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What is the Storage Hierarchy?

Registers
Cache memory
Main memory (RAM)
Hard disk
Removable media (e.g., CDROM)
Internet

Fast, expensive, few

Slow, cheap, a lot

[1]

[2]
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Henry’s Laptop

Pentium 4 1.6 GHz       
w/512 KB L2 Cache
512 MB 400 MHz 
DDR SDRAM
30 GB Hard Drive
Floppy Drive
DVD/CD-RW Drive
10/100 Mbps Ethernet
56 Kbps Phone Modem

Dell Latitude C840[3]
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Storage Speed, Size, Cost

charged
per month
(typically)

unlimited

12

Ethernet
(100 Mbps)

charged 
per month 
(typically)

unlimited

0.007

Phone 
Modem

(56 Kbps)

CD-RWHard 
Drive

Main
Memory

(400 MHz 
DDR 

SDRAM)

Cache
Memory

(L2)

Registers
(Pentium 4
1.6 GHz)

Henry’s 
Laptop

$0.0015 
[11]

$0.009 
[11]

$1.17     
[11]

$1200 [11]

–
Cost

($/MB)

unlimited30,0005120.5304 bytes**
[10]

Size
(MB)

4             
[9]

100      
[8]

3,277       
[7]

52,428 [6]73,232[5]

(3200
MFLOP/s*)

Speed
(MB/sec)

[peak]

*   MFLOP/s: millions of floating point operations per second
** 8 32-bit integer registers, 8 80-bit floating point registers, 8 64-bit MMX integer registers,

8 128-bit floating point XMM registers



Registers

[4]
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What Are Registers?
Registers are memory-like locations inside the 

Central Processing Unit that hold data that are 
being used right now in operations.

…

Arithmetic/Logic UnitControl Unit Registers
Fetch Next Instruction Add Sub

Mult Div

And Or

Not …

Integer

Floating Point

…

Fetch Data Store Data

Increment Instruction Ptr

Execute Instruction

…

CPU
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How Registers Are Used
Every arithmetic or logical operation has one or 
more operands and one result.
Operands are contained in source registers.
A “black box” of circuits performs the operation.
The result goes into the destination register.

Ex
am

pl
e

addend in R0

augend in R1

5

7

:

ADD sum in R212

Register Ri

operand

operand
result

Register Rj
Register Rk

Operation circuitry
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How Many Registers?
Typically, a CPU has less than 2 KB (2048 bytes) of 

registers, usually split into registers for holding integer
values and registers for holding floating point (real) 
values, plus a few special purpose registers.

Examples:
IBM POWER4 (found in IBM Regatta 
supercomputers): 80 64-bit integer registers and          
72 64-bit floating point registers (1,216 bytes) [12]

Intel Pentium4: 8 32-bit integer registers, 8 80-bit 
floating point registers, 8 64-bit integer vector registers, 
8 128-bit floating point vector registers (304 bytes) [10]



Cache

[4]
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What is Cache?
A special kind of memory where data reside that 
are about to be used or have just been used.
Very fast => very expensive => very small 
(typically 100 to 10,000 times as expensive as 
RAM per byte)
Data in cache can be loaded into or stored from 
registers at speeds comparable to the speed of 
performing computations.
Data that are not in cache (but that are in Main 
Memory) take much longer to load or store.
Cache is near the CPU: either inside the CPU or 
on the motherboard that the CPU sits on.



OU Supercomputing Center for Education & Research 12

From Cache to the CPU

CPU

Cache

51.2 GB/sec

73.2 GB/sec

Typically, data move between cache and the CPU at speeds 
comparable to that of the CPU performing calculations.
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Multiple Levels of Cache
Most contemporary CPUs have more than one 

level of cache. For example:
Intel Pentium4 [5,10]

Level 1 caches:  12 KB instruction*, 8 KB data
Level 2 cache:  512 KB unified (instruction + data)

IBM POWER4 [12]

Level 1 cache: 64 KB instruction, 32 KB data
Level 2 cache: 1440 KB unified for each 2 CPUs
Level 3 cache: 32 MB unified for each 2 CPUS

*Pentium 4 L1 instruction cache is called “trace cache.”
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Why Multiple Levels of Cache?
The lower the level of cache:

the faster the cache can transfer data to the CPU;
the smaller that level of cache is,because 
faster => more expensive => smaller.

