
Supercomputing
in Plain English

The Tyranny of the Storage Hierarchy
Henry Neeman, University of Oklahoma

Director, OU Supercomputing Center for Education & Research (OSCER)
Assistant Vice President, Information Technology – Research Strategy Advisor

Associate Professor, Gallogly College of Engineering
Adjunct Associate Professor, School of Computer Science

Tuesday January 30 - Tuesday Feb 6 2018

Supercomputing in Plain English: Storage
Tue Jan 30 - Tue Feb 6 2018 2

This is an experiment!
It’s the nature of these kinds of videoconferences that

FAILURES ARE GUARANTEED TO HAPPEN!
NO PROMISES!

So, please bear with us. Hopefully everything will work out
well enough.

If you lose your connection, you can retry the same kind of
connection, or try connecting another way.

Remember, if all else fails, you always have the phone bridge
to fall back on.

PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Storage
Tue Jan 30 - Tue Feb 6 2018 3

PLEASE MUTE YOURSELF
No matter how you connect, PLEASE MUTE YOURSELF,

so that we cannot hear you.
At OU, we will turn off the sound on all conferencing

technologies.
That way, we won’t have problems with echo cancellation.
Of course, that means we cannot hear questions.
So for questions, you’ll need to send e-mail:

supercomputinginplainenglish@gmail.com

PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

mailto:supercomputinginplainenglish@gmail.com

Download the Slides Beforehand
Before the start of the session, please download the slides from
the Supercomputing in Plain English website:

http://www.oscer.ou.edu/education/

That way, if anything goes wrong, you can still follow along
with just audio.

PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Storage
Tue Jan 30 - Tue Feb 6 2018 4

http://www.oscer.ou.edu/education/

Supercomputing in Plain English: Storage
Tue Jan 30 - Tue Feb 6 2018 5

Zoom
Go to:

http://zoom.us/j/979158478

Many thanks Eddie Huebsch, OU CIO, for providing this.

PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

http://zoom.us/j/979158478

Supercomputing in Plain English: Storage
Tue Jan 30 - Tue Feb 6 2018 6

YouTube
You can watch from a Windows, MacOS or Linux laptop or an

Android or iOS handheld using YouTube.
Go to YouTube via your preferred web browser or app, and then

search for:
Supercomputing InPlainEnglish

(InPlainEnglish is all one word.)
Many thanks to Skyler Donahue of OneNet for providing this.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Storage
Tue Jan 30 - Tue Feb 6 2018 7

Twitch
You can watch from a Windows, MacOS or Linux laptop or an

Android or iOS handheld using Twitch.
Go to:

http://www.twitch.tv/sipe2018

Many thanks to Skyler Donahue of OneNet for providing this.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

http://www.twitch.tv/sipe2018

Supercomputing in Plain English: Storage
Tue Jan 30 - Tue Feb 6 2018 8

Wowza #1
You can watch from a Windows, MacOS or Linux laptop using

Wowza from the following URL:

http://jwplayer.onenet.net/streams/sipe.html

If that URL fails, then go to:

http://jwplayer.onenet.net/streams/sipebackup.html

Many thanks to Skyler Donahue of OneNet for providing this.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

http://jwplayer.onenet.net/streams/sipe.html
http://jwplayer.onenet.net/streams/sipebackup.html

Wowza #2
Wowza has been tested on multiple browsers on each of:
 Windows 10: IE, Firefox, Chrome, Opera, Safari
 MacOS: Safari, Firefox
 Linux: Firefox, Opera
We’ve also successfully tested it via apps on devices with:
 Android
 iOS
Many thanks to Skyler Donahue of OneNet for providing this.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Storage
Tue Jan 30 - Tue Feb 6 2018 9

Supercomputing in Plain English: Storage
Tue Jan 30 - Tue Feb 6 2018 10

Toll Free Phone Bridge
IF ALL ELSE FAILS, you can use our US TOLL phone bridge:

405-325-6688
684 684 #

NOTE: This is for US call-ins ONLY.
PLEASE MUTE YOURSELF and use the phone to listen.
Don’t worry, we’ll call out slide numbers as we go.
Please use the phone bridge ONLY IF you cannot connect any

other way: the phone bridge can handle only 100 simultaneous
connections, and we have over 1000 participants.

Many thanks to OU CIO Eddie Huebsch for providing the
phone bridge..

Supercomputing in Plain English: Storage
Tue Jan 30 - Tue Feb 6 2018 11

Please Mute Yourself
No matter how you connect, PLEASE MUTE YOURSELF,

so that we cannot hear you.
(For YouTube, Twitch and Wowza, you don’t need to do that,

because the information only goes from us to you, not from
you to us.)

At OU, we will turn off the sound on all conferencing
technologies.

That way, we won’t have problems with echo cancellation.
Of course, that means we cannot hear questions.
So for questions, you’ll need to send e-mail.
PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Storage
Tue Jan 30 - Tue Feb 6 2018 12

Questions via E-mail Only
Ask questions by sending e-mail to:

supercomputinginplainenglish@gmail.com

All questions will be read out loud and then answered out loud.

DON’T USE CHAT OR VOICE FOR QUESTIONS!

No one will be monitoring any of the chats, and if we can hear
your question, you’re creating an echo cancellation problem.

PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

mailto:supercomputinginplainenglish@gmail.com

Onsite: Talent Release Form
If you’re attending onsite, you MUST do one of the following:
 complete and sign the Talent Release Form,
OR
 sit behind the cameras (where you can’t be seen) and don’t

talk at all.

If you aren’t onsite, then PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Storage
Tue Jan 30 - Tue Feb 6 2018 13

TENTATIVE Schedule
Tue Jan 23: Storage: What the Heck is Supercomputing?
Tue Jan 30: The Tyranny of the Storage Hierarchy Part I
Tue Feb 6: The Tyranny of the Storage Hierarchy Part II
Tue Feb 13: Instruction Level Parallelism
Tue Feb 20: Stupid Compiler Tricks
Tue Feb 27: Shared Memory Multithreading
Tue March 6: Distributed Multiprocessing
Tue March 13: Applications and Types of Parallelism
Tue March 20: NO SESSION (OU's Spring Break)
Tue March 27: Multicore Madness
Tue Apr 3: High Throughput Computing
Tue Apr 10: GPGPU: Number Crunching in Your Graphics Card
Tue Apr 17: Grab Bag: Scientific Libraries, I/O Libraries, Visualization
Tue Apr 24: Topic to be announced
Tue May 1: Topic to be announced

Supercomputing in Plain English: Storage
Tue Jan 30 - Tue Feb 6 2018 14

Supercomputing in Plain English: Storage
Tue Jan 30 - Tue Feb 6 2018 15

Thanks for helping!
 OU IT

 OSCER operations staff (Dave Akin, Patrick Calhoun, Kali
McLennan, Jason Speckman, Brett Zimmerman)

 OSCER Research Computing Facilitators (Jim Ferguson,
Horst Severini)

 Debi Gentis, OSCER Coordinator
 Kyle Dudgeon, OSCER Manager of Operations
 Ashish Pai, Managing Director for Research IT Services
 The OU IT network team
 OU CIO Eddie Huebsch

 OneNet: Skyler Donahue
 Oklahoma State U: Dana Brunson

Supercomputing in Plain English: Storage
Tue Jan 30 - Tue Feb 6 2018 16

This is an experiment!
It’s the nature of these kinds of videoconferences that

FAILURES ARE GUARANTEED TO HAPPEN!
NO PROMISES!

