
Supercomputing
in Plain English

An Introduction to
High Performance Computing

Part II:
The Tyranny of the Storage Hierarchy

Henry Neeman, Director
OU Supercomputing Center for Education & Research

OU Supercomputing Center for Education & Research 2

Outline
What is the storage hierarchy?
Registers
Cache
Main Memory (RAM)
The Relationship Between RAM and Cache
The Importance of Being Local
Hard Disk
Virtual Memory

OU Supercomputing Center for Education & Research 3

What is the Storage Hierarchy?

Registers
Cache memory
Main memory (RAM)
Hard disk
Removable media (e.g., CDROM)
Internet

Fast, expensive, few

Slow, cheap, a lot

[1]

[2]

OU Supercomputing Center for Education & Research 4

Henry’s Laptop

Pentium 4 1.6 GHz
w/512 KB L2 Cache
512 MB 400 MHz
DDR SDRAM
30 GB Hard Drive
Floppy Drive
DVD/CD-RW Drive
10/100 Mbps Ethernet
56 Kbps Phone Modem

Dell Latitude C840[3]

OU Supercomputing Center for Education & Research 5

Storage Speed, Size, Cost

charged
per month
(typically)

unlimited

12

Ethernet
(100 Mbps)

charged
per month
(typically)

unlimited

0.007

Phone
Modem

(56 Kbps)

CD-RWHard
Drive

Main
Memory

(400 MHz
DDR

SDRAM)

Cache
Memory

(L2)

Registers
(Pentium 4
1.6 GHz)

Henry’s
Laptop

$0.0015
[11]

$0.009
[11]

$1.17
[11]

$1200 [11]

–
Cost

($/MB)

unlimited30,0005120.5304 bytes**
[10]

Size
(MB)

4
[9]

100
[8]

3,277
[7]

52,428 [6]73,232[5]

(3200
MFLOP/s*)

Speed
(MB/sec)

[peak]

* MFLOP/s: millions of floating point operations per second
** 8 32-bit integer registers, 8 80-bit floating point registers, 8 64-bit MMX integer registers,

8 128-bit floating point XMM registers

Registers

[4]

OU Supercomputing Center for Education & Research 7

What Are Registers?
Registers are memory-like locations inside the

Central Processing Unit that hold data that are
being used right now in operations.

…

Arithmetic/Logic UnitControl Unit Registers
Fetch Next Instruction Add Sub

Mult Div

And Or

Not …

Integer

Floating Point

…

Fetch Data Store Data

Increment Instruction Ptr

Execute Instruction

…

CPU

OU Supercomputing Center for Education & Research 8

How Registers Are Used
Every arithmetic or logical operation has one or
more operands and one result.
Operands are contained in source registers.
A “black box” of circuits performs the operation.
The result goes into the destination register.

Ex
am

pl
e

addend in R0

augend in R1

5

7

:

ADD sum in R212

Register Ri

operand

operand
result

Register Rj
Register Rk

Operation circuitry

OU Supercomputing Center for Education & Research 9

How Many Registers?
Typically, a CPU has less than 2 KB (2048 bytes) of

registers, usually split into registers for holding integer
values and registers for holding floating point (real)
values, plus a few special purpose registers.

Examples:
IBM POWER4 (found in IBM Regatta
supercomputers): 80 64-bit integer registers and
72 64-bit floating point registers (1,216 bytes) [12]

Intel Pentium4: 8 32-bit integer registers, 8 80-bit
floating point registers, 8 64-bit integer vector registers,
8 128-bit floating point vector registers (304 bytes) [10]

Cache

[4]

OU Supercomputing Center for Education & Research 11

What is Cache?
A special kind of memory where data reside that
are about to be used or have just been used.
Very fast => very expensive => very small
(typically 100 to 10,000 times as expensive as
RAM per byte)
Data in cache can be loaded into or stored from
registers at speeds comparable to the speed of
performing computations.
Data that are not in cache (but that are in Main
Memory) take much longer to load or store.
Cache is near the CPU: either inside the CPU or
on the motherboard that the CPU sits on.

OU Supercomputing Center for Education & Research 12

From Cache to the CPU

CPU

Cache

51.2 GB/sec

73.2 GB/sec

Typically, data move between cache and the CPU at speeds
comparable to that of the CPU performing calculations.

