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SW development tools
• Development environments
• Compilers
• Version control
• Debuggers
• Profilers
• Runtime monitoring
• Benchmarking



PROGRAMMING TOOLS
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Program editing

• Text editors
– vim, emacs, atom

• IDEs
– Visual *, Eclipse
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Compilers

• Open source
– GNU
– Open64, clang

• Commercial
– Intel
– Portland Group (PGI, owned by Nvidia)
– Vendors (IBM XL, Cray)
– Others (Absoft, CAPS, PathScale)
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Language support

• Languages
– C/C++ - GNU, Intel, PGI
– Fortran – GNU, Intel, PGI

• Interpreters
– Matlab – has its own ecosystem
– Java – reasonable ecosystem, not so popular in HPC, popular in 

HTC
– Python – attempts to have its own ecosystem, some tools can 

plug into Python (e.g. Intel VTune)
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Language/library support

• Language extensions
– OpenMP (4.0+*) – GNU, Intel*, PGI 
– OpenACC – PGI, GNU very experimental
– CUDA – Nvidia GCC, PGI Fortran

• Libraries
– Intel Math Kernel Library (MKL)
– PGI packages open source (OpenBLAS?).



Version control

• Copies of programs
– Good enough for simple code and quick tests/changes

• Version control software
– Allow code merging, branching, etc
– Essential for collaborative development
– RCS, CVS, SVN
– Git – integrated web services, free for open source, can run 

own server for private code
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DEBUGGING
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Program errors

• Crashes
– Segmentation faults (bad memory access)

• often writes core file – snapshot of memory at the time of the crash
– Wrong I/O (missing files)
– Hardware failures

• Incorrect results
– Reasonable but incorrect results
– NaNs – not a numbers – division by 0, …
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write/printf

• Write variables of interest into the stdout or file
• Simplest but cumbersome

– Need to recompile and rerun 
– Need to browse through 

potentially large output
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Terminal debuggers

• Text only, e.g. gdb, idb
• Need to remember commands or their abbreviations
• Need to know lines in the code 

(or have it opened in other 
window) 

• Useful for quick code checking 
on compute nodes and core 
dump analysis 
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GUI debuggers

• Have graphical user interface
• Some free, mostly commercial
• Eclipse CDT (C/C++ Development Tooling), PTP (Parallel 

Tools Platform) - free
• PGI’s pdbg – part of PGI compiler suite
• Intel development tools
• Rogue Wave Totalview - commercial
• Allinea DDT - commercial



8/1/2016 http://www.chpc.utah.edu Slide 14

Totalview and DDT

• The only real alternative for parallel or accelerator 
debugging

• Cost a lot of money (thousands of $), but, worth it
• We have Totalview license (for historical reasons), 32 

tokens enough for our needs (renewal ~$1500/yr).
• XSEDE systems have DDT. 
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How to use Totalview

1. Compile binary with debugging information
 flag -g

gcc –g test.f –o test

2. Load module and run Totalview
module load totalview

 TV + executable
totalview executable

 TV + core file
totalview executable core_file

 Run TV and choose what to debug in a startup dialog
totalview

Presenter
Presentation Notes
also, there are numerous flags that enable TV customized startup – refer to the user’s manual
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Totalview windows

Presenter
Presentation Notes
root – displays what processes are running + access to global menu items
process – most commonly used window – go over it in more detail later
variable – inspection and modification of variables
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DDT screenshot
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Debugger basic
operations

• Data examination
 view data in the variable windows
 change the values of variables
 modify display of the variables
 visualize data
• Action points
• breakpoints and barriers (static or conditional)
• watchpoints
• evaluation of expressions



8/1/2016 http://www.chpc.utah.edu Slide 19

Multiprocess debugging

• Automatic attachment of child processes
• Create process groups
• Share breakpoints among processes
• Process barrier breakpoints
• Process group single-stepping
• View variables across procs/threads
• Display MPI message queue state
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Additional Totalview tools