So, please bear with us. Hopefully everything will work out
well enough.

If you lose your connection, you can retry the same kind of
connection, or try connecting another way.

Remember, if all else fails, you always have the phone bridge
to fall back on.

PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

Coming in 2018!
 Coalition for Advancing Digital Research & Education (CADRE) Conference:

Apr 17-18 2018 @ Oklahoma State U, Stillwater OK USA
https://hpcc.okstate.edu/cadre-conference

 Linux Clusters Institute workshops
http://www.linuxclustersinstitute.org/workshops/

 Introductory HPC Cluster System Administration: May 14-18 2018 @ U Nebraska, Lincoln NE USA
 Intermediate HPC Cluster System Administration: Aug 13-17 2018 @ Yale U, New Haven CT USA

 Great Plains Network Annual Meeting: details coming soon
 Advanced Cyberinfrastructure Research & Education Facilitators (ACI-REF) Virtual

Residency Aug 5-10 2018, U Oklahoma, Norman OK USA
 PEARC 2018, July 22-27, Pittsburgh PA USA

https://www.pearc18.pearc.org/

 IEEE Cluster 2018, Sep 10-13, Belfast UK
https://cluster2018.github.io

 OKLAHOMA SUPERCOMPUTING SYMPOSIUM 2018, Sep 25-26 2018 @ OU
 SC18 supercomputing conference, Nov 11-16 2018, Dallas TX USA

http://sc18.supercomputing.org/

Supercomputing in Plain English: Storage
Tue Jan 30 - Tue Feb 6 2018 17

https://hpcc.okstate.edu/cadre-conference
http://www.linuxclustersinstitute.org/workshops/
https://www.pearc18.pearc.org/
https://cluster2018.github.io/
http://sc18.supercomputing.org/

18

Outline
 What is the storage hierarchy?
 Registers
 Cache
 Main Memory (RAM)
 The Relationship Between RAM and Cache
 The Importance of Being Local
 Hard Disk
 Virtual Memory

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018 19

The Storage Hierarchy

 Registers
 Cache memory
 Main memory (RAM)
 Hard disk
 Removable media (CD, DVD etc)
 Internet

Fast, expensive, few

Slow, cheap, a lot
[5]

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018 20

Henry’s Laptop

 Intel Core i3-4010U
dual core, 1.7 GHz, 3 MB L3 Cache

 12 GB 1600 MHz DDR3L SDRAM
 340 GB SATA 5400 RPM Hard Drive
 DVD+RW/CD-RW Drive
 1 Gbps Ethernet Adapter

Dell Latitude E5540[4]

http://content.hwigroup.net/images
/products/xl/204419/dell_latitude_

e5540_55405115.jpg

http://content.hwigroup.net/images/products/xl/204419/dell_latitude_e5540_55405115.jpg

Supercomputing in Plain English: Storage
Tue Jan 30 - Tue Feb 6 2018 21

Storage Speed, Size, Cost

Henry’s
Laptop

Registers
(Intel

Core2 Duo
1.6 GHz)

Cache
Memory

(L3)

Main
Memory

(1600MHz
DDR3L

SDRAM)

Hard
Drive

Flash
Thumb
Drive

(USB 3.0)

Ethernet
(1000
Mbps)

Blu-Ray

Speed
(MB/sec)

[peak]

668,672[6]

(16
GFLOP/s*)

46,000 15,000 [7] 100[9] 625 125 72
[10]

Size
(MB)

10,752
bytes**

[11]

3 12,288
4096 times as
much as cache

340,000 1024 unlimited unlimited

Cost
($/MB) –

$20 [12] $0.0093
[12]

~1/2000 as
much as cache

$0.00003
[12]

$0.00018
[12]

charged
per month
(typically)

$0.00006
[12]

* GFLOP/s: billions of floating point operations per second
** 168 256-bit integer vector registers,

168 256-bit floating point vector registers

Multicore

[25]

Supercomputing in Plain English: Storage
Tue Jan 30 - Tue Feb 6 2018 23

Multicore
 A multicore CPU is a chip with multiple, independent “brains,”

known as cores.
 These multiple cores can run completely separate programs, or

they can cooperate together to work simultaneously in parallel
on different parts of the same program.

 All of the cores share the same connection to memory –
and the same bandwidth (memory speed).

 NOTE: From now on, you can’t say “CPU” (or “processor”)
as a noun any more, only “chip” or “core,” because “CPU” is
ambiguous. (You can say “CPU chip” or “CPU core.”)
 The technical term for a CPU chip is socket, which is where the

chip gets plugged in to on the motherboard. So a computer with
two CPU chips is called a “dual socket” computer.

Supercomputing in Plain English: Storage
Tue Jan 30 - Tue Feb 6 2018 24

Multicore History (x86)
 Single core: November 1971 (Intel 4004)
 Dual core: October 2005 (Intel), March 2006 (AMD)
 Quad core: June 2006 (Intel), Sep 2007 (AMD)
 Hex core: Sep 2008 (Intel), June 2009 (AMD)
 8 core (Intel & AMD), 12 core (AMD only): March 2010
 16 core: Nov 2011 (AMD only)
 18 core: Sep 2014 (Intel only)
 22 core: March 2016 (Intel only)
 28 core: July 2017 (Intel only)
 32 core: June 2017 (AMD only)
http://www.intel.com/pressroom/kits/quickreffam.htm (dual core, quad core)
http://ark.intel.com/products/family/34348/Intel-Xeon-Processor-7000-Sequence#@Server (6 core)
http://ark.intel.com/ProductCollection.aspx?familyID=594&MarketSegment=SRV (8 core)
http://en.wikipedia.org/wiki/Intel_Nehalem_(microarchitecture) (8 core)
http://en.wikipedia.org/wiki/AMD_Opteron (12 core)
https://en.wikipedia.org/wiki/Broadwell_(microarchitecture) (22 core)
https://en.wikipedia.org/wiki/Skylake_(microarchitecture) (28 core)
https://en.wikipedia.org/wiki/Epyc (32 core)