Example: IBM POWER4 latency to the CPU [12]

L1 cache:   4 cycles =   3.6 ns for 1.1 GHz CPU
L2 cache: 14 cycles = 12.7 ns for 1.1 GHz CPU



Main Memory

[13]
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What is Main Memory?
Where data reside for a program that is  
currently running
Sometimes called RAM (Random Access 
Memory): you can load from or store into any 
main memory location at any time
Sometimes called core (from magnetic “cores” 
that some memories used, many years ago)
Much slower => much cheaper => much bigger
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What Main Memory Looks Like

…
0 1 2 3 4 5 6 7 8 9 10

536,870,911

You can think of main memory as a 
big long 1D array of bytes.



The Relationship 
Between

Main Memory & Cache
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RAM is Slow

The speed of data transfer
between Main Memory and the
CPU is much slower than the
speed of calculating, so the CPU
spends most of its time waiting
for data to come in or go out.

CPU 73.2 GB/sec

Bottleneck

3.2 GB/sec
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Why Have Cache?

Cache is nearly the same speed
as the CPU, so the CPU doesn’t
have to wait nearly as long for
stuff that’s already in cache:
it can do more
operations per second!

CPU 73.2 GB/sec

51.2 GB/sec

3.2 GB/sec
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Cache Use Jargon
Cache Hit:  the data that the CPU needs right now 
are already in cache.
Cache Miss: the data that the CPU needs right now 
are not currently in cache.

If all of your data are small enough to fit in cache, 
then when you run your program, you’ll get almost 
all cache hits (except at the very beginning), which 
means that your performance could be excellent!

Sadly, this rarely happens in real life: most problems 
of scientific or engineering interest are bigger than 
just a few MB.
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Cache Lines
A cache line is a small, contiguous region in 
cache, corresponding to a contiguous region in 
RAM of the same size, that is loaded all at once.
Typical size:  32 to 1024 bytes
Examples

Pentium 4 [5,10]

L1 data cache: 64 bytes per line
L2 cache:     128 bytes per line

POWER4 [12]

L1 instruction cache: 128 bytes per line
L1 data cache:           128 bytes per line
L2 cache:                   128 bytes per line
L3 cache:                   512 bytes per line 
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How Cache Works
When you request data from a particular address in 

Main Memory, here’s what happens:
1. The hardware checks whether the data for that 

address is already in cache. If so, it uses it.
2. Otherwise, it loads from Main Memory the 

entire cache line that contains the address.
For example, on a 1.6 GHz Pentium 4, a cache 

miss makes the program stall (wait) at least 
37.25 nanoseconds for the next cache line to 
load – a time that could have been spent 
performing up to 149 calculations! [5,10]
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If It’s in Cache, It’s Also in RAM
If a particular memory address is currently in 

cache, then it’s also in Main Memory (RAM).
That is, all of a program’s data are in Main 

Memory, but some are also in cache.
We’ll revisit this point shortly.
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Mapping Cache Lines to RAM
Main memory typically maps into cache in one of 

three ways:
Direct mapped    (occasionally)
Fully associative (very rare these days)
Set associative    (common)

DON’T
PANIC!
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Direct Mapped Cache
Direct Mapped Cache is a scheme in which each 

location in main memory corresponds to exactly 
one location in cache (but not the reverse, since 
cache is much smaller than main memory).

Typically, if a cache address is represented by c
bits, and a main memory address is represented 
by m bits, then the cache location associated 
with main memory address A is MOD(A,2c); 
that is,  the lowest c bits of A.

Example: POWER4 L1 instruction cache
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Direct Mapped Cache Illustration
Must go into
cache address

11100101

Main Memory Address
0100101011100101

Notice that 11100101 
is the low 8 bits of 
0100101011100101.
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Jargon: Cache Conflict
Suppose that the cache address 11100101 currently 

contains RAM address 0100101011100101.
But, we now need to load RAM address 

1100101011100101, which maps to the same 
cache address as 0100101011100101.

This is called a cache conflict: the CPU needs a 
RAM location that maps to a cache line already 
in use.

In the case of direct mapped cache, every cache 
conflict leads to the new cache line clobbering 
the old cache line.

