
Deploying (community) codes

Martin Čuma
Center for High Performance Computing

University of Utah
m.cuma@utah.edu

8/2/2016 http://www.chpc.utah.edu Slide 2

Outline
• What codes our users need
• Prerequisites
• Who installs what?
• Community codes
• Commercial codes and licensing
• Building for multiple architectures
• Automatic building
• Application management

8/2/2016 http://www.chpc.utah.edu Slide 3

User program needs

• Community programs
– Free (sort of), written by scientists and engineers
– Varying level of support and stability
– There may support on commercial basis

• Commercial programs
– Sold as a product, have usage restrictions and/or licensing
– Generally offer support and stability

8/4/2016 http://www.chpc.utah.edu Slide 4

What programs are they?

• Community programs
– Numerical libraries (OpenBLAS, FFTW)
– Simulation programs (NAMD, NWChem, WRF, OpenFoam)
– Visualization programs (VisIt, Paraview)

• Commercial programs
– Numerical libraries (MKL, IMSL)
– Numerical analysis (Matlab, IDL, Mathematica)
– Chemistry/material science simulation (Gaussian, Schroedinger)
– Engineering simulation/CAE (Ansys, Abaqus, COMSOL,

StarCCM+)

8/2/2016 http://www.chpc.utah.edu Slide 5

Prerequisites

• Supported OS
– A necessity for binaries (even on Linux)
– Less strict for builds from source but helpful

• Compilers
– Most sources build with GNU, may get better performance with

commercial compilers (Intel, PGI)
• Software prerequisites (libraries the given code depends on)

– Additional system packages (e.g. rpms on RedHat/CentOS)
– Hand built libraries (e.g. MPI, FFTW, …)

8/2/2016 http://www.chpc.utah.edu Slide 6

Who installs what?

• Single user system
– Often have root, install themselves (or use --prefix)

• Multi user system
– Commonly used programs – user support installs
– Uncommon or experimental programs – steer users to install

themselves
• Special case – Python or R packages

– Include common packages to the build (numpy, SciPy,…)
– Instruct users to install themselves and use PYTHONPATH,

RLIBS (in ~/.Renviron), etc.

8/2/2016 http://www.chpc.utah.edu Slide 7

Installation location

• Local system
– Some system path (standard /usr/…, /opt) or user’s home

• Network file system
– Applications file system (e.g. NFS) mounted on all servers
– Need to use --prefix or other during installation
– No need for root
– Specific branch for each architecture (x86, power), and

potentially OS version (CentOS6, 7)

COMMUNITY CODES

8/2/2016 http://www.chpc.utah.edu Slide 8

8/2/2016 http://www.chpc.utah.edu Slide 9

Deployment options

• Binaries
– Many packages supply binaries for the given OS (CentOS), use

them, especially if they use graphics
• Build from source

– several configuration/build systems
• GNU autoconf (configure/make)
• CMAKE
• Scons

– Need to include dependencies if any

8/2/2016 http://www.chpc.utah.edu Slide 10

Source build workflow

• Get the source
– Ask the researcher, colleagues, or do web search

• Find out how to build it
– Untar and look for configure, cmake files, etc
– Read the documentation
– Do web search
– Beware of configuration options (configure –help)

• Decide what compiler and dependencies to use
– GNU for basic builds, Intel for better optimizations

COMMERCIAL CODES

8/2/2016 http://www.chpc.utah.edu Slide 11

8/2/2016 http://www.chpc.utah.edu Slide 12

Commercial licensing

• Pay and use w/o license manager (but enforcing license)
– VASP, Gaussian

• License manager
– Flexera FlexNet (formerly FlexLM) – used by most
– Extension to FlexNet (Ansys), other license tool (RLM, own provenience)

• License server setup
– Best external server, running one license daemon per lmgrd server
– Good candidate for VM as long as file system traffic is low

• External license servers
– NAT to access cluster private network
– Troubleshoot connectivity issues / firewall (lmutil lmstat, etc)

8/2/2016 http://www.chpc.utah.edu Slide 13

Commercial installation

• Modify makefile and build
– VASP, Gaussian

• Installers (text or GUI)
– Mostly straightforward installation
– Pay attention to where to enter license information

• Enter license.dat or license server info in the installer
• Copy license.dat to directory with the program

– Most FlexNet licenses have environment variable to specify license
info, e.g. MLM_LICENSE_FILE=12345@mylicense.u.edu

– If use 3 redundant servers, license must be specified by env. var.

BUILDING FOR MULTIPLE
ARCHITECTURES

8/2/2016 http://www.chpc.utah.edu Slide 14

8/2/2016 http://www.chpc.utah.edu Slide 15

CPU and network considerations

• Most institutions run several generations of CPU and network
– May have significant performance implications

• E.g. CPU vectorization instructions can quadruple FLOPS going from
SSE4.2 to AVX2 CPUs (3 tic-toc CPU architecture generations)

• What to do about it?
– Build for lowest common denominator

• Potentially significant performance implications
– Build separate optimized executable for each architecture

• Need to keep track of what executable to run where
– Build single executable using multi-architecture options

8/2/2016 http://www.chpc.utah.edu Slide 16

How can this be done?

