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Outline
• What codes our users need
• Prerequisites
• Who installs what?
• Community codes
• Commercial codes and licensing
• Building for multiple architectures
• Automatic building
• Application management
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User program needs

• Community programs
– Free (sort of), written by scientists and engineers
– Varying level of support and stability
– There may support on commercial basis

• Commercial programs
– Sold as a product, have usage restrictions and/or licensing
– Generally offer support and stability



8/4/2016 http://www.chpc.utah.edu Slide 4

What programs are they?

• Community programs
– Numerical libraries (OpenBLAS, FFTW)
– Simulation programs (NAMD, NWChem, WRF, OpenFoam)
– Visualization programs (VisIt, Paraview)

• Commercial programs
– Numerical libraries (MKL, IMSL)
– Numerical analysis (Matlab, IDL, Mathematica)
– Chemistry/material science simulation (Gaussian, Schroedinger)
– Engineering simulation/CAE (Ansys, Abaqus, COMSOL, 

StarCCM+)
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Prerequisites

• Supported OS
– A necessity for binaries (even on Linux)
– Less strict for builds from source but helpful

• Compilers
– Most sources build with GNU, may get better performance with 

commercial compilers (Intel, PGI)
• Software prerequisites (libraries the given code depends on)

– Additional system packages (e.g. rpms on RedHat/CentOS)
– Hand built libraries (e.g. MPI, FFTW, …)



8/2/2016 http://www.chpc.utah.edu Slide 6

Who installs what?

• Single user system
– Often have root, install themselves (or use --prefix)

• Multi user system
– Commonly used programs – user support installs
– Uncommon or experimental programs – steer users to install 

themselves
• Special case – Python or R packages

– Include common packages to the build (numpy, SciPy,…)
– Instruct users to install themselves and use PYTHONPATH, 

RLIBS (in ~/.Renviron), etc.
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Installation location

• Local system
– Some system path (standard /usr/…, /opt) or user’s home

• Network file system
– Applications file system (e.g. NFS) mounted on all servers
– Need to use --prefix or other during installation
– No need for root
– Specific branch for each architecture (x86, power), and 

potentially OS version (CentOS6, 7)



COMMUNITY CODES
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Deployment options

• Binaries
– Many packages supply binaries for the given OS (CentOS), use 

them, especially if they use graphics
• Build from source

– several configuration/build systems
• GNU autoconf (configure/make)
• CMAKE
• Scons

– Need to include dependencies if any
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Source build workflow

• Get the source
– Ask the researcher, colleagues, or do web search

• Find out how to build it
– Untar and look for configure, cmake files, etc
– Read the documentation
– Do web search
– Beware of configuration options (configure –help)

• Decide what compiler and dependencies to use
– GNU for basic builds, Intel for better optimizations



COMMERCIAL CODES
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Commercial licensing

• Pay and use w/o license manager (but enforcing license)
– VASP, Gaussian

• License manager 
– Flexera FlexNet (formerly FlexLM) – used by most
– Extension to FlexNet (Ansys), other license tool (RLM, own provenience)

• License server setup
– Best external server, running one license daemon per lmgrd server
– Good candidate for VM as long as file system traffic is low

• External license servers
– NAT to access cluster private network
– Troubleshoot connectivity issues / firewall (lmutil lmstat, etc)
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Commercial installation

• Modify makefile and build
– VASP, Gaussian

• Installers (text or GUI)
– Mostly straightforward installation
– Pay attention to where to enter license information

• Enter license.dat or license server info in the installer
• Copy license.dat to directory with the program

– Most FlexNet licenses have environment variable to specify license 
info, e.g. MLM_LICENSE_FILE=12345@mylicense.u.edu

– If use 3 redundant servers, license must be specified by env. var.



BUILDING FOR MULTIPLE 
ARCHITECTURES
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CPU and network considerations

• Most institutions run several generations of CPU and network
– May have significant performance implications

• E.g. CPU vectorization instructions can quadruple FLOPS going from 
SSE4.2 to AVX2 CPUs (3 tic-toc CPU architecture generations)

• What to do about it?
– Build for lowest common denominator

• Potentially significant performance implications
– Build separate optimized executable for each architecture

• Need to keep track of what executable to run where
– Build single executable using multi-architecture options
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How can this be done?