OU Supercomputing Center for Education & Research 13

Multiple Levels of Cache
Most contemporary CPUs have more than one

level of cache. For example:
Intel Pentium4 [5,10]

Level 1 caches: 12 KB instruction*, 8 KB data
Level 2 cache: 512 KB unified (instruction + data)

IBM POWER4 [12]

Level 1 cache: 64 KB instruction, 32 KB data
Level 2 cache: 1440 KB unified for each 2 CPUs
Level 3 cache: 32 MB unified for each 2 CPUS

*Pentium 4 L1 instruction cache is called “trace cache.”

OU Supercomputing Center for Education & Research 14

Why Multiple Levels of Cache?
The lower the level of cache:

the faster the cache can transfer data to the CPU;
the smaller that level of cache is,because
faster => more expensive => smaller.

Example: IBM POWER4 latency to the CPU [12]

L1 cache: 4 cycles = 3.6 ns for 1.1 GHz CPU
L2 cache: 14 cycles = 12.7 ns for 1.1 GHz CPU

Main Memory

[13]

OU Supercomputing Center for Education & Research 16

What is Main Memory?
Where data reside for a program that is
currently running
Sometimes called RAM (Random Access
Memory): you can load from or store into any
main memory location at any time
Sometimes called core (from magnetic “cores”
that some memories used, many years ago)
Much slower => much cheaper => much bigger

OU Supercomputing Center for Education & Research 17

What Main Memory Looks Like

…
0 1 2 3 4 5 6 7 8 9 10

536,870,911

You can think of main memory as a
big long 1D array of bytes.

The Relationship
Between

Main Memory & Cache

OU Supercomputing Center for Education & Research 19

RAM is Slow

The speed of data transfer
between Main Memory and the
CPU is much slower than the
speed of calculating, so the CPU
spends most of its time waiting
for data to come in or go out.

CPU 73.2 GB/sec

Bottleneck

3.2 GB/sec

OU Supercomputing Center for Education & Research 20

Why Have Cache?

Cache is nearly the same speed
as the CPU, so the CPU doesn’t
have to wait nearly as long for
stuff that’s already in cache:
it can do more
operations per second!

CPU 73.2 GB/sec

51.2 GB/sec

3.2 GB/sec

OU Supercomputing Center for Education & Research 21

Cache Use Jargon
Cache Hit: the data that the CPU needs right now
are already in cache.
Cache Miss: the data that the CPU needs right now
are not currently in cache.

If all of your data are small enough to fit in cache,
then when you run your program, you’ll get almost
all cache hits (except at the very beginning), which
means that your performance could be excellent!

Sadly, this rarely happens in real life: most problems
of scientific or engineering interest are bigger than
just a few MB.

OU Supercomputing Center for Education & Research 22

Cache Lines
A cache line is a small, contiguous region in
cache, corresponding to a contiguous region in
RAM of the same size, that is loaded all at once.
Typical size: 32 to 1024 bytes
Examples

Pentium 4 [5,10]

L1 data cache: 64 bytes per line
L2 cache: 128 bytes per line

POWER4 [12]

L1 instruction cache: 128 bytes per line
L1 data cache: 128 bytes per line
L2 cache: 128 bytes per line
L3 cache: 512 bytes per line

OU Supercomputing Center for Education & Research 23

How Cache Works
When you request data from a particular address in

Main Memory, here’s what happens:
1. The hardware checks whether the data for that

address is already in cache. If so, it uses it.
2. Otherwise, it loads from Main Memory the

entire cache line that contains the address.
For example, on a 1.6 GHz Pentium 4, a cache

miss makes the program stall (wait) at least
37.25 nanoseconds for the next cache line to
load – a time that could have been spent
performing up to 149 calculations! [5,10]

OU Supercomputing Center for Education & Research 24

If It’s in Cache, It’s Also in RAM
If a particular memory address is currently in

cache, then it’s also in Main Memory (RAM).
That is, all of a program’s data are in Main

Memory, but some are also in cache.
We’ll revisit this point shortly.

OU Supercomputing Center for Education & Research 25

Mapping Cache Lines to RAM
Main memory typically maps into cache in one of

three ways:
Direct mapped (occasionally)
Fully associative (very rare these days)
Set associative (common)

DON’T
PANIC!

OU Supercomputing Center for Education & Research 26

Direct Mapped Cache
Direct Mapped Cache is a scheme in which each

location in main memory corresponds to exactly
one location in cache (but not the reverse, since
cache is much smaller than main memory).

