
Debugging, benchmarking, tuning
i.e. software development tools

Martin Čuma
Center for High Performance Computing

University of Utah
m.cuma@utah.edu

8/5/2016 http://www.chpc.utah.edu Slide 2

SW development tools
• Development environments
• Compilers
• Version control
• Debuggers
• Profilers
• Runtime monitoring
• Benchmarking

PROGRAMMING TOOLS

8/5/2016 http://www.chpc.utah.edu Slide 3

8/1/2016 http://www.chpc.utah.edu Slide 4

Program editing

• Text editors
– vim, emacs, atom

• IDEs
– Visual *, Eclipse

8/1/2016 http://www.chpc.utah.edu Slide 5

Compilers

• Open source
– GNU
– Open64, clang

• Commercial
– Intel
– Portland Group (PGI, owned by Nvidia)
– Vendors (IBM XL, Cray)
– Others (Absoft, CAPS, PathScale)

8/2/2016 http://www.chpc.utah.edu Slide 6

Language support

• Languages
– C/C++ - GNU, Intel, PGI
– Fortran – GNU, Intel, PGI

• Interpreters
– Matlab – has its own ecosystem
– Java – reasonable ecosystem, not so popular in HPC, popular in

HTC
– Python – attempts to have its own ecosystem, some tools can

plug into Python (e.g. Intel VTune)

8/1/2016 http://www.chpc.utah.edu Slide 7

Language/library support

• Language extensions
– OpenMP (4.0+*) – GNU, Intel*, PGI
– OpenACC – PGI, GNU very experimental
– CUDA – Nvidia GCC, PGI Fortran

• Libraries
– Intel Math Kernel Library (MKL)
– PGI packages open source (OpenBLAS?).

Version control

• Copies of programs
– Good enough for simple code and quick tests/changes

• Version control software
– Allow code merging, branching, etc
– Essential for collaborative development
– RCS, CVS, SVN
– Git – integrated web services, free for open source, can run

own server for private code

8/1/2016 http://www.chpc.utah.edu Slide 8

DEBUGGING

8/1/2016 http://www.chpc.utah.edu Slide 9

8/1/2016 http://www.chpc.utah.edu Slide 10

Program errors

• Crashes
– Segmentation faults (bad memory access)

• often writes core file – snapshot of memory at the time of the crash
– Wrong I/O (missing files)
– Hardware failures

• Incorrect results
– Reasonable but incorrect results
– NaNs – not a numbers – division by 0, …

8/1/2016 http://www.chpc.utah.edu Slide 11

write/printf

• Write variables of interest into the stdout or file
• Simplest but cumbersome

– Need to recompile and rerun
– Need to browse through

potentially large output

8/1/2016 http://www.chpc.utah.edu Slide 12

Terminal debuggers

• Text only, e.g. gdb, idb
• Need to remember commands or their abbreviations
• Need to know lines in the code

(or have it opened in other
window)

• Useful for quick code checking
on compute nodes and core
dump analysis

8/1/2016 http://www.chpc.utah.edu Slide 13

GUI debuggers

• Have graphical user interface
• Some free, mostly commercial
• Eclipse CDT (C/C++ Development Tooling), PTP (Parallel

Tools Platform) - free
• PGI’s pdbg – part of PGI compiler suite
• Intel development tools
• Rogue Wave Totalview - commercial
• Allinea DDT - commercial

8/1/2016 http://www.chpc.utah.edu Slide 14

Totalview and DDT

• The only real alternative for parallel or accelerator
debugging

• Cost a lot of money (thousands of $), but, worth it
• We have Totalview license (for historical reasons), 32

tokens enough for our needs (renewal ~$1500/yr).
• XSEDE systems have DDT.

