MPI: Message Passing Interface
An Introduction

S. Lakshmivarahan
School of Computer Science

*MPI: A specification for message passing libraries
designed to be a standard for distributed memory
message passing, parallel computing

*Released in the summer 1994 - FORTRAN and C versions
*Not a language, a collection of subroutines

Knowledge of MPI DOES NOT imply knowledge of
parallel programming

*Precursor to MPI: PVM, EXPRESS, PARMACS, p4

Basic concepts:
*Processor vs. process

 Processor 1s the stand alone computer

 Process 1s a task represented by a piece of program
*One process per processor — else loss of parallelism
In MPI need to allocate a fixed number of processors

*Cannot dynamically spawn processes

Programming Model

SPMD
Single Program
Multiple Data

Each processor does
the same computation
on different data sets

*DNA matching
*]RS agent

MPMD
Multiple Program
Multiple Data

Different processors
doing different
computations on different
data set

*University-
academic/administration

Parallel Programming requires knowledge of
*Processors — network topology

*Algorithms

*Data structures

*Possible patterns of communications

A functional view of the parallel processor 1s essential
for successful parallel programming experience

*To drive a car a functional view would help -
on average automobile has over 2000 parts

*Functional view 1s — engine, transmission, throttle,
break, steering, gas tank, lights, wiper, heater/air conditioner,
etc

Processors are connected 1in a network

Physical network topology — Ring, Star, Hypercube, Toroid
Po

Pr

*Each processor has two neighbors — two ports
*One processor 1s designated as the master — handles I/O
*Programs/data to all the other processors via master

A View of Processor

G

Port/
Channel

Port/
Channel

Processor and NOS communicate by interrupt

Packets

Packet size system specified — 4Kbytes

Packets enter the networks via the in/out buffers

In all MPI has 129 functions - subroutines
Many of these require a handful of parameters
Classification

Point to Point

Collective communication within a group

A few — about a dozen are sufficient to get started

include “mpif.h”

* Not an MPI command but every program needs this
and 1s the first line 1n each program

* Makes the MPI subroutine library available to the given program

Structure of MPI commands:
MPI command-name (parameters)

These are names of subroutines to be called using the
FORTRAN Call statement

MPI standard does not specify the implementation details

First command: MPI INIT (error)
- initiates an MPI session

Last command: MPI FINALIZE (error)
- terminates an MPI session

error — integer variable

MPI INITIALIZED (flag, error)

*Checks 1nitialization of an MPI session
flag — logical variable
error — integer variable

MPI COMM SIZE (MPI COMM_ WORLD, nprocs, error)

Communicator/
Handle. Integer

*Determines the total number of processes in a session
nprocs, error - integer

MPI COMM RANK (MPI COMM WORLD, myrank,error)

Determines the rank of each processor (assigned by the
system) involved 1n a given MPI session

After this command each processor can print their rank

myrank, error - integer

A sample program:

/* This program uses the five MPI commands™/
Program Sample 1

include “mpif.h”

Integer myrank, nprocs, error

call MPI INIT (error)
call MPI. COMM _SIZE (MPI_ COMM_WORLD, nprocs, error)
call MPI. COMM_ RANK (MPI. COMM_ WORLD, myrank, error)

4

Print *, “My rank 1s “, myrank”
If (myrank .eq. 0) “Total number of processes =*, nprocs

call MPI FINALIZE (error)

stop
end

How many processors to use in a given session?
How to run an MPI program?

Example: Let myprog be the name of the executable for our
sample program

myprog —n 4 /*Executes this program on 4 processors™/

Output: My rank1s 2 /* output order 1s not defined*/
My rank 1s 1
My rank 1s 0
My rank 1s 3

Point to point communication:
MPI_SEND - to send data — uses 7 parameters

- variable name denoting the data items to be sent — real, array
- count denoting the number of data items being sent- integer
- MPI_INTEGER