Typically, if a cache address is represented by c
bits, and a main memory address is represented
by m bits, then the cache location associated
with main memory address A is MOD(A,2c);
that is, the lowest c bits of A.

Example: POWER4 L1 instruction cache

OU Supercomputing Center for Education & Research 27

Direct Mapped Cache Illustration
Must go into
cache address

11100101

Main Memory Address
0100101011100101

Notice that 11100101
is the low 8 bits of
0100101011100101.

OU Supercomputing Center for Education & Research 28

Jargon: Cache Conflict
Suppose that the cache address 11100101 currently

contains RAM address 0100101011100101.
But, we now need to load RAM address

1100101011100101, which maps to the same
cache address as 0100101011100101.

This is called a cache conflict: the CPU needs a
RAM location that maps to a cache line already
in use.

In the case of direct mapped cache, every cache
conflict leads to the new cache line clobbering
the old cache line.

This can lead to serious performance problems.

OU Supercomputing Center for Education & Research 29

Problem with Direct Mapped
If you have two arrays that start in the same place

relative to cache, then they might clobber each
other all the time: no cache hits!
REAL,DIMENSION(multiple_of_cache_size) :: a, b, c
INTEGER :: index

DO index = 1, multiple_of_cache_size
a(index) = b(index) + c(index)

END DO !! index = 1, multiple_of_cache_size

In this example, a(index), b(index) and
c(index) all map to the same cache line, so loading
c(index) clobbers b(index) – no cache reuse!

OU Supercomputing Center for Education & Research 30

Fully Associative Cache
Fully Associative Cache can put any line of main

memory into any cache line.
Typically, the cache management system will put

the newly loaded data into the Least Recently
Used cache line, though other strategies are
possible (e.g., First In First Out, Round Robin,
Least Recently Modified).

So, this can solve, or at least reduce, the cache
conflict problem.

But, fully associative cache tends to be expensive,
so it’s pretty rare.

OU Supercomputing Center for Education & Research 31

Fully Associative Illustration

Could go into
any cache line

Main Memory Address
0100101011100101

OU Supercomputing Center for Education & Research 32

Set Associative Cache
Set Associative Cache is a compromise between

direct mapped and fully associative. A line in
main memory can map to any of a fixed number
of cache lines.

For example, 2-way Set Associative Cache can map
each main memory line to either of 2 cache lines
(e.g., to the Least Recently Used), 3-way maps to
any of 3 cache lines, 4-way to 4 lines, and so on.

Set Associative cache is cheaper than fully
associative, but more robust than direct mapped.

OU Supercomputing Center for Education & Research 33

2-Way Set Associative Illustration
Could go into
cache address

11100101
OR

Main Memory Address
0100101011100101

Could go into
cache address

01100101

OU Supercomputing Center for Education & Research 34

Cache Associativity Examples
Pentium 4 [5,10]

L1 data cache: 4-way set associative
L2 cache: 8-way set associative

POWER4 [12]

L1 instruction cache: direct mapped
L1 data cache: 2-way set associative
L2 cache: 8-way set associative
L3 cache: 8-way set associative

OU Supercomputing Center for Education & Research 35

If It’s in Cache, It’s Also in RAM
As we saw earlier:

If a particular memory address is currently in
cache, then it’s also in RAM.
That is, all of your data and instructions are in
RAM, but some are also in cache.

OU Supercomputing Center for Education & Research 36

Changing a Value That’s in Cache
Suppose that you have in cache a particular line of

main memory.
If you don’t change the contents of any of that

line’s bytes while it’s in cache, then when it gets
clobbered by another main memory line coming
into cache, there’s no loss of information.

But, if you change the contents of any byte while
it’s in cache, then you need to store it back out to
main memory before clobbering it.

OU Supercomputing Center for Education & Research 37

Cache Store Jargon
Write-through: whenever a value in cache is
changed, so is the associated value in main
memory.
Write-back: whenever a value in cache is
changed, it gets marked as dirty. When the line
gets clobbered, if it’s been marked as dirty, then
it gets stored back into main memory. [14]

The Importance of
Being Local

[15]

OU Supercomputing Center for Education & Research 39

More Data Than Cache
Let’s say that you have 1000 times more data than

cache. Then won’t most of your data be outside
the cache?