Note that this is only for x86 – other
processor families (for example, POWER)
introduced multicore earlier.

http://www.intel.com/pressroom/kits/quickreffam.htm
http://ark.intel.com/products/family/34348/Intel-Xeon-Processor-7000-Sequence#@Server
http://ark.intel.com/ProductCollection.aspx?familyID=594&MarketSegment=SRV
http://en.wikipedia.org/wiki/Intel_Nehalem_(microarchitecture)
http://en.wikipedia.org/wiki/AMD_Opteron
https://en.wikipedia.org/wiki/Broadwell_(microarchitecture)
https://en.wikipedia.org/wiki/Skylake_(microarchitecture)
https://en.wikipedia.org/wiki/Epyc

Why Multicore?
 In the olden days (until the mid-2000s), the way you made

your CPU chip faster was to increase its clock speed (GHz).
 The problem is, the heat dissipation of a chip rises

exponentially, alongside the clock speed (GHz).

Supercomputing in Plain English: Storage
Tue Jan 30 - Tue Feb 6 2018 25

“No one,” as [Patrick] Gelsinger
[of Intel] puts it, “wants to carry
a nuclear reactor in their laptop
onto a plane.”
https://www.theregister.co.uk/2001/02/06/intel_touts_alpha_ibm_designs/

https://newscenter.lbl.gov/wp-content/uploads/sites/2/2008/07/yelick-berkeleyview-july081.pdf

https://newscenter.lbl.gov/wp-content/uploads/sites/2/2008/07/yelick-
berkeleyview-july081.pdf

https://www.theregister.co.uk/2001/02/06/intel_touts_alpha_ibm_designs/
https://newscenter.lbl.gov/wp-content/uploads/sites/2/2008/07/yelick-berkeleyview-july081.pdf
https://newscenter.lbl.gov/wp-content/uploads/sites/2/2008/07/yelick-berkeleyview-july081.pdf

Registers

[25]

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018 27

What Are Registers?
Registers are memory-like locations inside the Central

Processing Unit that hold data that are being used
right now in operations.

…

Arithmetic/Logic UnitControl Unit Registers
Fetch Next Instruction Add Sub

Mult Div

And Or

Not …

Integer

Floating Point

…

Fetch Data Store Data

Increment Instruction Ptr

Execute Instruction

…

CPU

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018 28

How Registers Are Used
 Every arithmetic or logical operation has one or more

operands and one result.
 Operands are contained in source registers.
 A “black box” of circuits performs the operation.
 The result goes into a destination register.

Ex
am

pl
e:

addend in R0

augend in R1
ADD sum in R2

5

7
12

Register Ri

Register Rj
Register Rk

operand

operand

result

Operation circuitry

29

How Many Registers?
Typically, a CPU has less than 16 KB (16,384 bytes) of registers,

usually split into registers for holding integer values and registers
for holding floating point (real) values, plus a few special purpose
registers.

Examples:
 IBM POWER7 (found in IBM p-Series supercomputers):

226 64-bit integer registers and 348 128-bit merged
vector/scalar registers (7376 bytes) [28]

 Intel Haswell: 168 256-bit integer vector registers,
168 256-bit floating point vector registers (10,752 bytes) [11]

 Intel Itanium2: 128 64-bit integer registers, 128 82-bit floating
point registers (2304 bytes) [23]

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

Why So Few Registers?
Why so few registers?
Because having more registers can be expensive, but doesn’t
seem to help much:
“… [A]lthough for all applications, in average, the best size of
[the] register file is 68 and above but in sizes near … half of
this size performance penalty is lower that 5%.”
M. Alipour, M. E. Salehi, H. Shojaei Baghini, “Design Space Exploration to Find the
Optimum Cache and Register File Size for Embedded Applications.” Int'l Conf. Embedded
Systems and Applications (ESA'11), 214-219.
http://arxiv.org/ftp/arxiv/papers/1205/1205.1871.pdf

In other words, you can add more registers, but your CPU will
cost more, may draw more power, and your performance
improvement will be very modest.

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018 30

http://arxiv.org/ftp/arxiv/papers/1205/1205.1871.pdf

Cache

[4]

32

What is Cache?
 A special kind of memory where data reside that are

about to be used or have just been used.
 Very fast => very expensive => very small (typically 100

to 10,000 times as expensive as RAM per byte)
 Data in cache can be loaded into or stored from registers

at speeds comparable to the speed of performing
computations.

 Data that are not in cache (but that are in Main Memory)
take much longer to load or store.

 Cache is near the CPU: either inside the CPU or on the
motherboard that the CPU sits on.

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018 33

From Cache to the CPU

Typically, data move between cache and the CPU at speeds
relatively near to that of the CPU performing calculations.

CPU

Cache

46 GB/sec (~3x RAM)[7]

653 GB/sec[7]

34

Multiple Levels of Cache
Most contemporary CPUs have more than one level of cache.

For example:
 Intel Skylake [31]

 Level 1 caches: 32 KB instruction, 32 KB data per core
 Level 2 cache: 256 KB - 1 MB unified (instruction+data)

per core
 Level 3 cache: 8.25 - 38.5 MB, shared among all cores

 IBM POWER7 [28]

 Level 1 cache: 32 KB instruction, 32 KB data per core
 Level 2 cache: 256 KB unified per core
 Level 3 cache: 4096 KB unified per core

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

35

Why Multiple Levels of Cache?
The lower the level of cache:
 the faster the cache can transfer data to the CPU;
 the smaller that level of cache is (faster => more expensive => smaller).
Example: IBM POWER7 latency to the CPU [28]

 L1 cache: 1 cycle = 0.29 ns for 3.5 GHz
 L2 cache: 8.5 cycles = 2.43 ns for 3.5 GHz (average)
 L3 cache: 23.5 cycles = 5.53 ns for 3.5 GHz (local to core)
 RAM: 346 cycles = 98.86 ns for 3.5 GHz (1066 MHz RAM)
Example: Intel Itanium2 latency to the CPU [19]

 L1 cache: 1 cycle = 1.0 ns for 1.0 GHz
 L2 cache: 5 cycles = 5.0 ns for 1.0 GHz
 L3 cache: 12-15 cycles = 12 – 15 ns for 1.0 GHz
Example: Intel Skylake[32]