• Some compilers allow to build multiple versions of objects 
(functions) into a single executable
– Intel calls this “automatic CPU dispatch”

• Compiler flag –axCORE-AVX2,AVX,SSE4.2
– PGI calls this “unified binary”

• Compiler flag --tp=nehalem,sandybridge,haswell

• For multiple network types – use MPI that support multiple 
network channels
– Most MPIs these days do – MPICH, OpenMPI, Intel MPI
– Network interface selected at runtime, usually via environment var.
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Multi-arch executable strategies

• Link with optimized libraries
– Some vendors (Intel MKL) provide these
– Build yourself

• Build your application with the appropriate compiler flags/MPIs
• For details see

https://www.chpc.utah.edu/documentation/software/single-
executable.php

https://www.chpc.utah.edu/documentation/software/single-executable.php


AUTOMATIC BUILDING
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Deployment strategies

• Occasional builds can be done manually
– keep old configure files/scripts 

• Repetitive builds can be scripted
– MPIs, file libraries (NetCDF, HDF), FFTW

• Use build automation tools
– Some localized to a HPC center (Maali, Smithy, HeLMOD)
– Wider community – EasyBuild, Spack
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EasyBuild and Spack

• EasyBuild seems to be more widely used and flexible
– Fairly easy to start and deploy if your cluster is “standard” and you 

don’t care where the builds are stored
– Customization needs some learning curve, with flexibility comes 

complexity
– Implementing over existing stack best done incrementally
– Good modules support

• Spack seems to be simpler to use but lacks hierarchical 
module support (LMOD)
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EasyBuild

• Automatic build and installation of (scientific) programs
• Flexible and configurable (build recipes)
• Automatic dependency resolution
• Module file generation, logging, archiving
• Good documentation, increasing community acceptance
• Relatively simple to set up and use when using defaults
• Due to its flexibility, more complicated to customize
• Probably best deployed as a fresh build-out
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EasyBuild basic terminology

• EasyBuild framework
– Core functionality for EasyBuild

• Easyblock
– Python module, ‘plugin’ into EasyBuild framework
– implementation of software build and install procedure (generic or specific)

• Easyconfig (*.eb)
– specification file for building/installing a given package version

• Toolchain 
– combination of compiler and additional packages that are needed to build 

programs (compiler-MPI-numerical libraries)

The EasyBuild framework leverages easyblocks to 
automatically build and install (scientific) software 
using a particular compiler toolchain, as specified by 
one or more easyconfig files. 
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EasyBuild basic functionality

• eb –list-easyblocks – lists available easyblocks
– |-- ConfigureMake
|   |-- CMakeMake
|   |-- EB_GROMACS

• eb –list-toolchains – lists available toolchains
– goolf: BLACS, FFTW, GCC, OpenBLAS, OpenMPI, ScaLAPACK

• eb –S pkgname – search for package easyconfig
– eb -S GROMACS
* $CFGS1/GROMACS-4.6.5-goolf-1.4.10-hybrid.eb

• eb pkgname -r –install package with dependencies (-r)
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EasyBuild basic functionality

• eb pkgname -Dr – get an overview of a planned install
eb GROMACS-4.6.5-goolf-1.4.10-hybrid.eb –Dr
* [ ] $CFGS/g/GCC/GCC-4.7.2.eb (module: GCC/4.7.2)
* [ ] $CFGS/h/hwloc/hwloc-1.6.2-GCC-4.7.2.eb (module: hwloc/1.6.2-GCC-4.7.2)
* [ ] $CFGS/o/OpenMPI/OpenMPI-1.6.4-GCC-4.7.2.eb (module: OpenMPI/1.6.4-GCC-4.7.2)
* [ ] $CFGS/g/gompi/gompi-1.4.10.eb (module: gompi/1.4.10)

* [ ] $CFGS/o/OpenBLAS/OpenBLAS-0.2.6-gompi-1.4.10-LAPACK-3.4.2.eb (module: OpenBLAS/0.2.6-
gompi-1.4.10-LAPACK-3.4.2)

