
Exploring OpenDaylight
Matt Younkins
younkinsm@ou.edu

Presenter
Presentation Notes
Advanced Cyberinfrastructure Research & Education Facilitator
(ACI-REF) Virtual Residency Summer Workshop 2015

SDN, NFV and OpenDaylight

2

Open, Programmable APIs

Virtualization and Abstraction Layer

New Revenue

Lower Cost

SDN NFV

Orchestration, Automation and MANO
Service Agility

Presenter
Presentation Notes

Software Defined Networking (SDN) separates the control plane from the data plane within the network, allowing the intelligence and state of the network to be managed centrally while abstracting the complexity of the underlying physical network. Great strides have been made within the industry toward this goal with standardized protocols such as OpenFlow. However, greater collaboration leveraging open source development best practices will significantly accelerate real, deployable solutions for the industry at large.

Similarly, by evolving network services from an appliance model to one that leverages virtual compute, storage, and networking, Network Functions Virtualization (NFV) promises to drastically improve both the agility of when and where to run network functions as well as the cost structure of doing so.

SDN and NFV are a new way of deploying network infrastructure. A software-defined network adapts to the requirements of applications deployed on the network. Current generation networks and architectures are statically configured and vertically integrated. New generation applications such as Hadoop, video delivery, and virtualized network functions require networks to be agile and to flexibly adapt to application requirements.

Why SDN?

• New architecture with separate
Control and Data planes

• Open Programmable Networks
and APIs

• New business models and revenue
opportunities

• Efficiency in both capital and
operational expenses

Software-Defined Network (SDN)
Platform

APIs

Open protocols with enablement for proprietary extensions

Physical Network Physical Network

Enterprise apps
Security, load

balancing, etc. services

Focus Area
for OpenDaylight

Presenter
Presentation Notes

http://go.linuxfoundation.org/l/6342/2015-05-29/2fy2s9/6342/126488/OpenDaylight_Briefing_Deck_052815.pptx

SDN Architecture Characteristics

• Directly programmable
• Agile
• Centrally managed
• Programmatically configure
• Open standards-based and vendor-neutral

Presenter
Presentation Notes
https://www.opennetworking.org/sdn-resources/sdn-definition

Directly programmable: Network control is directly programmable because it is decoupled from forwarding functions.
Agile: Abstracting control from forwarding lets administrators dynamically adjust network-wide traffic flow to meet changing needs.
Centrally managed: Network intelligence is (logically) centralized in software-based SDN controllers that maintain a global view of the network, which appears to applications and policy engines as a single, logical switch.
Programmatically configured: SDN lets network managers configure, manage, secure, and optimize network resources very quickly via dynamic, automated SDN programs, which they can write themselves because the programs do not depend on proprietary software.
Open standards-based and vendor-neutral: When implemented through open standards, SDN simplifies network design and operation because instructions are provided by SDN controllers instead of multiple, vendor-specific devices and protocols.

SDN Overview

Presenter
Presentation Notes
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN_ARCH_1.0_06062014.pdf

Page 13

What is OpenDaylight?

• Open source project
• Modular, pluggable, and flexible controller at its core
• Implemented strictly in software

• Contained within its own Java Virtual Machine (JVM)
• Deployable on any hardware and OS that supports Java

Who is in OpenDaylight Project?

Continuous
Growth to 41
Members

Presenter
Presentation Notes
http://www.opendaylight.org/project/members

http://go.linuxfoundation.org/l/6342/2015-05-29/2fy2s9/6342/126488/OpenDaylight_Briefing_Deck_052815.pptx

Slide 11

Who makes products based on Open Daylight?

Presenter
Presentation Notes

http://go.linuxfoundation.org/l/6342/2015-05-29/2fy2s9/6342/126488/OpenDaylight_Briefing_Deck_052815.pptx

Slide 13

Service Abstraction Layer/Core

4th Release “Beryllium”
Production-Ready Open SDN Platform

OpenFlow Enabled
Devices Open vSwitches Additional Virtual &

Physical Devices

Data Plane Elements
(Virtual Switches, Physical

Device Interfaces)

Controller Platform
Services/Applications

OVSD
B

NETCO
NF

PCMM/
COPS

SNB
I

LIS
P BGP PCE

P
SNM

PSXP Southbound Interfaces &
Protocol Plugins

OpenFlow USCCAPWA
P

OPFLE
X

Base Network
Functions

OpenFlow Stats Manager

OpenFlow Switch Manager

OpenFlow Forwarding Rules
Mgr

L2 Switch

Host Tracker

Topology Processing

OpenDaylight APIs REST/RESTCONF/NETCONF/AMQP

Data Store (Config & Operational) Messaging (Notifications / RPCs)

LAC
P

AAA AuthN Filter

Network Abstractions
(Policy/Intent)

ALTO Protocol Manager

Network Intent Composition

Group Based Policy Service

Fabric as a Service

NEMO

Graphical User Interface Application and Toolkit (DLUX / NeXT UI)

IoT
Http/CoA

P

OF-
Config

Enhanced Network Services

AAA

Neutron Northbound

SDN Integration Aggregator

Time Series Data Repository

Service Function Chaining

Virtual Private Network

Virtual Tenant Network Mgr.