• Some compilers allow to build multiple versions of objects
(functions) into a single executable
– Intel calls this “automatic CPU dispatch”

• Compiler flag –axCORE-AVX2,AVX,SSE4.2
– PGI calls this “unified binary”

• Compiler flag --tp=nehalem,sandybridge,haswell

• For multiple network types – use MPI that support multiple
network channels
– Most MPIs these days do – MPICH, OpenMPI, Intel MPI
– Network interface selected at runtime, usually via environment var.

8/2/2016 http://www.chpc.utah.edu Slide 17

Multi-arch executable strategies

• Link with optimized libraries
– Some vendors (Intel MKL) provide these
– Build yourself

• Build your application with the appropriate compiler flags/MPIs
• For details see

https://www.chpc.utah.edu/documentation/software/single-
executable.php

https://www.chpc.utah.edu/documentation/software/single-executable.php

AUTOMATIC BUILDING

8/2/2016 http://www.chpc.utah.edu Slide 18

8/2/2016 http://www.chpc.utah.edu Slide 19

Deployment strategies

• Occasional builds can be done manually
– keep old configure files/scripts

• Repetitive builds can be scripted
– MPIs, file libraries (NetCDF, HDF), FFTW

• Use build automation tools
– Some localized to a HPC center (Maali, Smithy, HeLMOD)
– Wider community – EasyBuild, Spack

8/2/2016 http://www.chpc.utah.edu Slide 20

EasyBuild and Spack

• EasyBuild seems to be more widely used and flexible
– Fairly easy to start and deploy if your cluster is “standard” and you

don’t care where the builds are stored
– Customization needs some learning curve, with flexibility comes

complexity
– Implementing over existing stack best done incrementally
– Good modules support

• Spack seems to be simpler to use but lacks hierarchical
module support (LMOD)

8/3/2016 http://www.chpc.utah.edu Slide 21

EasyBuild

• Automatic build and installation of (scientific) programs
• Flexible and configurable (build recipes)
• Automatic dependency resolution
• Module file generation, logging, archiving
• Good documentation, increasing community acceptance
• Relatively simple to set up and use when using defaults
• Due to its flexibility, more complicated to customize
• Probably best deployed as a fresh build-out

8/3/2016 http://www.chpc.utah.edu Slide 22

EasyBuild basic terminology

• EasyBuild framework
– Core functionality for EasyBuild

• Easyblock
– Python module, ‘plugin’ into EasyBuild framework
– implementation of software build and install procedure (generic or specific)

• Easyconfig (*.eb)
– specification file for building/installing a given package version

• Toolchain
– combination of compiler and additional packages that are needed to build

programs (compiler-MPI-numerical libraries)

The EasyBuild framework leverages easyblocks to
automatically build and install (scientific) software
using a particular compiler toolchain, as specified by
one or more easyconfig files.

8/3/2016 http://www.chpc.utah.edu Slide 23

EasyBuild basic functionality

• eb –list-easyblocks – lists available easyblocks
– |-- ConfigureMake
| |-- CMakeMake
| |-- EB_GROMACS

• eb –list-toolchains – lists available toolchains
– goolf: BLACS, FFTW, GCC, OpenBLAS, OpenMPI, ScaLAPACK

• eb –S pkgname – search for package easyconfig
– eb -S GROMACS
* $CFGS1/GROMACS-4.6.5-goolf-1.4.10-hybrid.eb

• eb pkgname -r –install package with dependencies (-r)

8/3/2016 http://www.chpc.utah.edu Slide 24

EasyBuild basic functionality

• eb pkgname -Dr – get an overview of a planned install
eb GROMACS-4.6.5-goolf-1.4.10-hybrid.eb –Dr
* [] $CFGS/g/GCC/GCC-4.7.2.eb (module: GCC/4.7.2)
* [] $CFGS/h/hwloc/hwloc-1.6.2-GCC-4.7.2.eb (module: hwloc/1.6.2-GCC-4.7.2)
* [] $CFGS/o/OpenMPI/OpenMPI-1.6.4-GCC-4.7.2.eb (module: OpenMPI/1.6.4-GCC-4.7.2)
* [] $CFGS/g/gompi/gompi-1.4.10.eb (module: gompi/1.4.10)

* [] $CFGS/o/OpenBLAS/OpenBLAS-0.2.6-gompi-1.4.10-LAPACK-3.4.2.eb (module: OpenBLAS/0.2.6-
gompi-1.4.10-LAPACK-3.4.2)

* [] $CFGS/f/FFTW/FFTW-3.3.3-gompi-1.4.10.eb (module: FFTW/3.3.3-gompi-1.4.10)

* [] $CFGS/s/ScaLAPACK/ScaLAPACK-2.0.2-gompi-1.4.10-OpenBLAS-0.2.6-LAPACK-3.4.2.eb (module:
ScaLAPACK/2.0.2-gompi-1.4.10-OpenBLAS-0.2.6-LAPACK-3.4.2)