 L1 cache 4-5 cycles =2-2.5 ns @ 2.0 GHz = 128-160 calculations
 L2 cache: 12 cycles = 6 ns @ 2.0 GHz = 384 calculations
 L3 cache: 42 cycles = 21 ns @ 2.0 GHz = 1344 calculations
 RAM: 42 cycles + 51 ns = 72 ns @ 2.0 GHz = 2160 calculations

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

36

Cache & RAM Latencies

0

10

20

30

40

50

60

L
at

en
cy

 (c
lo

ck
 cy

cl
es

)

Array Size (bytes)

Cache & RAM Latency: Intel T2400 (1.83 GHz)

Memory Latency

3 cycles

14 cycles

47 cycles

Better
[26]

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

Main Memory

[13]

38

What is Main Memory?
 Where data reside for a program that is currently running
 Sometimes called RAM (Random Access Memory): you can

load from or store into any main memory location at any time
 Sometimes called core (from magnetic “cores” that some

memories used, many years ago)
 Much slower => much cheaper => much bigger

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018 39

What Main Memory Looks Like

…
0 1 2 3 4 5 6 7 8 9 10

536,870,911

You can think of main memory as a
big long 1D array of bytes.

The Relationship
Between

Main Memory & Cache

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018 41

RAM is Slow
CPU 653 GB/sec

15 GB/sec (2.3%)

Bottleneck

The speed of data transfer
between Main Memory and the
CPU is much slower than the
speed of calculating, so the CPU
spends most of its time waiting
for data to come in or go out.

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018 42

Why Have Cache?
CPUCache is much closer to the speed

of the CPU, so the CPU doesn’t
have to wait nearly as long for
stuff that’s already in cache:
it can do more
operations per second! 15 GB/sec (2.3%)(1%)

46 GB/sec (8%)

43

Cache & RAM Bandwidths

0

2000

4000

6000

8000

10000

12000

14000

16000

B
an

dw
id

th
 (M

B
/s

ec
)

Array Size (bytes)

Cache & RAM Bandwidth: Intel T2400 (1.83 GHz)

Read BW
Write BW

32 KB (L1 cache size)

2 MB (L2 cache size)

7.7 GB/sec14.2 GB/sec

3.5 GB/sec

1.4 GB/sec

Better

[26]

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

44

Cache Use Jargon
 Cache Hit: the data that the CPU needs right now are

already in cache.
 Cache Miss: the data that the CPU needs right now are

not currently in cache.
If all of your data are small enough to fit in cache, then when

you run your program, you’ll get almost all cache hits
(except at the very beginning), which means that your
performance could be excellent!

Sadly, this rarely happens in real life: most problems of
scientific or engineering interest are bigger than just a few
MB.

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

45

Cache Lines
 A cache line is a small, contiguous region in cache,

corresponding to a contiguous region in RAM of the same
size, that is loaded all at once.

 Typical size: 32 to 1024 bytes
 Examples

 Intel Skylake [32]

 L1 data cache: 64 bytes per line
 L2 cache: 64 bytes per line
 L3 cache: 64 bytes per line

 POWER7 [28]

 L1 instruction cache: 128 bytes per line
 L1 data cache: 128 bytes per line
 L2 cache: 128 bytes per line
 L3 cache: 128 bytes per line

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

46

How Cache Works
When you request data from a particular address in Main

Memory, here’s what happens:
1. The hardware checks whether the data for that address is

already in cache. If so, it uses it.
2. Otherwise, it loads from Main Memory the entire cache

line that contains the address.
For example, on a 2.0 GHz Sandy Bridge, a cache miss makes

the program stall (wait) at least 26 cycles (13 nanoseconds)
for the next cache line to load – time that could have been
spent performing up to 208 calculations! [29]

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

47

If It’s in Cache, It’s Also in RAM
If a particular memory address is currently in cache, then it’s

also in Main Memory (RAM).
That is, all of a program’s data are in Main Memory, but some

are also in cache.
We’ll revisit this point shortly.

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

48

Mapping Cache Lines to RAM
Main memory typically maps into cache in one of three

ways:
 Direct mapped (occasionally)
 Fully associative (very rare these days)
 Set associative (common)

DON’T
PANIC!

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

49

Direct Mapped Cache
Direct Mapped Cache is a scheme in which each location in

main memory corresponds to exactly one location in cache
(but not the reverse, since cache is much smaller than main
memory).

Typically, if a cache address is represented by c bits, and a
main memory address is represented by m bits, then the
cache location associated with main memory address A is
MOD(A,2c); that is, the lowest c bits of A.

Example: POWER4 L1 instruction cache

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018 50

Direct Mapped Cache Illustration
Must go into
cache address

11100101

Main Memory Address
0100101011100101

Notice that 11100101
is the low 8 bits of
0100101011100101.

51

Jargon: Cache Conflict
Suppose that the cache address 11100101 currently contains

RAM address 0100101011100101.
But, we now need to load RAM address 1100101011100101,

which maps to the same cache address as
0100101011100101.

This is called a cache conflict : the CPU needs a RAM
location that maps to a cache line already in use.

In the case of direct mapped cache, every cache conflict leads
to the new cache line clobbering the old cache line.

This can lead to serious performance problems.

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

52

Problem with Direct Mapped: F90
If you have two arrays that start in the same place relative

to cache, then they might clobber each other all the
time: no cache hits!

REAL,DIMENSION(multiple_of_cache_size) :: a, b, c
INTEGER :: index

DO index = 1, multiple_of_cache_size
a(index) = b(index) + c(index)

END DO

In this example, a(index), b(index) and c(index) all
map to the same cache line, so loading c(index) clobbers
b(index) – no cache reuse!

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

53

Problem with Direct Mapped: C
If you have two arrays that start in the same place relative

to cache, then they might clobber each other all the
time: no cache hits!

float a[multiple_of_cache_size],
b[multiple_of_cache_size,
c[multiple_of_cache_size];

int index;

for (index = 0; index < multiple_of_cache_size;
index++)
{ a[index] = b[index] + c[index]; }

In this example, a[index], b[index] and c[index] all
map to the same cache line, so loading c[index] clobbers
b[index] – no cache reuse!

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

54

Fully Associative Cache
Fully Associative Cache can put any line of main memory into

any cache line.
Typically, the cache management system will put the newly

loaded data into the Least Recently Used cache line, though
other strategies are possible (e.g., Random, First In First
Out, Round Robin, Least Recently Modified).