Unified Secure Channel Mgr

OVSDB Neutron
Dev Discovery, ID & Drvr

Mgmt

LISP Service

DOCSIS Abstraction

SNMP4SDN

Link Aggregation Ctl Protocol

Controller Shield

User Network Interface Mgr

Centinel – Streaming Data Hdlr NetIDE

Messaging 4Transport

Presenter
Presentation Notes
Lithium Diagram, July 2015

Is Opendaylight the only Open Source SDN
Controller Available?

OpenDaylight Tools and Paradigms

• Java interfaces
• for event listening, specifications and forming patterns

• Maven -
• Build and dependency management

• OSGi -
• Backend container framework that allows dynamically loading bundles

• Karaf -
• OSGi based runtime

Presenter
Presentation Notes
http://sdnhub.org/tutorials/opendaylight/

Service Abstraction Layer (SAL) is your friend for most development aspects.
Java interfaces:
used for event listening, specifications and forming patterns
main way in which specific bundles implement call-back functions for events and also to indicate awareness of specific state.
Maven
Maven uses pom.xml (Project Object Model for this bundle) to script the dependencies between bundles and also to describe what bundles to load on start.

OSGi: This framework in the backend of OpenDayLight allows dynamically loading bundles and packaged Jar files, and binding bundles together for information exchange.

Karaf: Karaf is a small OSGi based runtime which provides a lightweight container for loading different modules.

What is an Application Programming Interface
(API)?
• set of rules ('code') and specifications that software programs can

follow to communicate with each other.

What is a Representational State Transfer (REST)
API?

• A REST API is an API in a specific architectural style
• originally communicated by Roy Fielding in his doctoral dissertation

• http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

Presenter
Presentation Notes
The REST architectural style describes six constraints. These constraints, applied to the architecture, were originally communicated by Roy Fielding in his doctoral dissertation (see http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm)

What defines a ‘RESTful’ API?

• Six constraints
•Start with Null Style
•Client-Server
•Stateless (Server)
•Cache
•Uniform Interface
• Layered System

Presenter
Presentation Notes
see http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm) and defines the basis of RESTful-style.
The six constraints are: (click the constraint to read more)
Start with Null Style
an empty set of constraints
Client-Server
Stateless
Cache
Uniform Interface
Layered System

What distinguishes REST?

• Emphasis on uniform interface between components
•Four constraints

• identification of resources
• manipulation of resources through representations
• self-descriptive messages
• hypermedia as the engine of application state.

Presenter
Presentation Notes
see http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm) and defines the basis of RESTful-style.
Uniform Interface
identification of resources
manipulation of resources through representations
self-descriptive messages
hypermedia as the engine of application state.

From 5.1.5 Uniform Interface

“By applying the software engineering principle of generality to the component interface, the overall system architecture is simplified and the visibility of interactions is improved. Implementations are decoupled from the services they provide, which encourages independent evolvability. The trade-off, though, is that a uniform interface degrades efficiency, since information is transferred in a standardized form rather than one which is specific to an application's needs. The REST interface is designed to be efficient for large-grain hypermedia data transfer, optimizing for the common case of the Web, but resulting in an interface that is not optimal for other forms of architectural interaction. ”

Why a ‘RESTful’ API

• Principle of generality
• Simplifies overall system architecture
• Visibility of interactions improved

Presenter
Presentation Notes
see http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm) and defines the basis of RESTful-style.

From 5.1.5 Uniform Interface

“By applying the software engineering principle of generality to the component interface, the overall system architecture is simplified and the visibility of interactions is improved. Implementations are decoupled from the services they provide, which encourages independent evolvability. “

Questions? Thoughts?