- destination — processor 1d

- tag — integer to indicate the assigned type

- MPI COMM_ WORLD

- error

MPI RECYV — to receive data- uses 8 parameters

- data item to be received —real array

- count denoting the number of data items being sent- integer
- MPI_INTEGER

- source — processor id

- tag — integer to indicate the assigned type

- MPI COMM_ WORLD

- status to indicate if the receive action is complete

- CITOT

There are two modes: block vs. non-block
In block send/receive control 1s returned is returned to the

calling program when it 1s safe to use the sending/receiving
buffer

In non-block mode control is returned even before it 1s safe
to use

the buffer

Problem statement:
There are two processors labeled 0 and 1 — master is 0

Master sends a data item (say the value of the year
2002) to processor 1

This 1s done using the SPMD mode of programming where
all the processors have the same copy of the program.

Po > Dy
A logical view of the algorithm

Program Sample 2
/* A sample of SPMD program — next 4 slides™/

include “mpif.h”
integer myrank, nprocs, error, source, dest, count, tag, year
integer status (MPI STATUS SIZE)

call MPI INT(error)
call MPI COMM_SIZE (MPI_ COMM_ WORLD, nprocs, error)
call MPICOMM RANK (MPI COMM_ WORLD, myrank, error)

If(nprocs .ne. 2) then /* can use only two processors™/
If (myrank.eq.0) write(6,*) “Nprocs .ne. 2, stop”

call MPI FINALIZE(error)

Stop

End if

If (myrank .eq.0) then

Year =2002 /* the data being sent™/

Dest =1 /* Destination is processor 1%/

Count =1 /* Number of data items™/

Tag=99 /* This message 1s asigned a tag value of 99 */
Write (6,*) “My rank 1s, “ myrank , “year=" year

Call MPI SEND(Year, count, MPI INTEGER, dest, tag,

1 MPI COMM_ WORLD, error)

Endif

/* Note that identical copy of the program resides in each
processor and what one does at what time depends on the
rank of the processor. Tag values range from 0 to 32767 */

If (myrank .eq. 1) then

Source = ()

Count =1

Tag =99

call MPI RECYV (year, count, MPI INTEGER, source, tag,
1 MPI COMM_ WORLD, Status, error)

Write(6,*) “Myrank,”, myrank, “year = *, year

Call MPI GET COUNT(status, MPI Integer, count,error)

Write(6,*) “No of Integers Received = *, count
Endif

/* Need to complete the program Sample 2 */

Call MPI FINALIZE (error)
Stop

End Program Sample 2

System decides which of the two processors you get
for this session - may depend on other active jobs

The actual communication time depends on if the
assigned processors are physically neighbors in the network.

If they are, then communication overhead 1s a minimum, else
there 1s a penalty for mismatch.

Notice that the program will still work and give results but
may take a longer time - affecting the performance

In the previous example we have specified that processor 1
receive data from a specified source. We can instead use
MPI ANY SOURCE to receive data from any source

We can also use MPI ANY TAG can be used to receive data
with the specific tag as was used in the above example

Global Communication primitives:
MPI Broadcast: master sends the same data items to all others

MPI Scatter: master sends different data items to all others
(This 1s known as personalized communication)

MPI_Gather: all the processors send their results to the master

MPI Send/Recv: all neighbors communicate — used in finite
difference calculations

MPI BARRIER

One to all broadcast: master broadcast its rank to all others

Po|a a
P a
P> - a
P3 a

MPI BCAST(myrank, 1, MPI INTEGER, 0,
MPI COMM_ WORLD, error)

Scatter: Personalized communication

Pola |b |c |d a
Py b
P> -
C
Ps
d

MPI SCATTER (has 9 arguments)

GATHER: all the processors send to master

Pola alb

Pilp

P3d

MPI Gather (has 9 arguments)

Writing a parallel is like writing music for an ensemble

References:

W.Gropp, E. Lusk, and A. Skjellum (1995) Using MPI: Portable
Parallel Programming with the Message Passing Interface,
MIT Press

Ian Foster (1995) Design and Building Parallel Programs,
Addison Wesley

S.Lakshmivarahan and S. K. Dhall (2002) Programming in
FORTRAN 90/95, Pearson Publishing