YES!
Okay, so how does cache help?

OU Supercomputing Center for Education & Research 40

Improving Your Cache Hit Rate
Many scientific codes use a lot more data than can

fit in cache all at once.
Therefore, you need to ensure a high cache hit rate

even though you’ve got much more data than
cache.

So, how can you improve your cache hit rate?
Use the same solution as in Real Estate:
Location, Location, Location!

OU Supercomputing Center for Education & Research 41

Data Locality
Data locality is the principle that, if you use data in a

particular memory address, then very soon you’ll
use either the same address or a nearby address.
Temporal locality: if you’re using address A now,
then you’ll probably soon use address A again.
Spatial locality: if you’re using address A now, then
you’ll probably soon use addresses between A-k
and A+k, where k is small.

Cache is designed to exploit spatial locality, which is
why a cache miss causes a whole line to be loaded.

OU Supercomputing Center for Education & Research 42

Data Locality Is Empirical
Data locality has been observed empirically in

many, many programs.

void ordered_fill (int* array, int array_length)
{ /* ordered_fill */

int index;

for (index = 0; index < array_length; index++) {
array[index] = index;

} /* for index */
} /* ordered_fill */

OU Supercomputing Center for Education & Research 43

No Locality Example
In principle, you could write a program that

exhibited absolutely no data locality at all:

void random_fill (int* array,
int* random_permutation_index,
int array_length)

{ /* random_fill */
int index;

for (index = 0; index < array_length; index++) {
array[random_permutation_index[index]] = index;

} /* for index */
} /* random_fill */

OU Supercomputing Center for Education & Research 44

Permuted vs. Ordered

0

1

2

3

4

5

6

7

8

9

20 21 22 23 24 25
Array Size (bytes, log2)

C
P

U
 s

ec

Random
Ordered

In a simple array fill, locality provides a factor of 6 to 8
speedup over a randomly ordered fill on a Pentium III.

OU Supercomputing Center for Education & Research 45

Exploiting Data Locality
If you know that your code is capable of operating

with a decent amount of data locality, then you
can get speedup by focusing your energy on
improving the locality of the code’s behavior.

This will substantially increase your cache reuse.

OU Supercomputing Center for Education & Research 46

A Sample Application
Matrix-Matrix Multiply
Let A, B and C be matrices of sizes
nr × nc, nr × nk and nk × nc, respectively:

=

ncnrnrnrnr

nc

nc

nc

aaaa

aaaa
aaaa
aaaa

,3,2,1,

,33,32,31,3

,23,22,21,2

,13,12,11,1

L

MOMMM

L

L

L

A

=

nknrnrnrnr

nk

nk

nk

bbbb

bbbb
bbbb
bbbb

,3,2,1,

,33,32,31,3

,23,22,21,2

,13,12,11,1

L

MOMMM

L

L

L

B

=

ncnknknknk

nc

nc

nc

cccc

cccc
cccc
cccc

,3,2,1,

,33,32,31,3

,23,22,21,2

,13,12,11,1

L

MOMMM

L

L

L

C

The definition of A = B • C is

∑
=

⋅++⋅+⋅+⋅=⋅=
nk

k
cnknkrcrcrcrckkrcr cbcbcbcbcba

1
,,,33,,22,,11,,,, K

for r ∈ {1, nr}, c ∈ {1, nc}.

OU Supercomputing Center for Education & Research 47

Matrix Multiply: Naïve Version
SUBROUTINE matrix_matrix_mult_by_naive (dst, src1, src2, &
& nr, nc, nq)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN) :: src1
REAL,DIMENSION(nq,nc),INTENT(IN) :: src2

INTEGER :: r, c, q

CALL matrix_set_to_scalar(dst, nr, nc, 1, nr, 1, nc, 0.0)
DO c = 1, nc

DO r = 1, nr
DO q = 1, nq
dst(r,c) = dst(r,c) + src1(r,q) * src2(q,c)

END DO !! q = 1, nq
END DO !! r = 1, nr

END DO !! c = 1, nc
END SUBROUTINE matrix_matrix_mult_by_naive

OU Supercomputing Center for Education & Research 48

Matrix Multiply w/Initialization
SUBROUTINE matrix_matrix_mult_by_init (dst, src1, src2, &
& nr, nc, nq)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN) :: src1
REAL,DIMENSION(nq,nc),INTENT(IN) :: src2