So, this can solve, or at least reduce, the cache conflict
problem.

But, fully associative cache tends to be expensive, so it’s pretty
rare: you need Ncache

. NRAM connections!

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018 55

Fully Associative Illustration

Could go into
any cache line

Main Memory Address
0100101011100101

56

Set Associative Cache
Set Associative Cache is a compromise between direct

mapped and fully associative. A line in main memory
can map to any of a fixed number of cache lines.

For example, 2-way Set Associative Cache can map each
main memory line to either of 2 cache lines (e.g., to the
Least Recently Used), 3-way maps to any of 3 cache
lines, 4-way to 4 lines, and so on.

Set Associative cache is cheaper than fully associative –
you need K . NRAM connections – but more robust than
direct mapped.

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018 57

2-Way Set Associative Illustration
Could go into
cache address

11100101

Main Memory Address
0100101011100101

Could go into
cache address

01100101

OR

58

Cache Associativity Examples
 Sandy Bridge [31]

 L1 data cache: 8-way set associative
 L2 cache: 8-way set associative
 L3 cache: varies with cache size

 POWER4 [12]

 L1 instruction cache: direct mapped
 L1 data cache: 2-way set associative
 L2 cache: 8-way set associative
 L3 cache: 8-way set associative

 POWER7 [28]

 L1 instruction cache: 4-way set associative
 L1 data cache: 8-way set associative
 L2 cache: 8-way set associative
 L3 cache: 8-way set associative

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

59

If It’s in Cache, It’s Also in RAM
As we saw earlier:

If a particular memory address is currently in cache, then
it’s also in Main Memory (RAM).
That is, all of a program’s data are in Main Memory, but
some are also in cache.

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

60

Changing a Value That’s in Cache
Suppose that you have in cache a particular line of main

memory (RAM).
If you don’t change the contents of any of that line’s bytes

while it’s in cache, then when it gets clobbered by another
main memory line coming into cache, there’s no loss of
information.

But, if you change the contents of any byte while it’s in cache,
then you need to store it back out to main memory before
clobbering it.

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

61

Cache Store Strategies
Typically, there are two possible cache store strategies:
 Write-through: Every single time that a value in cache is

changed, that value is also stored back into main memory
(RAM).

 Write-back: Every single time that a value in cache is
changed, the cache line containing that cache location gets
marked as dirty. When a cache line gets clobbered, then if it
has been marked as dirty, then it is stored back into main
memory (RAM). [14]

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

62

Cache Store Examples
 Intel Sandy Bridge [31]

 L1 cache: write-back
 Pentium D [26]

 L1 cache: write-through

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

The Importance of
Being Local

[15]

64

More Data Than Cache
Let’s say that you have 1000 times more data than cache.

Then won’t most of your data be outside the cache?

YES!
Okay, so how does cache help?

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

65

Improving Your Cache Hit Rate
Many scientific codes use a lot more data than can fit in cache

all at once.
Therefore, you need to ensure a high cache hit rate even

though you’ve got much more data than cache.
So, how can you improve your cache hit rate?
Use the same solution as in Real Estate:
Location, Location, Location!

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

66

Data Locality
Data locality is the principle that, if you use data in a particular

memory address, then very soon you’ll use either the same
address or a nearby address.

 Temporal locality: if you’re using address A now, then
you’ll probably soon use address A again.

 Spatial locality: if you’re using address A now, then you’ll
probably soon use addresses between A-k and A+k, where
k is small.

Note that this principle works well for sufficiently small values
of “soon.”

Cache is designed to exploit locality, which is why a cache miss
causes a whole line to be loaded.

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

67

Data Locality Is Empirical: C
Data locality has been observed empirically in many, many

programs. This routine marches from the beginning of the
array to the end.

void ordered_fill (float* array, int array_length)
{ /* ordered_fill */
int index;

for (index = 0; index < array_length; index++) {
array[index] = index;

} /* for index */
} /* ordered_fill */

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

68

Data Locality Is Empirical: F90
Data locality has been observed empirically in many, many

programs. This routine marches from the beginning of the
array to the end.

SUBROUTINE ordered_fill (array, array_length)
IMPLICIT NONE
INTEGER,INTENT(IN) :: array_length
REAL,DIMENSION(array_length),INTENT(OUT) :: array
INTEGER :: index

DO index = 1, array_length
array(index) = index

END DO
END SUBROUTINE ordered_fill

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

69

No Locality Example: C
In principle, you could write a program that exhibited

absolutely no data locality at all: it randomly jumps from
one index to another with no pattern at all.

void random_fill (float* array,
int* random_permutation_index,
int array_length)

{ /* random_fill */
int index;

for (index = 0; index < array_length; index++) {
array[random_permutation_index[index]] = index;

} /* for index */
} /* random_fill */

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

70

No Locality Example: F90
In principle, you could write a program that exhibited

absolutely no data locality at all:it randomly jumps from
one index to another with no pattern at all.

SUBROUTINE random_fill (array,
random_permutation_index, array_length)

IMPLICIT NONE
INTEGER,INTENT(IN) :: array_length
INTEGER,DIMENSION(array_length),INTENT(IN) :: &

& random_permutation_index
REAL,DIMENSION(array_length),INTENT(OUT) :: array
INTEGER :: index

DO index = 1, array_length
array(random_permutation_index(index)) = index

END DO
END SUBROUTINE random_fill

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

71

Permuted vs. Ordered

In a simple array fill, locality provides a factor of 8 to 20
speedup over a randomly ordered fill on a Pentium4.

Better
0

5

10

15

20

25

30

0 5 10 15 20 25 30

Array size (log2 bytes)

C
PU

 s
ec

on
ds

Random
Ordered

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

72

Exploiting Data Locality
If you know that your code is capable of operating with a

decent amount of data locality, then you can get speedup by
focusing your energy on improving the locality of the
code’s behavior.

This will substantially increase your cache reuse.