* [ ] $CFGS/f/FFTW/FFTW-3.3.3-gompi-1.4.10.eb (module: FFTW/3.3.3-gompi-1.4.10)

* [ ] $CFGS/s/ScaLAPACK/ScaLAPACK-2.0.2-gompi-1.4.10-OpenBLAS-0.2.6-LAPACK-3.4.2.eb (module: 
ScaLAPACK/2.0.2-gompi-1.4.10-OpenBLAS-0.2.6-LAPACK-3.4.2)

* [ ] $CFGS/g/goolf/goolf-1.4.10.eb (module: goolf/1.4.10)

* [ ] $CFGS/n/ncurses/ncurses-5.9-goolf-1.4.10.eb (module: ncurses/5.9-goolf-1.4.10)

* [ ] $CFGS/c/CMake/CMake-2.8.12-goolf-1.4.10.eb (module: CMake/2.8.12-goolf-1.4.10)

* [ ] $CFGS/g/GROMACS/GROMACS-4.6.5-goolf-1.4.10-hybrid.eb (module: GROMACS/4.6.5-goolf-
1.4.10-hybrid)



APPLICATION MANAGEMENT
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What is application management

• Location of the programs
– Usually mounted file server 
– Every site has different directory structure

• Presenting programs to the users
– Shell init scripts

• Not flexible, need to log out to reset environment
– Environment modules
– Other environment management, e.g. Spack
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Programs locations

• Things to keep in mind when designing directory structure
– Hierarchy/dependence of applications (Compiler – MPI)
– Source, build and installation preferably in unique location

• Some sites choose hierarchical structure
– Can lead to deep directory structure with a lot of empty/non-existing 

directories
• EasyBuild uses mix of hierarchy and name/version

– Sources stored as name version (letter/name/version)
– Builds and installs stored hierarchically under toolchain
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CHPC’s apps structure

• Separate directories for source, build, installation
– srcdir, builddir, installdir
– Only pristine source in srcdir – allows for reuse when building with different 

compilers, MPIs, configure options, etc
• Subdirectories as package/version

– E.g. srcdir/mpich/3.2
• Hierarchy denoted with extensions to directory names

– E.g. built with PGI compilers, installdir/mpich/3.2p
• We generally don’t worry too much about compiler/MPI version as they 

tend to be fairly backwards compatible
– Exceptions treated via module dependencies and specific directory names
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Environment modules

• Allow user to load and unload program settings
– TCL based modules part of CentOS distro
– LMOD from TACC 

• LMOD advantages
– 3 level hierarchy of modules (compiler – MPI – application)
– Usability enhancements (ml, +/-, save)
– Site customization options

• E.g. implementation to limit module loading to certain groups (licensees)
– Companion XALT package tracks module usage



DEMO
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Source build example

• MIT Photonic Bands (MPB)
– Program to study photonic crystals
– http://ab-initio.mit.edu/wiki/index.php/MIT_Photonic_Bands
– Has a nice set of dependencies (BLAS, LAPACK, MPI, FFTW)

• Download the source
– wget http://ab-initio.mit.edu/mpb/mpb-1.5.tar.gz

• Decide how to build 
– We want to optimize for highest performance – use Intel compilers 

and libraries (module load intel impi)

http://ab-initio.mit.edu/wiki/index.php/MIT_Photonic_Bands
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Source build example

• Build in /uufs/chpc.utah.edu/sys/builddir/mpb/1.5i
• Run configure –help to see the options
• Set up configure script – vi config.line

– I prefer to create a script with all the environment variables and configure 
options

• Run configure script - ./config.line
• Run make
• Run make install
• There is no make test, so run own 

– cd test2; ../mpb/mpb-mpi diamond.ctl
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EasyBuild examples

• ml use /home/mcuma/temp/easybuild/modules/all
ml EasyBuild

• eb –list-easyblocks – lists available easyblocks
• eb –list-toolchains – lists available toolchains
• eb –S pkgname – search for package easyconfig
• eb pkgname -Dr – get an overview of a planned install
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LMOD demo

• ml intel mpich2

• ml 

• ml –intel pgi

• ml av
• ml spider 

• ml show
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