This can lead to serious performance problems.
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Problem with Direct Mapped
If you have two arrays that start in the same place 

relative to cache, then they might clobber each 
other all the time: no cache hits!
REAL,DIMENSION(multiple_of_cache_size) :: a, b, c
INTEGER :: index

DO index = 1, multiple_of_cache_size
a(index) = b(index) + c(index)

END DO !! index = 1, multiple_of_cache_size

In this example, a(index), b(index) and 
c(index) all map to the same cache line, so loading 
c(index) clobbers  b(index) – no cache reuse!
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Fully Associative Cache
Fully Associative Cache can put any line of main 

memory into any cache line.
Typically, the cache management system will put 

the newly loaded data into the Least Recently 
Used cache line, though other strategies are 
possible (e.g., First In First Out, Round Robin, 
Least Recently Modified).

So, this can solve, or at least reduce, the cache 
conflict problem.

But, fully associative cache tends to be expensive, 
so it’s pretty rare.
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Fully Associative Illustration

Could go into
any cache line

Main Memory Address
0100101011100101
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Set Associative Cache
Set Associative Cache is a compromise between 

direct mapped and fully associative.  A line in 
main memory can map to any of a fixed number
of cache lines.

For example, 2-way Set Associative Cache can map 
each main memory line to either of 2 cache lines 
(e.g., to the Least Recently Used), 3-way maps to 
any of 3 cache lines, 4-way to 4 lines, and so on.

Set Associative cache is cheaper than fully 
associative, but more robust than direct mapped.
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2-Way Set Associative Illustration
Could go into 
cache address

11100101
OR

Main Memory Address
0100101011100101

Could go into
cache address

01100101
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Cache Associativity Examples
Pentium 4 [5,10]

L1 data cache:             4-way set associative
L2 cache:                    8-way set associative

POWER4 [12]

L1 instruction cache:  direct mapped
L1 data cache:            2-way set associative
L2 cache:                    8-way set associative
L3 cache:                    8-way set associative
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If It’s in Cache, It’s Also in RAM
As we saw earlier:

If a particular memory address is currently in 
cache, then it’s also in RAM.
That is, all of your data and instructions are in 
RAM, but some are also in cache.
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Changing a Value That’s in Cache
Suppose that you have in cache a particular line of 

main memory.
If you don’t change the contents of any of that 

line’s bytes while it’s in cache, then when it gets 
clobbered by another main memory line coming 
into cache, there’s no loss of information.

But, if you change the contents of any byte while 
it’s in cache, then you need to store it back out to 
main memory before clobbering it. 
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Cache Store Jargon
Write-through: whenever a value in cache is 
changed, so is the associated value in main 
memory.
Write-back: whenever a value in cache is 
changed, it gets marked as dirty. When the line 
gets clobbered, if it’s been marked as dirty, then 
it gets stored back into main memory. [14]



The Importance of 
Being Local

[15]
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More Data Than Cache
Let’s say that you have 1000 times more data than 

cache.  Then won’t most of your data be outside 
the cache?

YES!
Okay, so how does cache help?
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Improving Your Cache Hit Rate
Many scientific codes use a lot more data than can 

fit in cache all at once.
Therefore, you need to ensure a high cache hit rate 

even though you’ve got much more data than 
cache.

So, how can you improve your cache hit rate?
Use the same solution as in Real Estate:
Location, Location, Location!
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Data Locality
Data locality is the principle that, if you use data in a 

particular memory address, then very soon you’ll 
use either the same address or a nearby address.
Temporal locality:  if you’re using address A now, 
then you’ll probably soon use address A again.
Spatial locality:  if you’re using address A now, then 
you’ll probably soon use addresses between  A-k 
and  A+k, where k is small.

Cache is designed to exploit spatial locality, which is 
why a cache miss causes a whole line to be loaded.
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Data Locality Is Empirical
Data locality has been observed empirically in 

many, many programs.

void ordered_fill (int* array, int array_length)
{ /* ordered_fill */

int index;

for (index = 0; index < array_length; index++) {
array[index] = index;

} /* for index */
} /* ordered_fill */
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No Locality Example
In principle, you could write a program that 

exhibited absolutely no data locality at all:

void random_fill (int* array,
int* random_permutation_index,
int array_length)

{ /* random_fill */
int index;

for (index = 0; index < array_length; index++) {
array[random_permutation_index[index]] = index;

} /* for index */
} /* random_fill */
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Permuted vs. Ordered

0

1

2

3

4
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7

8
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20 21 22 23 24 25
Array Size (bytes, log2)
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P
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 s

ec

Random
Ordered

In a simple array fill, locality provides a factor of 6 to 8 
speedup over a randomly ordered fill on a Pentium III.
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Exploiting Data Locality
If you know that your code is capable of operating 

with a decent amount of data locality, then you 
can get speedup by focusing your energy on 
improving the locality of the code’s behavior.