• Memoryscape
– Dynamic memory debugging tool

• Replay Engine
– Allows to reversely debug the code

• Accelerator debugging
– CUDA and OpenACC
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Code checkers
• Compilers check for syntax errors

– lint based tools
– Runtime checks through compiler flags (-fbounds-check, 

-check*, -Mbounds)
• DDT has a built in syntax checker 

– Matlab does too
• Memory checking tools - many errors are due to bad 

memory management
– valgrind – easy to use, many false positives
– Intel Inspector – intuitive GUI
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Intel software development 
products

• We have a 2 concurrent user license
– One license locks all the tools
– Cost ~$2000/year

• Tools for all stages of development
– Compilers and libraries
– Verification tools
– Profilers

• More info
https://software.intel.com/en-us/intel-parallel-studio-xe
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Intel Inspector

• Thread checking
– Data races and deadlocks

• Memory checker
– Like leaks or corruption
– Good alternative to Totalview MemoryScape

• Standalone or GUI integration
• More info
http://software.intel.com/en-us/intel-inspector-xe/
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Intel Inspector
• Source the environment

module load inspectorxe

• Compile with –tcheck -g
ifort -openmp -tcheck -g trap.f

• Run tcheck
inspxe-gui – graphical user interface
inspxe-cl – command line

• Tutorial
https://software.intel.com/en-us/articles/inspectorxe-tutorials
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Intel Trace Analyzer and 
Collector

• MPI profiler and correctness checker
• Detects violations of MPI standard 

and errors in execution environment
• To use correctness checker

module load intel impi itac
setenv VT_CHECK_TRACING 0
mpirun –check-mpi –n 4 ./myApp

• ITAC documentation
https://software.intel.com/en-us/intel-trace-analyzer-

support/documentation



PROFILING
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Why to profile

• Evaluate performance

• Find the performance bottlenecks
– Inefficient programming
– Memory or  I/O bottlenecks
– Parallel scaling 



Program runtime

• Time program runtime
– get an idea on time to run and parallel scaling

• Many programs include 
benchmark problems
– Some also accessible via 

“make test”
• Consider scripts, especially if 

doing parallel performance 
evaluation
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Profiling categories

• Hardware counters
– count events from CPU perspective (# of flops, memory loads, etc)
– usually need Linux kernel module installed (>2.6.31 has it)

• Statistical profilers (sampling)
– interrupt program at given intervals to find what routine/line the 

program is in
• Event based profilers (tracing)

– collect information on each function call



Hardware counters
• CPUs include counters to count important events

– Flops, instructions, cache/memory access
– Access through kernel or PAPI (Performance Application 

Programming Interface)
• Tools to analyze the counters

– perf  - hardware counter collection,
part of Linux

– oprofile – profiler + hw counters
– Intel VTune

• Drawback – harder to analyze 
the profiling results (exc. VTune)
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Serial profiling

• Discover inefficient programming
• Computer architecture slowdowns
• Compiler optimizations evaluation
• gprof
• Compiler vendor supplied (e.g. 

pgprof, nvvp)
• Intel tools on serial programs

– AdvisorXE, VTune
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Presenter
Presentation Notes
Pgprof profiles CPU and GPU
Intel tools feature workflows for ease of use.



HPC open source tools

• HPC Toolkit
– A few years old, did not find it as straightforward to use

• TAU (Tuning and Analysis Utilities)
– Lots of features, which makes the learning curve slow

• Scalasca
– Developed by European consortium, did not try yet
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Intel tools
• Intel Parallel Studio XE 2016 Cluster Edition

– Compilers (C/C++, Fortran)
– Math library (MKL)
– Threading library (TBB)
– Thread design and prototype (Advisor)
– Memory and thread debugging (Inspector)
– Profiler (VTune Amplifier)
– MPI library (Intel MPI)
– MPI analyzer and profiler (ITAC)
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Intel VTune Amplifier