Matt Younkins
younkinsm@ou.edu

Extra Slides

AAA: Authentication, Authorization & Accounting
AuthN: Authentication
BGP: Border Gateway Protocol
COPS: Common Open Policy Service
DLUX: OpenDaylight User Experience
DDoS: Distributed Denial Of Service
DOCSIS: Data Over Cable Service Interface Specification
FRM: Forwarding Rules Manager
GBP: Group Based Policy
LISP: Locator/Identifier Separation Protocol

OVSDB: Open vSwitch DataBase Protocol
PCEP: Path Computation Element Communication Protocol
PCMM: Packet Cable MultiMedia
Plugin2OC: Plugin To OpenContrail
SDNI: SDN Interface (Cross-Controller Federation)
SFC: Service Function Chaining
SNBI: Secure Network Bootstrapping Infrastructure
SNMP: Simple Network Management Protocol
TTP: Table Type Patterns
VTN: Virtual Tenant Network

Legend

“HELIUM”

AAA- AuthN Filter

OpenDaylight APIs (REST)

OpenFlow Enabled
Devices

DLUX VTN
Coordinator

OpenStac
k Neutron

SDNI
Wrapper

DDoS
Protection

Network Applications
Orchestrations & Services

Open vSwitches Additional Virtual &
Physical Devices

Data Plane Elements
(Virtual Switches, Physical Device

Interfaces)

Controller Platform

Topology
Manager

Stats
Manager

Switch
Manager FRM

Host
Tracker

Service Abstraction Layer (SAL)
(Plugin Manager, Capability Abstractions, Flow Programming, Inventory, etc.)

OpenStack
Service

GBP
Service

SCF AAA
DOCSIS

Abstraction

VTN
Manager

Plugin20
C

LISP
Service

L2
Switch

SDNI
Aggregato

r

Base Network Service Functions

OVSDB
Neutron

OVSD
B

NETCO
NF

PCMM
/COPS SNBI LISP BGP PCEP SNMP Plugin20C Southbound Interfaces &

Protocol Plugins

GBP Renderers

OpenFlow

Presenter
Presentation Notes
Helium Diagram, October 2014

https://wiki.opendaylight.org/view/File:Helium-diagram.pptx

http://www.opendaylight.org/project/technical-overview

Network Apps & Orchestration: The top layer consists of business and network logic applications that control and monitor network behavior. In addition, more complex solution orchestration applications needed for cloud and NFV thread services together and engineer network traffic in accordance with the needs of those environments.
Controller Platform: The middle layer is the framework in which the SDN abstractions can manifest, providing a set of common APIs to the application layer (commonly referred to as the northbound interface) while implementing one or more protocols for command and control of the physical hardware within the network (typically referred to as the southbound interface).
Physical & Virtual Network Devices: The bottom layer consists of the physical & virtual devices, switches, routers, etc., that make up the connective fabric between all endpoints within the network.

What is Karaf?

• Small OSGi based runtime
• Lightweight container

• various components and applications can be deployed

Presenter
Presentation Notes
https://karaf.apache.org/

What is OSGi (Open Service Gateway Initiative)?

• Java framework for developing and deploying modular software
programs and libraries

• Two components
• Specification for modular components called bundles
• Java Virtual Machine (JVM)-level service registry

Presenter
Presentation Notes
first part is a specification for modular components called bundles, which are commonly referred to as plug-ins. The specification defines an infrastructure for a bundle's life cycle and determines how bundles will interact. The second part of OSGi is a Java Virtual Machine (JVM)-level service registry that bundles can use to publish, discover and bind to services in a service-oriented architecture (SOA).

What are the drawbacks of REST?

• Uniform interface degrades efficiency
• information transferred in a standardized form rather than form specific to

an application's needs

Presenter
Presentation Notes
see http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm) and defines the basis of RESTful-style.

From 5.1.5 Uniform Interface

“… The trade-off, though, is that a uniform interface degrades efficiency, since information is transferred in a standardized form rather than one which is specific to an application's needs. The REST interface is designed to be efficient for large-grain hypermedia data transfer, optimizing for the common case of the Web, but resulting in an interface that is not optimal for other forms of architectural interaction. ”

	Exploring OpenDaylight
	SDN, NFV and OpenDaylight
	Why SDN?
	SDN Architecture Characteristics
	SDN Overview
	What is OpenDaylight?
	Who is in OpenDaylight Project?
	Who makes products based on Open Daylight?
	Slide Number 9
	Is Opendaylight the only Open Source SDN Controller Available?
	OpenDaylight Tools and Paradigms
	What is an Application Programming Interface (API)?
	What is a Representational State Transfer (REST) � API?
	What defines a ‘RESTful’ API?
	What distinguishes REST?
	Why a ‘RESTful’ API
	Questions? Thoughts?
	Extra Slides
	Slide Number 19
	What is Karaf?
	What is OSGi (Open Service Gateway Initiative)?
	What are the drawbacks of REST?