8/1/2016 http://www.chpc.utah.edu Slide 15

How to use Totalview

1. Compile binary with debugging information
 flag -g

gcc –g test.f –o test

2. Load module and run Totalview
module load totalview

 TV + executable
totalview executable

 TV + core file
totalview executable core_file

 Run TV and choose what to debug in a startup dialog
totalview

Presenter
Presentation Notes
also, there are numerous flags that enable TV customized startup – refer to the user’s manual

8/1/2016 http://www.chpc.utah.edu Slide 16

Totalview windows

Presenter
Presentation Notes
root – displays what processes are running + access to global menu items
process – most commonly used window – go over it in more detail later
variable – inspection and modification of variables

8/1/2016 http://www.chpc.utah.edu Slide 17

DDT screenshot

8/1/2016 http://www.chpc.utah.edu Slide 18

Debugger basic
operations

• Data examination
 view data in the variable windows
 change the values of variables
 modify display of the variables
 visualize data
• Action points
• breakpoints and barriers (static or conditional)
• watchpoints
• evaluation of expressions

8/1/2016 http://www.chpc.utah.edu Slide 19

Multiprocess debugging

• Automatic attachment of child processes
• Create process groups
• Share breakpoints among processes
• Process barrier breakpoints
• Process group single-stepping
• View variables across procs/threads
• Display MPI message queue state

8/2/2016 http://www.chpc.utah.edu Slide 20

Additional Totalview tools

• Memoryscape
– Dynamic memory debugging tool

• Replay Engine
– Allows to reversely debug the code

• Accelerator debugging
– CUDA and OpenACC

8/5/2016 http://www.chpc.utah.edu Slide 21

Code checkers
• Compilers check for syntax errors

– lint based tools
– Runtime checks through compiler flags (-fbounds-check,

-check*, -Mbounds)
• DDT has a built in syntax checker

– Matlab does too
• Memory checking tools - many errors are due to bad

memory management
– valgrind – easy to use, many false positives
– Intel Inspector – intuitive GUI

8/1/2016 http://www.chpc.utah.edu Slide 22

Intel software development
products

• We have a 2 concurrent user license
– One license locks all the tools
– Cost ~$2000/year

• Tools for all stages of development
– Compilers and libraries
– Verification tools
– Profilers

• More info
https://software.intel.com/en-us/intel-parallel-studio-xe

8/1/2016 http://www.chpc.utah.edu Slide 23

Intel Inspector

• Thread checking
– Data races and deadlocks

• Memory checker
– Like leaks or corruption
– Good alternative to Totalview MemoryScape

• Standalone or GUI integration
• More info
http://software.intel.com/en-us/intel-inspector-xe/

8/1/2016 http://www.chpc.utah.edu Slide 24

Intel Inspector
• Source the environment

module load inspectorxe

• Compile with –tcheck -g
ifort -openmp -tcheck -g trap.f

• Run tcheck
inspxe-gui – graphical user interface
inspxe-cl – command line

• Tutorial
https://software.intel.com/en-us/articles/inspectorxe-tutorials

8/1/2016 http://www.chpc.utah.edu Slide 25

Intel Trace Analyzer and
Collector

• MPI profiler and correctness checker
• Detects violations of MPI standard

and errors in execution environment
• To use correctness checker

module load intel impi itac
setenv VT_CHECK_TRACING 0
mpirun –check-mpi –n 4 ./myApp

• ITAC documentation
https://software.intel.com/en-us/intel-trace-analyzer-

support/documentation

PROFILING

8/1/2016 http://www.chpc.utah.edu Slide 26

8/1/2016 http://www.chpc.utah.edu Slide 27

Why to profile

• Evaluate performance

• Find the performance bottlenecks
– Inefficient programming
– Memory or I/O bottlenecks
– Parallel scaling

Program runtime

• Time program runtime
– get an idea on time to run and parallel scaling

• Many programs include
benchmark problems
– Some also accessible via

“make test”
• Consider scripts, especially if

doing parallel performance
evaluation

8/1/2016 http://www.chpc.utah.edu Slide 28

8/1/2016 http://www.chpc.utah.edu Slide 29

Profiling categories

• Hardware counters
– count events from CPU perspective (# of flops, memory loads, etc)
– usually need Linux kernel module installed (>2.6.31 has it)

