floodlight |ODL ONQS***
Metwork Virtualizaiton by Virtual Overlays |YES YES YES PARTIAL |YES NO
Hop-by-hop Network Virtualization NO NO MO YES YES YES
OpenStack Neutron Support NO NO YES YES YES NO
Legacy Network Interoperability NO NO NO NO YES PARTIAL
Service Insertion and Chaining NO NO PARTIAL [NO YES PARTIAL
Network Monitoring PARTIAL |PARTIAL [YES YES YES YES
Policy Enforcement NO NO NO PARTIAL |YES PARTIAL
Load Balandng NO NO NO NO YES NO
TrafficEngineering PARTIAL |PARTIAL [PARTIAL |PARTIAL |YES PARTIAL
Dynamic Network Taps NO NO YES YES YES NO
Multi-Layer Network Optimization NO NO NO NO PARTIAL [PARTIAL
Transport Networks - NV, Traffic-
Rerouting, Interconnecting DCs, etc. NO NO PARTIAL [NO FARTIAL [PARTIAL
Campus Networks PARTIAL |PARTIAL [PARTIAL |PARTIAL |PARTIAL [NO
Routing YES NO YES YES YES YES

OpenDaylight Tools and Paradigms

* Java interfaces
* for event listening, specifications and forming patterns

* Maven -

* Build and dependency management

* OSGt -

* Backend container framework that allows dynamically loading bundles

e Karaf -
e OSGi based runtime

Presenter
Presentation Notes
http://sdnhub.org/tutorials/opendaylight/

Service Abstraction Layer (SAL) is your friend for most development aspects.
Java interfaces:
used for event listening, specifications and forming patterns
main way in which specific bundles implement call-back functions for events and also to indicate awareness of specific state.
Maven
Maven uses pom.xml (Project Object Model for this bundle) to script the dependencies between bundles and also to describe what bundles to load on start.

OSGi: This framework in the backend of OpenDayLight allows dynamically loading bundles and packaged Jar files, and binding bundles together for information exchange.

Karaf: Karaf is a small OSGi based runtime which provides a lightweight container for loading different modules.

What 1s an Application Programming Interface
(API)?

* set of rules (‘code’) and specifications that software programs can
follow to communicate with each other.

What 1s a Representational State Transfer (REST)
API?

* A REST API is an API in a specific architectural style

* originally communicated by Roy Fielding in his doctoral dissertation
e http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

Presenter
Presentation Notes
The REST architectural style describes six constraints. These constraints, applied to the architecture, were originally communicated by Roy Fielding in his doctoral dissertation (see http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm)

What defines a ‘RESTftul’ API?

* SiX constraints
o Start with Null Style
e Client-Server
* Stateless (Server)
e Cache
e Uniform Interface

* Layered System

Presenter
Presentation Notes
see http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm) and defines the basis of RESTful-style.
The six constraints are: (click the constraint to read more)
Start with Null Style
an empty set of constraints
Client-Server
Stateless
Cache
Uniform Interface
Layered System

What distinguishes REST?

* Emphasis on uniform interface between components

* Four constraints
e identification of resources
* manipulation of resources through representations
* self-descriptive messages

* hypermedia as the engine of application state.

Presenter
Presentation Notes
see http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm) and defines the basis of RESTful-style.
Uniform Interface
identification of resources
manipulation of resources through representations
self-descriptive messages
hypermedia as the engine of application state.

From 5.1.5 Uniform Interface

“By applying the software engineering principle of generality to the component interface, the overall system architecture is simplified and the visibility of interactions is improved. Implementations are decoupled from the services they provide, which encourages independent evolvability. The trade-off, though, is that a uniform interface degrades efficiency, since information is transferred in a standardized form rather than one which is specific to an application's needs. The REST interface is designed to be efficient for large-grain hypermedia data transfer, optimizing for the common case of the Web, but resulting in an interface that is not optimal for other forms of architectural interaction. ”

Why a ‘RESTful’ API

* Principle of generality
* Simplifies overall system architecture
* Visibility of interactions improved

Presenter
Presentation Notes
see http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm) and defines the basis of RESTful-style.

From 5.1.5 Uniform Interface

“By applying the software engineering principle of generality to the component interface, the overall system architecture is simplified and the visibility of interactions is improved. Implementations are decoupled from the services they provide, which encourages independent evolvability. “

Questions? Thoughts?