INTEGER :: r, c, q

DO c = 1, nc
DO r = 1, nr

dst(r,c) = 0.0
DO q = 1, nq
dst(r,c) = dst(r,c) + src1(r,q) * src2(q,c)

END DO !! q = 1, nq
END DO !! r = 1, nr

END DO !! c = 1, nc
END SUBROUTINE matrix_matrix_mult_by_init

OU Supercomputing Center for Education & Research 49

Matrix Multiply Via Intrinsic
SUBROUTINE matrix_matrix_mult_by_intrinsic (&
& dst, src1, src2, nr, nc, nq)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN) :: src1
REAL,DIMENSION(nq,nc),INTENT(IN) :: src2

dst = MATMUL(src1, src2)
END SUBROUTINE matrix_matrix_mult_by_intrinsic

OU Supercomputing Center for Education & Research 50

Matrix Multiply Behavior

If the matrix is big, then each sweep of a row will clobber nearby values in cache.

OU Supercomputing Center for Education & Research 51

Performance of Matrix Multiply
Matrix-Matrix Multiply

0

100

200

300

400

500

600

700

800

0 10000000 20000000 30000000 40000000 50000000 60000000

Total Problem Size in bytes (nr*nc+nr*nq+nq*nc)

CP
U

sec

Naive

Init

Intrinsic

OU Supercomputing Center for Education & Research 52

Tiling

OU Supercomputing Center for Education & Research 53

Tiling
Tile: a small rectangular subdomain of a problem
domain. Sometimes called a block or a chunk.
Tiling: breaking the domain into tiles.
Operate on each tile to completion, then move to
the next tile.
Tile size can be set at runtime, according to
what’s best for the machine that you’re running
on.

OU Supercomputing Center for Education & Research 54

Tiling Code
SUBROUTINE matrix_matrix_mult_by_tiling (dst, src1, src2, nr, nc, nq, &
& rtilesize, ctilesize, qtilesize)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN) :: src1
REAL,DIMENSION(nq,nc),INTENT(IN) :: src2
INTEGER,INTENT(IN) :: rtilesize, ctilesize, qtilesize

INTEGER :: rstart, rend, cstart, cend, qstart, qend

DO cstart = 1, nc, ctilesize
cend = cstart + ctilesize - 1
IF (cend > nc) cend = nc
DO rstart = 1, nr, rtilesize

rend = rstart + rtilesize - 1
IF (rend > nr) rend = nr
DO qstart = 1, nq, qtilesize

qend = qstart + qtilesize - 1
IF (qend > nq) qend = nq
CALL matrix_matrix_mult_tile(dst, src1, src2, nr, nc, nq, &

& rstart, rend, cstart, cend, qstart, qend)
END DO !! qstart = 1, nq, qtilesize

END DO !! rstart = 1, nr, rtilesize
END DO !! cstart = 1, nc, ctilesize

END SUBROUTINE matrix_matrix_mult_by_tiling

OU Supercomputing Center for Education & Research 55

Multiplying Within a Tile
SUBROUTINE matrix_matrix_mult_tile (dst, src1, src2, nr, nc, nq, &
& rstart, rend, cstart, cend, qstart, qend)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN) :: src1
REAL,DIMENSION(nq,nc),INTENT(IN) :: src2
INTEGER,INTENT(IN) :: rstart, rend, cstart, cend, qstart, qend

INTEGER :: r, c, q

DO c = cstart, cend
DO r = rstart, rend
if (qstart == 1) dst(r,c) = 0.0
DO q = qstart, qend
dst(r,c) = dst(r,c) + src1(r,q) * src2(q,c)

END DO !! q = qstart, qend
END DO !! r = rstart, rend

END DO !! c = cstart, cend
END SUBROUTINE matrix_matrix_mult_tile

OU Supercomputing Center for Education & Research 56

Performance with Tiling

Matrix-Matrix Mutiply Via Tiling (log-log)

0.1

1

10

100

1000

101001000100001000001000000100000001E+08

Tile Size (bytes)

C
PU

 se
c

512x256

512x512

1024x512

1024x1024

2048x1024

Matrix-Matrix Mutiply Via Tiling

0

50

100

150

200

250

10100100010000100000100000010000000100000000

Tile Size (bytes)

OU Supercomputing Center for Education & Research 57

The Advantages of Tiling
It lets your code to exploit data locality better to get
much more cache reuse: your code runs faster!
It’s a relatively modest amount of extra coding
(typically a few wrapper functions and some
changes to loop bounds).
If you don’t need tiling – because of the hardware,
the compiler or the problem size – then you can turn
it off by simply setting the tile size equal to the
problem size.