• Statistical profilers (sampling)
– interrupt program at given intervals to find what routine/line the

program is in
• Event based profilers (tracing)

– collect information on each function call

Hardware counters
• CPUs include counters to count important events

– Flops, instructions, cache/memory access
– Access through kernel or PAPI (Performance Application

Programming Interface)
• Tools to analyze the counters

– perf - hardware counter collection,
part of Linux

– oprofile – profiler + hw counters
– Intel VTune

• Drawback – harder to analyze
the profiling results (exc. VTune)

8/2/2016 http://www.chpc.utah.edu Slide 30

Serial profiling

• Discover inefficient programming
• Computer architecture slowdowns
• Compiler optimizations evaluation
• gprof
• Compiler vendor supplied (e.g.

pgprof, nvvp)
• Intel tools on serial programs

– AdvisorXE, VTune

8/1/2016 http://www.chpc.utah.edu Slide 31

Presenter
Presentation Notes
Pgprof profiles CPU and GPU
Intel tools feature workflows for ease of use.

HPC open source tools

• HPC Toolkit
– A few years old, did not find it as straightforward to use

• TAU (Tuning and Analysis Utilities)
– Lots of features, which makes the learning curve slow

• Scalasca
– Developed by European consortium, did not try yet

8/1/2016 http://www.chpc.utah.edu Slide 32

Intel tools
• Intel Parallel Studio XE 2016 Cluster Edition

– Compilers (C/C++, Fortran)
– Math library (MKL)
– Threading library (TBB)
– Thread design and prototype (Advisor)
– Memory and thread debugging (Inspector)
– Profiler (VTune Amplifier)
– MPI library (Intel MPI)
– MPI analyzer and profiler (ITAC)

8/1/2016 http://www.chpc.utah.edu Slide 33

8/1/2016 http://www.chpc.utah.edu Slide 34

Intel VTune Amplifier

• Serial and parallel profiler
– Multicore support for OpenMP and OpenCL on CPUs, GPUs and

Xeon Phi
• Quick identification of performance bottlenecks

– Various analyses and points of view in the GUI
– Makes choice of analysis and results inspection easier

• GUI and command line use
• More info
https://software.intel.com/en-us/intel-vtune-amplifier-xe

8/1/2016 http://www.chpc.utah.edu Slide 35

Intel VTune Amplifier

• Source the environment
module load vtune

• Run VTune
amplxe-gui – GUI
amplxe-cl – CLI
Can be used also for remote
profiling (e.g. on Xeon Phi)

• Tuning guides for specific
architectures

https://software.intel.com/en-us/articles/processor-specific-
performance-analysis-papers

8/1/2016 http://www.chpc.utah.edu Slide 36

Intel Advisor

• Vectorization advisor
– Identify loops that benefit from vectorization, what is

blocking efficient vectorization and explore benefit of data
reorganization

• Thread design and prototyping
– Analyze, design, tune and check threading design without

disrupting normal development
• More info
http://software.intel.com/en-us/intel-advisor-xe/

8/1/2016 http://www.chpc.utah.edu Slide 37

Intel Advisor
• Source the environment

module load advisorxe

• Run Advisor
advixe-gui – GUI
advixe-cl – CLI

• Create project and
choose appropriate
modeling

• Getting started guide
https://software.intel.com/en-us/get-started-with-advisor

8/1/2016 http://www.chpc.utah.edu Slide 38

Intel Trace Analyzer
and Collector

• MPI profiler
– traces MPI code
– identifies communication

inefficiencies
• Collector collects the data

and Analyzer visualizes them
• More info
https://software.intel.com/en-us/intel-trace-analyzer

8/1/2016 http://www.chpc.utah.edu Slide 39

Intel TAC

• Source the environment
module load itac

• Using Intel compilers, can
compile with –trace

mpiifort -openmp –trace trap.f

• Run MPI code
mpirun –trace –n 4 ./a.out

• Run visualizer
traceanalyzer a.out.stf &

• Getting started guide
https://software.intel.com/en-us/get-started-with-itac-for-linux

RUNTIME MONITORING

8/2/2016 http://www.chpc.utah.edu Slide 40

8/2/2016 http://www.chpc.utah.edu Slide 41

Why runtime monitoring?

