Multi-Scale Spatiotemporal Mining of Atmospheric Data

Amy McGovern Schools of Computer Science and Meteorology amcgovern@ou.edu ©2010 John R. Leeman

Why?

Image from the Norman Transcript

Photo from Amy McGovern

Image Courtesy: New York Times

Goals

- 1. Fundamentally transform our understanding of the causes of high-impact weather
 - Tornadoes
 - Turbulence
 - Polar vortices
 - Hail
 - Severe wind
 - Thunderstorm initiation
 - Rainfall (floods, drought)
- 2. Improve the prediction and modeling of these events

Tornado prediction performance

Big weather data: Tornadoes

- 100 m horizontal resolution in center of nested grid
- Stretched vertical grid
- 1536 × 1536 × 99 ≈ 234 million model grid points
- Data saved at every grid point every 30 seconds of simulated time

Data Intensive Computing: Tornadoes

Simulations

- Run the simulation
- Post-process the simulation
- Data mining and visualization
 - Visualizations/Data verification
 - Vortex identification and extraction
 - Object identification and extraction
 - Generating metadata for data mining
 - Data mining

Simulation details

- Run the simulations:
 - Goal of 100 simulations
 - Requires a supercomputer!
 - 4.5 hours on 3600 cores (darter)
 - 6-8 hours on 1800 cores (schooner)
- Post-process the simulations
 - 1 hour, 128 cores (darter)
 - 1-2 hours, 4 cores (schooner)

Data Intensive Computing: Tornadoes

Simulations

- Run the simulation
- Post-process the simulation
- Data mining and visualization
 - Visualizations/Data verification
 - Vortex identification and extraction
 - Object identification and extraction
 - Generating metadata for data mining
 - Data mining

OSCER

Vortex identification and extraction

- Purpose: Identify the vortices to find the tornadoes and mesocylones
- Computational challenges:
 - Each process takes ~15 minutes
 - Primarily mathematical (gradient descent)
 - 17 vertical levels x 300 time steps x 3 parameter settings = 15300 independent jobs
 - IO bound:
 - Memory footprint fairly minimal
 - Reads in a LOT of netcdf files and outputs a LOT of small files

OSCER's solutions

 Vortex identification and extraction went from ~1 week of running time to a few hours

Consultation with Henry identified key inefficiencies

- Henry has identified key issues to fix in other steps as well
 In process of being implemented as we transition to schooner
- OSCER helped my students and I learn about HPC
 - Our simulations outgrew boomer so we looked to XSEDE
 - We are moving back to schooner to better share data within OU
 - OSCER continued to help us even when our work was on XSEDE machines

Research Outcomes

- Created unique set of supercell simulations
 - 252 storms at a 500 m horizontal resolution
 - ~60 storms (in progress) at 100 m horizontal resolution
 - Shared with researchers at OU and outside of OU
- Developed and applied unique spatiotemporal data mining methods to a wide variety of high-impact weather phenomena
 - NSF funded projects: CAREER, REU supplements
 - NSF pending projects: BIGDATA
 - Publications: 17 publications facilitated by HPC knowledge that wouldn't be possible without OSCER's help

Research Outcomes: Students

- OSCER has helped to train many of my MS and PhD students!
 - Now located at:
 - Amazon
 - National Center for Atmospheric Research (NCAR)
 - National Hurricane Center
 - Seagate
 - And more