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

73

A Sample Application
Matrix-Matrix Multiply
Let A, B and C be matrices of sizes
nr × nc, nr × nk and nk × nc, respectively:

=

ncnrnrnrnr

nc

nc

nc

aaaa

aaaa
aaaa
aaaa

,3,2,1,

,33,32,31,3

,23,22,21,2

,13,12,11,1

A

=

nknrnrnrnr

nk

nk

nk

bbbb

bbbb
bbbb
bbbb

,3,2,1,

,33,32,31,3

,23,22,21,2

,13,12,11,1

B

=

ncnknknknk

nc

nc

nc

cccc

cccc
cccc
cccc

,3,2,1,

,33,32,31,3

,23,22,21,2

,13,12,11,1

C

∑
=

⋅++⋅+⋅+⋅=⋅=
nk

k
cnknkrcrcrcrckkrcr cbcbcbcbcba

1
,,,33,,22,,11,,,,

The definition of A = B • C is

for r ∈ {1, nr}, c ∈ {1, nc}.
Supercomputing in Plain English: Storage Hierarchy

Tue Jan 30 - Tue Feb 6 2018

74

Matrix Multiply w/Initialization
SUBROUTINE matrix_matrix_mult_by_init (dst, src1, src2, &
& nr, nc, nq)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN) :: src1
REAL,DIMENSION(nq,nc),INTENT(IN) :: src2

INTEGER :: r, c, q

DO c = 1, nc
DO r = 1, nr

dst(r,c) = 0.0
DO q = 1, nq

dst(r,c) = dst(r,c) + src1(r,q) * src2(q,c)
END DO !! q

END DO !! r
END DO !! c

END SUBROUTINE matrix_matrix_mult_by_init
Supercomputing in Plain English: Storage Hierarchy

Tue Jan 30 - Tue Feb 6 2018

75

Matrix Multiply w/Initialization
void matrix_matrix_mult_by_init (

float** dst, float** src1, float** src2,
int nr, int nc, int nq)

{ /* matrix_matrix_mult_by_init */
int r, c, q;

for (r = 0; r < nr; r++) {
for (c = 0; c < nc; c++) {

dst[r][c] = 0.0;
for (q = 0; q < nq; q++) {

dst[r][c] = dst[r][c] + src1[r][q] * src2[q][c];
} /* for q */

} /* for c */
} /* for r */

} /* matrix_matrix_mult_by_init */

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

76

Matrix Multiply Via Intrinsic
SUBROUTINE matrix_matrix_mult_by_intrinsic (&
& dst, src1, src2, nr, nc, nq)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN) :: src1
REAL,DIMENSION(nq,nc),INTENT(IN) :: src2

dst = MATMUL(src1, src2)
END SUBROUTINE matrix_matrix_mult_by_intrinsic

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018 77

Matrix Multiply Behavior

If the matrix is big, then each sweep of a row will clobber nearby values in cache.

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018 78

Performance of Matrix Multiply
Matrix-Matrix Multiply

0

100

200

300

400

500

600

700

800

0 10000000 20000000 30000000 40000000 50000000 60000000

Total Problem Size in bytes (nr*nc+nr*nq+nq*nc)

C
PU

 se
c

Naive

Init

IntrinsicBetter

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018 79

Tiling

80

Tiling
 Tile: a small rectangular subdomain of a problem domain.

Sometimes called a block or a chunk.
 Tiling: breaking the domain into tiles.
 Tiling strategy: operate on each tile to completion, then

move to the next tile.
 Tile size can be set at runtime, according to what’s best for

the machine that you’re running on.

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

81

Tiling Code: F90
SUBROUTINE matrix_matrix_mult_by_tiling (dst, src1, src2, nr, nc, nq, &
& rtilesize, ctilesize, qtilesize)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN) :: src1
REAL,DIMENSION(nq,nc),INTENT(IN) :: src2
INTEGER,INTENT(IN) :: rtilesize, ctilesize, qtilesize

INTEGER :: rstart, rend, cstart, cend, qstart, qend

DO cstart = 1, nc, ctilesize
cend = cstart + ctilesize - 1
IF (cend > nc) cend = nc
DO rstart = 1, nr, rtilesize

rend = rstart + rtilesize - 1
IF (rend > nr) rend = nr
DO qstart = 1, nq, qtilesize

qend = qstart + qtilesize - 1
IF (qend > nq) qend = nq
CALL matrix_matrix_mult_tile(dst, src1, src2, nr, nc, nq, &

& rstart, rend, cstart, cend, qstart, qend)
END DO !! qstart

END DO !! rstart
END DO !! cstart

END SUBROUTINE matrix_matrix_mult_by_tiling

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

82

Tiling Code: C
void matrix_matrix_mult_by_tiling (

float** dst, float** src1, float** src2,
int nr, int nc, int nq,
int rtilesize, int ctilesize, int qtilesize)

{ /* matrix_matrix_mult_by_tiling */
int rstart, rend, cstart, cend, qstart, qend;

for (rstart = 0; rstart < nr; rstart += rtilesize) {
rend = rstart + rtilesize – 1;
if (rend >= nr) rend = nr - 1;
for (cstart = 0; cstart < nc; cstart += ctilesize) {
cend = cstart + ctilesize – 1;
if (cend >= nc) cend = nc - 1;
for (qstart = 0; qstart < nq; qstart += qtilesize) {
qend = qstart + qtilesize – 1;
if (qend >= nq) qend = nq - 1;
matrix_matrix_mult_tile(dst, src1, src2, nr, nc, nq,

rstart, rend, cstart, cend, qstart, qend);
} /* for qstart */

} /* for cstart */
} /* for rstart */

} /* matrix_matrix_mult_by_tiling */

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

83

Multiplying Within a Tile: F90
SUBROUTINE matrix_matrix_mult_tile (dst, src1, src2, nr, nc, nq, &
& rstart, rend, cstart, cend, qstart, qend)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN) :: src1
REAL,DIMENSION(nq,nc),INTENT(IN) :: src2
INTEGER,INTENT(IN) :: rstart, rend, cstart, cend, qstart, qend

INTEGER :: r, c, q

DO c = cstart, cend
DO r = rstart, rend
IF (qstart == 1) dst(r,c) = 0.0
DO q = qstart, qend
dst(r,c) = dst(r,c) + src1(r,q) * src2(q,c)

END DO !! q
END DO !! r

END DO !! c
END SUBROUTINE matrix_matrix_mult_tile

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

84

Multiplying Within a Tile: C
void matrix_matrix_mult_tile (

float** dst, float** src1, float** src2,
int nr, int nc, int nq,
int rstart, int rend, int cstart, int cend,
int qstart, int qend)

{ /* matrix_matrix_mult_tile */
int r, c, q;

for (r = rstart; r <= rend; r++) {
for (c = cstart; c <= cend; c++) {

if (qstart == 0) dst[r][c] = 0.0;
for (q = qstart; q <= qend; q++) {

dst[r][c] = dst[r][c] + src1[r][q] * src2[q][c];
} /* for q */

} /* for c */
} /* for r */

} /* matrix_matrix_mult_tile */

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018 85

Performance with Tiling

Matrix-Matrix Mutiply Via Tiling (log-log)

0.1

1

10

100

1000

101001000100001000001000000100000001E+08

Tile Size (bytes)

C
PU

 se
c

512x256

512x512

1024x512

1024x1024

2048x1024

Matrix-Matrix Mutiply Via Tiling

0

50

100

150

200

250

10100100010000100000100000010000000100000000

Tile Size (bytes)

Better

86

The Advantages of Tiling
 It allows your code to exploit data locality better, to get

much more cache reuse: your code runs faster!
 It’s a relatively modest amount of extra coding (typically a

few wrapper functions and some changes to loop bounds).
 If you don’t need tiling – because of the hardware, the

compiler or the problem size – then you can turn it off by
simply setting the tile size equal to the problem size.