• Serial and parallel profiler
– Multicore support for OpenMP and OpenCL on CPUs, GPUs and 

Xeon Phi
• Quick identification of performance bottlenecks

– Various analyses and points of view in the GUI
– Makes choice of analysis and results inspection easier

• GUI and command line use
• More info
https://software.intel.com/en-us/intel-vtune-amplifier-xe
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Intel VTune Amplifier

• Source the environment
module load vtune

• Run VTune
amplxe-gui – GUI
amplxe-cl – CLI
Can be used also for remote 
profiling (e.g. on Xeon Phi)

• Tuning guides for specific 
architectures

https://software.intel.com/en-us/articles/processor-specific-
performance-analysis-papers
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Intel Advisor

• Vectorization advisor
– Identify loops that benefit from vectorization, what is 

blocking efficient vectorization and explore benefit of data 
reorganization

• Thread design and prototyping
– Analyze, design, tune and check threading design without 

disrupting normal development
• More info
http://software.intel.com/en-us/intel-advisor-xe/
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Intel Advisor
• Source the environment

module load advisorxe

• Run Advisor 
advixe-gui – GUI
advixe-cl – CLI

• Create project and 
choose appropriate 
modeling

• Getting started guide
https://software.intel.com/en-us/get-started-with-advisor
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Intel Trace Analyzer 
and Collector

• MPI profiler
– traces MPI code
– identifies communication 

inefficiencies
• Collector collects the data 

and Analyzer visualizes them
• More info
https://software.intel.com/en-us/intel-trace-analyzer
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Intel TAC

• Source the environment
module load itac

• Using Intel compilers, can 
compile with –trace

mpiifort -openmp –trace trap.f

• Run MPI code
mpirun –trace –n 4 ./a.out

• Run visualizer
traceanalyzer a.out.stf &

• Getting started guide
https://software.intel.com/en-us/get-started-with-itac-for-linux



RUNTIME MONITORING
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Why runtime monitoring?

• Make sure program is running right
– Hardware problems
– Correct parallel mapping / process affinity

• Careful about overhead
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Runtime monitoring

• Self checking
– ssh to node(s), run “top”, or look at “sar” logs
– SLURM (or other scheduler) logs and statistics

• Tools
– XDMoD – XSEDE Metrics on Demand (through 

SUPReMM module)
– REMORA - REsource MOnitoring for Remote Applications



BENCHMARKING
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Why to benchmark?

• Evaluate system’s performance
– Testing new hardware

• Verify correct hardware and software installation
– New cluster/node deployment

• There are tools for cluster checking (Intel Cluster Checker, cluster 
distros, …) 

– Checking newly built programs
• Sometimes we leave this to the users
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New system evaluation

• Simple synthetic benchmarks
– FLOPS, STREAM

• Synthetic benchmarks
– HPL – High Performance Linpack – dense linear algebra 

problems – cache friendly
– HPCC – HPC Challenge Benchmark – collection of dense, 

sparse and other (FFT) benchmarks
– NPB – NAS Parallel Benchmarks – mesh based solvers –

OpenMP, MPI, OpenACC implementations
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New system evaluation

• Real applications benchmarks
– Depend on local usage
– Gaussian, VASP
– Amber, LAMMPS, NAMD, Gromacs
– ANSYS, Abaqus, StarCCM+
– Own codes

• Script if possible
– A lot of combinations of test cases vs. number of MPI 

tasks/OpenMP cores
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Cluster deployment

• Whole cluster
– Some vendors have cluster verification tools
– We have a set of scripts that run basic checks and HPL at 

the end
• New cluster nodes

– Verify received hardware configuration, then rack
– Basic system tests (node health check)
– HPL – get expected performance per node (CPU or 

memory issues), or across more nodes (network issues)



BACKUP
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Demos

• Totalview
• Advisor
• Inspector
• VTune
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