This will substantially increase your cache reuse.



OU Supercomputing Center for Education & Research 46

A Sample Application
Matrix-Matrix Multiply
Let A, B and C be matrices of sizes
nr × nc, nr × nk and nk × nc, respectively:
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for r ∈ {1, nr}, c ∈ {1, nc}.
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Matrix Multiply: Naïve Version
SUBROUTINE matrix_matrix_mult_by_naive (dst, src1, src2, &
&                                      nr, nc, nq)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN)  :: src1
REAL,DIMENSION(nq,nc),INTENT(IN)  :: src2

INTEGER :: r, c, q

CALL matrix_set_to_scalar(dst, nr, nc, 1, nr, 1, nc, 0.0)
DO c = 1, nc

DO r = 1, nr
DO q = 1, nq
dst(r,c) = dst(r,c) + src1(r,q) * src2(q,c)

END DO !! q = 1, nq
END DO !! r = 1, nr

END DO !! c = 1, nc
END SUBROUTINE matrix_matrix_mult_by_naive
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Matrix Multiply w/Initialization
SUBROUTINE matrix_matrix_mult_by_init (dst, src1, src2, &
&                                     nr, nc, nq)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN)  :: src1
REAL,DIMENSION(nq,nc),INTENT(IN)  :: src2

INTEGER :: r, c, q

DO c = 1, nc
DO r = 1, nr

dst(r,c) = 0.0
DO q = 1, nq
dst(r,c) = dst(r,c) + src1(r,q) * src2(q,c)

END DO !! q = 1, nq
END DO !! r = 1, nr

END DO !! c = 1, nc
END SUBROUTINE matrix_matrix_mult_by_init
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Matrix Multiply Via Intrinsic
SUBROUTINE matrix_matrix_mult_by_intrinsic ( &
&  dst, src1, src2, nr, nc, nq)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN)  :: src1
REAL,DIMENSION(nq,nc),INTENT(IN)  :: src2

dst = MATMUL(src1, src2)
END SUBROUTINE matrix_matrix_mult_by_intrinsic



OU Supercomputing Center for Education & Research 50

Matrix Multiply Behavior

If the matrix is big, then each sweep of a row will clobber nearby values in cache.
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Performance of Matrix Multiply
Matrix-Matrix Multiply
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Tiling
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Tiling
Tile: a small rectangular subdomain of a problem 
domain.  Sometimes called a block or a chunk.
Tiling: breaking the domain into tiles.
Operate on each tile to completion, then move to 
the next tile.
Tile size can be set at runtime, according to 
what’s best for the machine that you’re running 
on.
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Tiling Code
SUBROUTINE matrix_matrix_mult_by_tiling (dst, src1, src2, nr, nc, nq, &
& rtilesize, ctilesize, qtilesize)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN)  :: src1
REAL,DIMENSION(nq,nc),INTENT(IN)  :: src2
INTEGER,INTENT(IN) :: rtilesize, ctilesize, qtilesize

INTEGER :: rstart, rend, cstart, cend, qstart, qend

DO cstart = 1, nc, ctilesize
cend = cstart + ctilesize - 1
IF (cend > nc) cend = nc
DO rstart = 1, nr, rtilesize

rend = rstart + rtilesize - 1
IF (rend > nr) rend = nr
DO qstart = 1, nq, qtilesize

qend = qstart + qtilesize - 1
IF (qend > nq) qend = nq
CALL matrix_matrix_mult_tile(dst, src1, src2, nr, nc, nq, &

& rstart, rend, cstart, cend, qstart, qend)
END DO !! qstart = 1, nq, qtilesize

END DO !! rstart = 1, nr, rtilesize
END DO !! cstart = 1, nc, ctilesize

END SUBROUTINE matrix_matrix_mult_by_tiling
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Multiplying Within a Tile
SUBROUTINE matrix_matrix_mult_tile (dst, src1, src2, nr, nc, nq, &
& rstart, rend, cstart, cend, qstart, qend)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN)  :: src1
REAL,DIMENSION(nq,nc),INTENT(IN)  :: src2
INTEGER,INTENT(IN) :: rstart, rend, cstart, cend, qstart, qend