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

87

Will Tiling Always Work?
Tiling WON’T always work. Why?
Well, tiling works well when:
 the order in which calculations occur doesn’t matter much,

AND
 there are lots and lots of calculations to do for each memory

movement.
If either condition is absent, then tiling won’t help.

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

Hard Disk

89

Why Is Hard Disk Slow?
Your hard disk is much much slower than main memory (factor of

1000+). Why?
Well, accessing data on the hard disk involves physically moving:

 the disk platter
 the read/write head

In other words, hard disk is slow because objects move much slower
than electrons: Newtonian speeds are much slower than
Einsteinian speeds.

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

90

I/O Strategies
Read and write the absolute minimum amount.
 Don’t reread the same data if you can keep it in memory.
 Write binary instead of characters.
 Use optimized I/O libraries like NetCDF [17] and HDF [18].

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

91

Avoid Redundant I/O: C
An actual piece of code seen at OU:
for (thing = 0; thing < number_of_things; thing++) {

for (timestep = 0; timestep < number_of_timesteps; timestep++) {
read_file(filename[timestep]);
do_stuff(thing, timestep);

} /* for timestep */
} /* for thing */

Improved version:
for (timestep = 0; timestep < number_of_timesteps; timestep++) {

read_file(filename[timestep]);
for (thing = 0; thing < number_of_things; thing++) {

do_stuff(thing, timestep);
} /* for thing */

} /* for timestep */

Savings (in real life): factor of 500!
Supercomputing in Plain English: Storage Hierarchy

Tue Jan 30 - Tue Feb 6 2018

92

Avoid Redundant I/O: F90
An actual piece of code seen at OU:

DO thing = 1, number_of_things
DO timestep = 1, number_of_timesteps

CALL read_file(filename(timestep))
CALL do_stuff(thing, timestep)

END DO !! timestep
END DO !! thing

Improved version:
DO timestep = 1, number_of_timesteps

CALL read_file(filename(timestep))
DO thing = 1, number_of_things

CALL do_stuff(thing, timestep)
END DO !! thing

END DO !! timestep

Savings (in real life): factor of 500!
Supercomputing in Plain English: Storage Hierarchy

Tue Jan 30 - Tue Feb 6 2018

93

Write Binary, Not ASCII
When you write binary data to a file, you’re writing (typically)

4 bytes per value.
When you write ASCII (character) data, you’re writing

(typically) 8-16 bytes per value.
So binary saves a factor of 2 to 4 (typically).

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

94

Problem with Binary I/O
There are many ways to represent data inside a computer,

especially floating point (real) data.
Often, the way that one kind of computer (e.g., an Intel i7)

saves binary data is different from another kind of
computer (e.g., an IBM POWER7).

So, a file written on an Intel i7 machine may not be readable
on an IBM POWER7.

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

95

Portable I/O Libraries
NetCDF and HDF are the two most commonly used I/O

libraries for scientific computing.
Each has its own internal way of representing numerical data.

When you write a file using, say, HDF, it can be read by a
HDF on any kind of computer.

Plus, these libraries are optimized to make the I/O very fast.

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

Virtual Memory

97

Virtual Memory
 Typically, the amount of main memory (RAM) that a CPU

can address is larger than the amount of data physically
present in the computer.

 For example, consider a laptop that can address 1 TB of
main memory (roughly 1 trillion bytes), but only contains
12 GB (roughly 4 billion bytes).

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

98

Virtual Memory (cont’d)
 Locality: Most programs don’t jump all over the memory

that they use; instead, they work in a particular area of
memory for a while, then move to another area.

 So, you can offload onto hard disk much of the
memory image of a program that’s running.

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

99

Virtual Memory (cont’d)
 Memory is chopped up into many pages of modest size

(e.g., 1 KB – 32 KB; typically 4 KB).
 Only pages that have been recently used actually reside in

memory; the rest are stored on hard disk.
 Hard disk is 1,000+ times slower than main memory, so you

get better performance if you rarely get a page fault, which
forces a read from (and maybe a write to) hard disk: exploit
data locality!

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

100

Cache vs. Virtual Memory
 Lines (cache) vs. pages (VM)
 Cache faster than RAM (cache) vs.

RAM faster than disk (VM)

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

101

Storage Use Strategies
 Register reuse: do a lot of work on the same data before

working on new data.
 Cache reuse: the program is much more efficient if all of

the data and instructions fit in cache; if not, try to use what’s
in cache a lot before using anything that isn’t in cache (e.g.,
tiling).

 Data locality: try to access data that are near each other in
memory before data that are far.

 I/O efficiency: do a bunch of I/O all at once rather than a
little bit at a time; don’t mix calculations and I/O.

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018

Thanks for your
attention!