Matt Younkins

younkinsm(@ou.edu

Extra Slides

Legend

AAA: Authentication, Authotization & Accounting
AuthIN: Authentication

BGP: Border Gateway Protocol

COPS: Common Open Policy Service

DLUX: OpenDaylight User Experience

DDoS: Distributed Denial Of Setvice

DOCSIS: Data Over Cable Service Interface Specification
FRM: Forwarding Rules Manager

GBP: Group Based Policy

LISP: Locator/Identifier Sepatation Protocol

OPEN
DAY LIGHT
“HELIUM”

VTN
Coordinator

OpenStac
k Neutron

DDoS
Protection

SDNI
Wrapper

AAA- AuthN Filter

OVSDB: Open vSwitch DataBase Protocol

PCEP: Path Computation Element Communication Protocol
PCMM: Packet Cable MultiMedia

Plugin20C: Plugin To OpenContrail

SDNI: SDN Interface (Cross-Controller Federation)

SFC: Service Function Chaining

SINBI: Secure Network Bootstrapping Infrastructure

SINMP: Simple Network Management Protocol

TTP: Table Type Patterns

VTN: Virtual Tenant Network

Network Applications
Orchestrations & Setvices

OpenDaylight APIs (REST)
f—________________\ OpenStack

Base Network Service Functions GBP @i DOCSIS
I Service Service Abstraction
FRM o SDNI
Tracker I VIN OVSDB Plugin20 LISP L2 S
/ Manager Neutron C Service Switch Agg : g

Service Abstraction Layer (SAL)

Switch
Manager

Topology
Manager

o = ey

k (Plugin Manager, Capability Abstractions, Flow Programming, Inventory, etc.))

GBP Renderets

Additional Virtual &
Physical Devices

OpenFlow

OpenFlow Enabled

. Open vSwitches
Devices 2

Controller Platform

Southbound Interfaces &

Protocol Plugins

Data Plane Elements
(Virtual Switches, Physical Device
Interfaces)

Presenter
Presentation Notes
Helium Diagram, October 2014

https://wiki.opendaylight.org/view/File:Helium-diagram.pptx

http://www.opendaylight.org/project/technical-overview

Network Apps & Orchestration: The top layer consists of business and network logic applications that control and monitor network behavior. In addition, more complex solution orchestration applications needed for cloud and NFV thread services together and engineer network traffic in accordance with the needs of those environments.
Controller Platform: The middle layer is the framework in which the SDN abstractions can manifest, providing a set of common APIs to the application layer (commonly referred to as the northbound interface) while implementing one or more protocols for command and control of the physical hardware within the network (typically referred to as the southbound interface).
Physical & Virtual Network Devices: The bottom layer consists of the physical & virtual devices, switches, routers, etc., that make up the connective fabric between all endpoints within the network.

What 1s Karaf?

* Small OSGi based runtime
* Lightweight container

* various components and applications can be deployed

Karaf

Console]

Logging][Deployer

Provisionning

Blueprint

Admin]

oSGl

Presenter
Presentation Notes
https://karaf.apache.org/

What 1s OSG1 (Open Service Gateway Initiative)?

* Java framework for developing and deploying modular software
programs and libraries

* Two components
* Specification for modular components called bundles
* Java Virtual Machine (JVM)-level service registry

Presenter
Presentation Notes
first part is a specification for modular components called bundles, which are commonly referred to as plug-ins. The specification defines an infrastructure for a bundle's life cycle and determines how bundles will interact. The second part of OSGi is a Java Virtual Machine (JVM)-level service registry that bundles can use to publish, discover and bind to services in a service-oriented architecture (SOA).

What are the drawbacks of REST?

* Uniform interface degrades efficiency

* information transferred in a standardized form rather than form specific to
an application's needs

Presenter
Presentation Notes
see http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm) and defines the basis of RESTful-style.

From 5.1.5 Uniform Interface

“… The trade-off, though, is that a uniform interface degrades efficiency, since information is transferred in a standardized form rather than one which is specific to an application's needs. The REST interface is designed to be efficient for large-grain hypermedia data transfer, optimizing for the common case of the Web, but resulting in an interface that is not optimal for other forms of architectural interaction. ”

	Exploring OpenDaylight
	SDN, NFV and OpenDaylight
	Why SDN?
	SDN Architecture Characteristics
	SDN Overview
	What is OpenDaylight?
	Who is in OpenDaylight Project?
	Who makes products based on Open Daylight?
	Slide Number 9
	Is Opendaylight the only Open Source SDN Controller Available?
	OpenDaylight Tools and Paradigms
	What is an Application Programming Interface (API)?
	What is a Representational State Transfer (REST) � API?
	What defines a ‘RESTful’ API?
	What distinguishes REST?
	Why a ‘RESTful’ API
	Questions? Thoughts?
	Extra Slides
	Slide Number 19
	What is Karaf?
	What is OSGi (Open Service Gateway Initiative)?
	What are the drawbacks of REST?