INTEGER :: r, c, q

DO c = cstart, cend
DO r = rstart, rend
if (qstart == 1) dst(r,c) = 0.0
DO q = qstart, qend
dst(r,c) = dst(r,c) + src1(r,q) * src2(q,c)

END DO !! q = qstart, qend
END DO !! r = rstart, rend

END DO !! c = cstart, cend
END SUBROUTINE matrix_matrix_mult_tile
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Performance with Tiling

Matrix-Matrix Mutiply Via Tiling (log-log)
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The Advantages of Tiling
It lets your code to exploit data locality better to get 
much more cache reuse: your code runs faster!
It’s a relatively modest amount of extra coding 
(typically a few wrapper functions and some 
changes to loop bounds).
If you don’t need tiling – because of the hardware, 
the compiler or the problem size – then you can turn 
it off by simply setting the tile size equal to the 
problem size.



Hard Disk

[16]



OU Supercomputing Center for Education & Research 59

Why Is Hard Disk Slow?
Your hard disk is much much slower than main memory 

(factor of 10-1000).  Why?
Well, accessing data on the hard disk involves physically 

moving:
the disk platter
the read/write head

In other words, hard disk is slow because objects move 
much slower than electrons.
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I/O Strategies

Read and write the absolute minimum amount.
Don’t reread the same data if you can keep it in 
memory.
Write binary instead of characters.
Use optimized I/O libraries like NetCDF [17] and 
HDF [18].
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Avoid Redundant I/O
An actual piece of code seen at OU:
for (thing = 0; thing < number_of_things; thing++) {
for (time = 0; time < number_of_timesteps; time++) {

read(file[time]);
do_stuff(thing, time);

} /* for time */
} /* for thing */

Improved version:
for (time = 0; time < number_of_timesteps; time++) {
read(file[time]);
for (thing = 0; thing < number_of_things; thing++) {

do_stuff(thing, time);
} /* for thing */

} /* for time */

Savings (in real life):  factor of 500!
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Write Binary, Not ASCII
When you write binary data to a file, you’re 

writing (typically) 4 bytes per value.
When you write ASCII (character) data, you’re 

writing (typically) 8-16 bytes per value.
So binary saves a factor of 2 to 4 (typically).



OU Supercomputing Center for Education & Research 63

Problem with Binary I/O
There are many ways to represent data inside a 

computer, especially floating point (real) data.
Often, the way that one kind of computer (e.g., a 

Pentium) saves binary data is different from another 
kind of computer (e.g., a Cray).

So, a file written on a Pentium machine may not be 
readable on a Cray.
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Portable I/O Libraries
NetCDF and HDF are the two most commonly used 

I/O libraries for scientific computing.
Each has its own internal way of representing 

numerical data.  When you write a file using, say, 
HDF, it can be read by a HDF on any kind of 
computer.

Plus, these libraries are optimized to make the I/O 
very fast.



Virtual Memory
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Virtual Memory
Typically, the amount of memory that a CPU can 
address is larger than the amount of data physically 
present in the computer.
For example, Henry’s laptop can address over a GB 
of memory (roughly a billion bytes), but only 
contains 512 MB (roughly 512 million bytes).
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Virtual Memory (cont’d)
Locality:  most programs don’t jump all over the 
memory that they use; instead, they work in a 
particular area of memory for a while, then move to 
another area.
So, you can offload onto hard disk much of the 
memory image of a program that’s running.
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Virtual Memory (cont’d)
Memory is chopped up into many pages of modest 
size (e.g., 1 KB – 32 KB).
Only pages that have been recently used actually 
reside in memory; the rest are stored on hard disk.
Hard disk is 10 to 1,000 times slower than main 
memory, so you get better performance if you rarely 
get a page fault, which forces a read from (and 
maybe a write to) hard disk: exploit data locality!
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Storage Use Strategies
Register reuse: do a lot of work on the same data 
before working on new data.
Cache reuse: the program is much more efficient if 
all of the data and instructions fit in cache; if not, 
try to use what’s in cache a lot before using 
anything that isn’t in cache (e.g., tiling).
Data locality: try to access data that are near each 
other in memory before data that are far.
I/O efficiency: do a bunch of I/O all at once rather 
than a little bit at a time; don’t mix calculations and 
I/O.
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