Hard Disk

[16]

OU Supercomputing Center for Education & Research 59

Why Is Hard Disk Slow?
Your hard disk is much much slower than main memory

(factor of 10-1000). Why?
Well, accessing data on the hard disk involves physically

moving:
the disk platter
the read/write head

In other words, hard disk is slow because objects move
much slower than electrons.

OU Supercomputing Center for Education & Research 60

I/O Strategies

Read and write the absolute minimum amount.
Don’t reread the same data if you can keep it in
memory.
Write binary instead of characters.
Use optimized I/O libraries like NetCDF [17] and
HDF [18].

OU Supercomputing Center for Education & Research 61

Avoid Redundant I/O
An actual piece of code seen at OU:
for (thing = 0; thing < number_of_things; thing++) {
for (time = 0; time < number_of_timesteps; time++) {

read(file[time]);
do_stuff(thing, time);

} /* for time */
} /* for thing */

Improved version:
for (time = 0; time < number_of_timesteps; time++) {
read(file[time]);
for (thing = 0; thing < number_of_things; thing++) {

do_stuff(thing, time);
} /* for thing */

} /* for time */

Savings (in real life): factor of 500!

OU Supercomputing Center for Education & Research 62

Write Binary, Not ASCII
When you write binary data to a file, you’re

writing (typically) 4 bytes per value.
When you write ASCII (character) data, you’re

writing (typically) 8-16 bytes per value.
So binary saves a factor of 2 to 4 (typically).

OU Supercomputing Center for Education & Research 63

Problem with Binary I/O
There are many ways to represent data inside a

computer, especially floating point (real) data.
Often, the way that one kind of computer (e.g., a

Pentium) saves binary data is different from another
kind of computer (e.g., a Cray).

So, a file written on a Pentium machine may not be
readable on a Cray.

OU Supercomputing Center for Education & Research 64

Portable I/O Libraries
NetCDF and HDF are the two most commonly used

I/O libraries for scientific computing.
Each has its own internal way of representing

numerical data. When you write a file using, say,
HDF, it can be read by a HDF on any kind of
computer.

Plus, these libraries are optimized to make the I/O
very fast.

Virtual Memory

OU Supercomputing Center for Education & Research 66

Virtual Memory
Typically, the amount of memory that a CPU can
address is larger than the amount of data physically
present in the computer.
For example, Henry’s laptop can address over a GB
of memory (roughly a billion bytes), but only
contains 512 MB (roughly 512 million bytes).

OU Supercomputing Center for Education & Research 67

Virtual Memory (cont’d)
Locality: most programs don’t jump all over the
memory that they use; instead, they work in a
particular area of memory for a while, then move to
another area.
So, you can offload onto hard disk much of the
memory image of a program that’s running.

OU Supercomputing Center for Education & Research 68

Virtual Memory (cont’d)
Memory is chopped up into many pages of modest
size (e.g., 1 KB – 32 KB).
Only pages that have been recently used actually
reside in memory; the rest are stored on hard disk.
Hard disk is 10 to 1,000 times slower than main
memory, so you get better performance if you rarely
get a page fault, which forces a read from (and
maybe a write to) hard disk: exploit data locality!

OU Supercomputing Center for Education & Research 69

Storage Use Strategies
Register reuse: do a lot of work on the same data
before working on new data.
Cache reuse: the program is much more efficient if
all of the data and instructions fit in cache; if not,
try to use what’s in cache a lot before using
anything that isn’t in cache (e.g., tiling).
Data locality: try to access data that are near each
other in memory before data that are far.
I/O efficiency: do a bunch of I/O all at once rather
than a little bit at a time; don’t mix calculations and
I/O.