* [] $CFGS/g/goolf/goolf-1.4.10.eb (module: goolf/1.4.10)

* [] $CFGS/n/ncurses/ncurses-5.9-goolf-1.4.10.eb (module: ncurses/5.9-goolf-1.4.10)

* [] $CFGS/c/CMake/CMake-2.8.12-goolf-1.4.10.eb (module: CMake/2.8.12-goolf-1.4.10)

* [] $CFGS/g/GROMACS/GROMACS-4.6.5-goolf-1.4.10-hybrid.eb (module: GROMACS/4.6.5-goolf-
1.4.10-hybrid)

APPLICATION MANAGEMENT

8/3/2016 http://www.chpc.utah.edu Slide 25

8/3/2016 http://www.chpc.utah.edu Slide 26

What is application management

• Location of the programs
– Usually mounted file server
– Every site has different directory structure

• Presenting programs to the users
– Shell init scripts

• Not flexible, need to log out to reset environment
– Environment modules
– Other environment management, e.g. Spack

8/3/2016 http://www.chpc.utah.edu Slide 27

Programs locations

• Things to keep in mind when designing directory structure
– Hierarchy/dependence of applications (Compiler – MPI)
– Source, build and installation preferably in unique location

• Some sites choose hierarchical structure
– Can lead to deep directory structure with a lot of empty/non-existing

directories
• EasyBuild uses mix of hierarchy and name/version

– Sources stored as name version (letter/name/version)
– Builds and installs stored hierarchically under toolchain

8/3/2016 http://www.chpc.utah.edu Slide 28

CHPC’s apps structure

• Separate directories for source, build, installation
– srcdir, builddir, installdir
– Only pristine source in srcdir – allows for reuse when building with different

compilers, MPIs, configure options, etc
• Subdirectories as package/version

– E.g. srcdir/mpich/3.2
• Hierarchy denoted with extensions to directory names

– E.g. built with PGI compilers, installdir/mpich/3.2p
• We generally don’t worry too much about compiler/MPI version as they

tend to be fairly backwards compatible
– Exceptions treated via module dependencies and specific directory names

8/3/2016 http://www.chpc.utah.edu Slide 29

Environment modules

• Allow user to load and unload program settings
– TCL based modules part of CentOS distro
– LMOD from TACC

• LMOD advantages
– 3 level hierarchy of modules (compiler – MPI – application)
– Usability enhancements (ml, +/-, save)
– Site customization options

• E.g. implementation to limit module loading to certain groups (licensees)
– Companion XALT package tracks module usage

DEMO

8/3/2016 http://www.chpc.utah.edu Slide 30

8/3/2016 http://www.chpc.utah.edu Slide 31

Source build example

• MIT Photonic Bands (MPB)
– Program to study photonic crystals
– http://ab-initio.mit.edu/wiki/index.php/MIT_Photonic_Bands
– Has a nice set of dependencies (BLAS, LAPACK, MPI, FFTW)

• Download the source
– wget http://ab-initio.mit.edu/mpb/mpb-1.5.tar.gz

• Decide how to build
– We want to optimize for highest performance – use Intel compilers

and libraries (module load intel impi)

http://ab-initio.mit.edu/wiki/index.php/MIT_Photonic_Bands

8/3/2016 http://www.chpc.utah.edu Slide 32

Source build example

• Build in /uufs/chpc.utah.edu/sys/builddir/mpb/1.5i
• Run configure –help to see the options
• Set up configure script – vi config.line

– I prefer to create a script with all the environment variables and configure
options

• Run configure script - ./config.line
• Run make
• Run make install
• There is no make test, so run own

– cd test2; ../mpb/mpb-mpi diamond.ctl

8/3/2016 http://www.chpc.utah.edu Slide 33

EasyBuild examples

• ml use /home/mcuma/temp/easybuild/modules/all
ml EasyBuild

• eb –list-easyblocks – lists available easyblocks
• eb –list-toolchains – lists available toolchains
• eb –S pkgname – search for package easyconfig
• eb pkgname -Dr – get an overview of a planned install

8/3/2016 http://www.chpc.utah.edu Slide 34

LMOD demo

• ml intel mpich2

• ml

• ml –intel pgi

• ml av
• ml spider

• ml show

	Deploying (community) codes
	Outline
	User program needs
	What programs are they?
	Prerequisites
	Who installs what?
	Installation location
	Community codes
	Deployment options
	Source build workflow
	Commercial codes
	Commercial licensing
	Commercial installation
	Building for multiple architectures
	CPU and network considerations
	How can this be done?
	Multi-arch executable strategies
	Automatic building
	Deployment strategies
	EasyBuild and Spack
	EasyBuild
	EasyBuild basic terminology
	EasyBuild basic functionality
	EasyBuild basic functionality
	Application management
	What is application management
	Programs locations
	CHPC’s apps structure
	Environment modules
	Demo
	Source build example
	Source build example
	EasyBuild examples
	LMOD demo