Questions?
www.oscer.ou.edu

http://www.oscer.ou.edu/

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018 103

References
[1] http://graphics8.nytimes.com/images/2007/07/13/sports/auto600.gif
[2] http://www.vw.com/newbeetle/
[3] http://img.dell.com/images/global/products/resultgrid/sm/latit_d630.jpg
[4] http://en.wikipedia.org/wiki/X64
[5] Richard Gerber, The Software Optimization Cookbook: High-performance Recipes for the Intel Architecture. Intel Press, 2002, pp. 161-168.
[6] http://www.anandtech.com/showdoc.html?i=1460&p=2
[8] http://www.toshiba.com/taecdpd/products/features/MK2018gas-Over.shtml
[9] http://www.toshiba.com/taecdpd/techdocs/sdr2002/2002spec.shtml
[10] ftp://download.intel.com/design/Pentium4/manuals/24896606.pdf
[11] http://www.pricewatch.com/
[12] http://en.wikipedia.org/wiki/POWER7
[13] http://www.kingston.com/branded/image_files/nav_image_desktop.gif
14] M. Wolfe, High Performance Compilers for Parallel Computing. Addison-Wesley Publishing Company, Redwood City CA, 1996.
[15] http://www.visit.ou.edu/vc_campus_map.htm
[16] http://www.storagereview.com/
[17] http://www.unidata.ucar.edu/packages/netcdf/
[18] http://hdf.ncsa.uiuc.edu/
[23] http://en.wikipedia.org/wiki/Itanium
[19] ftp://download.intel.com/design/itanium2/manuals/25111003.pdf
[20] http://images.tomshardware.com/2007/08/08/extreme_fsb_2/qx6850.jpg (em64t)
[21] http://www.pcdo.com/images/pcdo/20031021231900.jpg (power5)
[22] http://vnuuk.typepad.com/photos/uncategorized/itanium2.jpg (i2)
[??] http://www.anandtech.com/cpuchipsets/showdoc.aspx?i=2353&p=2 (Prescott cache latency)
[??] http://www.xbitlabs.com/articles/mobile/print/core2duo.html (T2400 Merom cache)
[??] http://www.lenovo.hu/kszf/adatlap/Prosi_Proc_Core2_Mobile.pdf (Merom cache line size)
[25] http://www.lithium.it/nove3.jpg
[26] http://cpu.rightmark.org/
[27] Tribuvan Kumar Prakash, “Performance Analysis of Intel Core 2 Duo Processor.” MS Thesis, Dept of Electrical and Computer Engineering,
Louisiana State University, 2007.
[28] R. Kalla, IBM, personal communication, 10/26/2010.
[29] https://en.wikipedia.org/wiki/X86
[30] https://en.wikipedia.org/wiki/Advanced_Vector_Extensions
[31] Intel® 64 and IA-32 Architectures Optimization Reference Manual
[32] http://www.7-cpu.com/cpu/Skylake.html

http://graphics8.nytimes.com/images/2007/07/13/sports/auto600.gif
http://www.vw.com/newbeetle/
http://img.dell.com/images/global/products/resultgrid/sm/latit_d630.jpg
http://en.wikipedia.org/wiki/X64
http://www.anandtech.com/showdoc.html?i=1460&p=2
http://www.toshiba.com/taecdpd/products/features/MK2018gas-Over.shtml
http://www.toshiba.com/taecdpd/techdocs/sdr2002/2002spec.shtml
ftp://download.intel.com/design/Pentium4/manuals/24896606.pdf
http://www.pricewatch.com/
http://en.wikipedia.org/wiki/POWER7
http://www.kingston.com/branded/image_files/nav_image_desktop.gif
http://www.visit.ou.edu/vc_campus_map.htm
http://www.storagereview.com/
http://www.unidata.ucar.edu/packages/netcdf/
http://hdf.ncsa.uiuc.edu/
http://en.wikipedia.org/wiki/Itanium
ftp://download.intel.com/design/itanium2/manuals/25111003.pdf
http://images.tomshardware.com/2007/08/08/extreme_fsb_2/qx6850.jpg
http://www.pcdo.com/images/pcdo/20031021231900.jpg
http://vnuuk.typepad.com/photos/uncategorized/itanium2.jpg
http://www.anandtech.com/cpuchipsets/showdoc.aspx?i=2353&p=2
http://www.xbitlabs.com/articles/mobile/print/core2duo.html
http://www.lenovo.hu/kszf/adatlap/Prosi_Proc_Core2_Mobile.pdf
http://www.lithium.it/nove3.jpg
http://cpu.rightmark.org/
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Advanced_Vector_Extensions
https://en.wikipedia.org/wiki/Skylake_(microarchitecture)
http://www.7-cpu.com/cpu/Skylake.html

	Supercomputing�in Plain English�The Tyranny of the Storage Hierarchy
	This is an experiment!
	PLEASE MUTE YOURSELF
	Download the Slides Beforehand
	Zoom
	YouTube
	Twitch
	Wowza #1
	Wowza #2
	Toll Free Phone Bridge
	Please Mute Yourself
	Questions via E-mail Only
	Onsite: Talent Release Form
	TENTATIVE Schedule
	Thanks for helping!
	This is an experiment!
	Coming in 2018!
	Outline
	The Storage Hierarchy
	Henry’s Laptop
	Storage Speed, Size, Cost
	�Multicore
	Multicore
	Multicore History (x86)
	Why Multicore?
	�Registers
	What Are Registers?
	How Registers Are Used
	How Many Registers?
	Why So Few Registers?
	�Cache
	What is Cache?
	From Cache to the CPU
	Multiple Levels of Cache
	Why Multiple Levels of Cache?
	Cache & RAM Latencies
	Main Memory
	What is Main Memory?
	What Main Memory Looks Like
	The Relationship Between�Main Memory & Cache
	RAM is Slow
	Why Have Cache?
	Cache & RAM Bandwidths
	Cache Use Jargon
	Cache Lines
	How Cache Works
	If It’s in Cache, It’s Also in RAM
	Mapping Cache Lines to RAM
	Direct Mapped Cache
	Direct Mapped Cache Illustration
	Jargon: Cache Conflict
	Problem with Direct Mapped: F90
	Problem with Direct Mapped: C
	Fully Associative Cache
	Fully Associative Illustration
	Set Associative Cache
	2-Way Set Associative Illustration
	Cache Associativity Examples
	If It’s in Cache, It’s Also in RAM
	Changing a Value That’s in Cache
	Cache Store Strategies
	Cache Store Examples
	The Importance of Being Local
	More Data Than Cache
	Improving Your Cache Hit Rate
	Data Locality
	Data Locality Is Empirical: C
	Data Locality Is Empirical: F90
	No Locality Example: C
	No Locality Example: F90
	Permuted vs. Ordered
	Exploiting Data Locality
	A Sample Application
	Matrix Multiply w/Initialization
	Matrix Multiply w/Initialization
	Matrix Multiply Via Intrinsic
	Matrix Multiply Behavior
	Performance of Matrix Multiply
	Tiling
	Tiling
	Tiling Code: F90
	Tiling Code: C
	Multiplying Within a Tile: F90
	Multiplying Within a Tile: C
	Performance with Tiling
	The Advantages of Tiling
	Will Tiling Always Work?
	Hard Disk
	Why Is Hard Disk Slow?
	I/O Strategies
	Avoid Redundant I/O: C
	Avoid Redundant I/O: F90
	Write Binary, Not ASCII
	Problem with Binary I/O
	Portable I/O Libraries
	Virtual Memory
	Virtual Memory
	Virtual Memory (cont’d)
	Virtual Memory (cont’d)
	Cache vs. Virtual Memory
	Storage Use Strategies
	Thanks for your attention!���Questions?�www.oscer.ou.edu
	References