• Make sure program is running right
– Hardware problems
– Correct parallel mapping / process affinity

• Careful about overhead

8/2/2016 http://www.chpc.utah.edu Slide 42

Runtime monitoring

• Self checking
– ssh to node(s), run “top”, or look at “sar” logs
– SLURM (or other scheduler) logs and statistics

• Tools
– XDMoD – XSEDE Metrics on Demand (through

SUPReMM module)
– REMORA - REsource MOnitoring for Remote Applications

BENCHMARKING

8/2/2016 http://www.chpc.utah.edu Slide 43

8/2/2016 http://www.chpc.utah.edu Slide 44

Why to benchmark?

• Evaluate system’s performance
– Testing new hardware

• Verify correct hardware and software installation
– New cluster/node deployment

• There are tools for cluster checking (Intel Cluster Checker, cluster
distros, …)

– Checking newly built programs
• Sometimes we leave this to the users

8/2/2016 http://www.chpc.utah.edu Slide 45

New system evaluation

• Simple synthetic benchmarks
– FLOPS, STREAM

• Synthetic benchmarks
– HPL – High Performance Linpack – dense linear algebra

problems – cache friendly
– HPCC – HPC Challenge Benchmark – collection of dense,

sparse and other (FFT) benchmarks
– NPB – NAS Parallel Benchmarks – mesh based solvers –

OpenMP, MPI, OpenACC implementations

8/2/2016 http://www.chpc.utah.edu Slide 46

New system evaluation

• Real applications benchmarks
– Depend on local usage
– Gaussian, VASP
– Amber, LAMMPS, NAMD, Gromacs
– ANSYS, Abaqus, StarCCM+
– Own codes

• Script if possible
– A lot of combinations of test cases vs. number of MPI

tasks/OpenMP cores

8/2/2016 http://www.chpc.utah.edu Slide 47

Cluster deployment

• Whole cluster
– Some vendors have cluster verification tools
– We have a set of scripts that run basic checks and HPL at

the end
• New cluster nodes

– Verify received hardware configuration, then rack
– Basic system tests (node health check)
– HPL – get expected performance per node (CPU or

memory issues), or across more nodes (network issues)

BACKUP

8/2/2016 http://www.chpc.utah.edu Slide 48

8/2/2016 http://www.chpc.utah.edu Slide 49

Demos

• Totalview
• Advisor
• Inspector
• VTune

	Debugging, benchmarking, tuning�i.e. software development tools
	SW development tools
	Programming tools
	Program editing
	Compilers
	Language support
	Language/library support
	Version control
	Debugging
	Program errors
	write/printf
	Terminal debuggers
	GUI debuggers
	Totalview and DDT
	How to use Totalview
	Totalview windows
	DDT screenshot
	Debugger basic� operations
	Multiprocess debugging
	Additional Totalview tools
	Code checkers
	Intel software development products
	Intel Inspector
	Intel Inspector
	Intel Trace Analyzer and Collector
	Profiling
	Why to profile
	Program runtime
	Profiling categories
	Hardware counters
	Serial profiling
	HPC open source tools
	Intel tools
	Intel VTune Amplifier
	Intel VTune Amplifier
	Intel Advisor
	Intel Advisor
	Intel Trace Analyzer and Collector
	Intel TAC
	Runtime monitoring
	Why runtime monitoring?
	Runtime monitoring
	BENCHMARKing
	Why to benchmark?
	New system evaluation
	New system evaluation
	Cluster deployment
	Backup
	Demos