OU Supercomputing Center for Education & Research 70

References
[1] http://www.f1photo.com/
[2] http://www.vw.com/newbeetle/
[3] http://www.dell.com/us/en/bsd/products/model_latit_latit_c840.htm
[4] http://www6.tomshardware.com/cpu/02q1/020107/p42200-04.html
[5] Richard Gerber, The Software Optimization Cookbook: High-performance Recipes for the Intel
Architecture. Intel Press, 2002, pp. 161-168.
[6] http://www.anandtech.com/showdoc.html?i=1460&p=2
[7] ftp://download.intel.com/design/Pentium4/papers/24943801.pdf
[8] http://www.toshiba.com/taecdpd/products/features/MK2018gas-Over.shtml
[9] http://www.toshiba.com/taecdpd/techdocs/sdr2002/2002spec.shtml
[10] ftp://download.intel.com/design/Pentium4/manuals/24896606.pdf
[11] http://www.pricewatch.com/
[12] S. Behling, R. Bell, P. Farrell, H. Holthoff, F. O’Connell and W. Weir, “The POWER4 Processor
Introduction and Tuning Guide.” IBM Redbooks, 2001.
[13] http://www.smartmodulartech.com/memory/ddr.html
14] M. Wolfe, High Performance Compilers for Parallel Computing. Addison-Wesley Publishing Company,
Redwood City CA, 1996.
[15] http://www.visit.ou.edu/vc_campus_map.htm
[16] http://www.storagereview.com/
[17] http://www.unidata.ucar.edu/packages/netcdf/
[18] http://hdf.ncsa.uiuc.edu/

http://www.f1photo.com/
http://www.vw.com/newbeetle/
http://www.vw.com/newbeetle/
http://www.dell.com/us/en/bsd/products/model_latit_latit_c840.htm
http://www.dell.com/us/en/bsd/products/model_latit_latit_c840.htm
http://www6.tomshardware.com/cpu/02q1/020107/p42200-04.html
http://www.anandtech.com/showdoc.html?i=1460&p=2
ftp://download.intel.com/design/Pentium4/papers/24943801.pdf
http://www.toshiba.com/taecdpd/products/features/MK2018gas-Over.shtml
http://www.toshiba.com/taecdpd/techdocs/sdr2002/2002spec.shtml
ftp://download.intel.com/design/Pentium4/manuals/24896606.pdf
http://www.pricewatch.com/
http://www.smartmodulartech.com/memory/ddr.html
http://www.visit.ou.edu/vc_campus_map.htm
http://www.storagereview.com/
http://www.unidata.ucar.edu/packages/netcdf/
http://hdf.ncsa.uiuc.edu/

	Supercomputingin Plain English
	Outline
	What is the Storage Hierarchy?
	Henry’s Laptop
	Storage Speed, Size, Cost
	Registers
	What Are Registers?
	How Registers Are Used
	How Many Registers?
	Cache
	What is Cache?
	From Cache to the CPU
	Multiple Levels of Cache
	Why Multiple Levels of Cache?
	Main Memory
	What is Main Memory?
	What Main Memory Looks Like
	The Relationship BetweenMain Memory & Cache
	RAM is Slow
	Why Have Cache?
	Cache Use Jargon
	Cache Lines
	How Cache Works
	If It’s in Cache, It’s Also in RAM
	Mapping Cache Lines to RAM
	Direct Mapped Cache
	Direct Mapped Cache Illustration
	Jargon: Cache Conflict
	Problem with Direct Mapped
	Fully Associative Cache
	Fully Associative Illustration
	Set Associative Cache
	2-Way Set Associative Illustration
	Cache Associativity Examples
	If It’s in Cache, It’s Also in RAM
	Changing a Value That’s in Cache
	Cache Store Jargon
	The Importance of Being Local
	More Data Than Cache
	Improving Your Cache Hit Rate
	Data Locality
	Data Locality Is Empirical
	No Locality Example
	Permuted vs. Ordered
	Exploiting Data Locality
	A Sample Application
	Matrix Multiply: Naïve Version
	Matrix Multiply w/Initialization
	Matrix Multiply Via Intrinsic
	Matrix Multiply Behavior
	Performance of Matrix Multiply
	Tiling
	Tiling
	Tiling Code
	Multiplying Within a Tile
	Performance with Tiling
	The Advantages of Tiling
	Hard Disk
	Why Is Hard Disk Slow?
	I/O Strategies
	Avoid Redundant I/O
	Write Binary, Not ASCII
	Problem with Binary I/O
	Portable I/O Libraries
	Virtual Memory
	Virtual Memory
	Virtual Memory (cont’d)
	Virtual Memory (cont’d)
	Storage Use Strategies
	References

