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This is an experiment!
It’s the nature of these kinds of videoconferences that 

FAILURES ARE GUARANTEED TO HAPPEN!       
NO PROMISES!

So, please bear with us. Hopefully everything will work out 
well enough.

If you lose your connection, you can retry the same kind of 
connection, or try connecting another way.

Remember, if all else fails, you always have the phone bridge 
to fall back on.

PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
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PLEASE MUTE YOURSELF
No matter how you connect, PLEASE MUTE YOURSELF,  

so that we cannot hear you.
At OU, we will turn off the sound on all conferencing 

technologies.
That way, we won’t have problems with echo cancellation.
Of course, that means we cannot hear questions.
So for questions, you’ll need to send e-mail:

supercomputinginplainenglish@gmail.com

PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

mailto:supercomputinginplainenglish@gmail.com


Download the Slides Beforehand
Before the start of the session, please download the slides from 
the Supercomputing in Plain English website:

http://www.oscer.ou.edu/education/

That way, if anything goes wrong, you can still follow along 
with just audio.

PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
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http://www.oscer.ou.edu/education/
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Zoom
Go to:

http://zoom.us/j/979158478

Many thanks Eddie Huebsch, OU CIO, for providing this.

PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

http://zoom.us/j/979158478
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YouTube
You can watch from a Windows, MacOS or Linux laptop or an 

Android or iOS handheld using YouTube.
Go to YouTube via your preferred web browser or app, and then 

search for:
Supercomputing InPlainEnglish

(InPlainEnglish is all one word.)
Many thanks to Skyler Donahue of OneNet for providing this.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
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Twitch
You can watch from a Windows, MacOS or Linux laptop or an 

Android or iOS handheld using Twitch.
Go to:

http://www.twitch.tv/sipe2018

Many thanks to Skyler Donahue of OneNet for providing this.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

http://www.twitch.tv/sipe2018
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Wowza #1
You can watch from a Windows, MacOS or Linux laptop using 

Wowza from the following URL:

http://jwplayer.onenet.net/streams/sipe.html

If that URL fails, then go to:

http://jwplayer.onenet.net/streams/sipebackup.html

Many thanks to Skyler Donahue of OneNet for providing this.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

http://jwplayer.onenet.net/streams/sipe.html
http://jwplayer.onenet.net/streams/sipebackup.html


Wowza #2
Wowza has been tested on multiple browsers on each of:
 Windows 10: IE, Firefox, Chrome, Opera, Safari
 MacOS: Safari, Firefox
 Linux: Firefox, Opera
We’ve also successfully tested it via apps on devices with:
 Android
 iOS
Many thanks to Skyler Donahue of OneNet for providing this.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Storage
Tue Jan 30 - Tue Feb 6 2018 9



Supercomputing in Plain English: Storage
Tue Jan 30 - Tue Feb 6 2018 10

Toll Free Phone Bridge
IF ALL ELSE FAILS, you can use our US TOLL phone bridge:

405-325-6688
684 684 #

NOTE: This is for US call-ins ONLY.
PLEASE MUTE YOURSELF and use the phone to listen.
Don’t worry, we’ll call out slide numbers as we go.
Please use the phone bridge ONLY IF you cannot connect any 

other way: the phone bridge can handle only 100 simultaneous 
connections, and we have over 1000 participants.

Many thanks to OU CIO Eddie Huebsch for providing the    
phone bridge..
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Please Mute Yourself
No matter how you connect, PLEASE MUTE YOURSELF,  

so that we cannot hear you.
(For YouTube, Twitch and Wowza, you don’t need to do that, 

because the information only goes from us to you, not from 
you to us.)

At OU, we will turn off the sound on all conferencing 
technologies.

That way, we won’t have problems with echo cancellation.
Of course, that means we cannot hear questions.
So for questions, you’ll need to send e-mail.
PLEASE MUTE YOURSELF.
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Questions via E-mail Only
Ask questions by sending e-mail to:

supercomputinginplainenglish@gmail.com

All questions will be read out loud and then answered out loud.

DON’T USE CHAT OR VOICE FOR QUESTIONS!

No one will be monitoring any of the chats, and if we can hear 
your question, you’re creating an echo cancellation problem.

PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

mailto:supercomputinginplainenglish@gmail.com


Onsite: Talent Release Form
If you’re attending onsite, you MUST do one of the following:
 complete and sign the Talent Release Form,
OR
 sit behind the cameras (where you can’t be seen) and don’t 

talk at all.

If you aren’t onsite, then PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Storage
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TENTATIVE Schedule
Tue Jan 23: Storage: What the Heck is Supercomputing?
Tue Jan 30: The Tyranny of the Storage Hierarchy Part I
Tue Feb  6: The Tyranny of the Storage Hierarchy Part II
Tue Feb 13: Instruction Level Parallelism
Tue Feb 20: Stupid Compiler Tricks
Tue Feb 27: Shared Memory Multithreading
Tue March   6: Distributed Multiprocessing
Tue March 13: Applications and Types of Parallelism
Tue March 20: NO SESSION (OU's Spring Break)
Tue March 27: Multicore Madness
Tue Apr   3: High Throughput Computing
Tue Apr 10: GPGPU: Number Crunching in Your Graphics Card
Tue Apr 17: Grab Bag: Scientific Libraries, I/O Libraries, Visualization
Tue Apr 24: Topic to be announced
Tue May  1: Topic to be announced

Supercomputing in Plain English: Storage
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Thanks for helping!
 OU IT

 OSCER operations staff (Dave Akin, Patrick Calhoun, Kali 
McLennan, Jason Speckman, Brett Zimmerman)

 OSCER Research Computing Facilitators (Jim Ferguson, 
Horst Severini)

 Debi Gentis, OSCER Coordinator
 Kyle Dudgeon, OSCER Manager of Operations
 Ashish Pai, Managing Director for Research IT Services
 The OU IT network team
 OU CIO Eddie Huebsch

 OneNet: Skyler Donahue
 Oklahoma State U: Dana Brunson
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This is an experiment!
It’s the nature of these kinds of videoconferences that 

FAILURES ARE GUARANTEED TO HAPPEN!       
NO PROMISES!

So, please bear with us. Hopefully everything will work out 
well enough.

If you lose your connection, you can retry the same kind of 
connection, or try connecting another way.

Remember, if all else fails, you always have the phone bridge 
to fall back on.

PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.



Coming in 2018!
 Coalition for Advancing Digital Research & Education (CADRE) Conference:       

Apr 17-18 2018 @ Oklahoma State U, Stillwater OK USA
https://hpcc.okstate.edu/cadre-conference

 Linux Clusters Institute workshops
http://www.linuxclustersinstitute.org/workshops/

 Introductory HPC Cluster System Administration: May 14-18 2018 @ U Nebraska, Lincoln NE USA
 Intermediate HPC Cluster System Administration: Aug 13-17 2018 @ Yale U, New Haven CT USA

 Great Plains Network Annual Meeting: details coming soon
 Advanced Cyberinfrastructure Research & Education Facilitators (ACI-REF) Virtual 

Residency Aug 5-10 2018, U Oklahoma, Norman OK USA
 PEARC 2018, July 22-27, Pittsburgh PA USA

https://www.pearc18.pearc.org/

 IEEE Cluster 2018, Sep 10-13, Belfast UK
https://cluster2018.github.io

 OKLAHOMA SUPERCOMPUTING SYMPOSIUM 2018, Sep 25-26 2018 @ OU
 SC18 supercomputing conference, Nov 11-16 2018, Dallas TX USA

http://sc18.supercomputing.org/
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https://hpcc.okstate.edu/cadre-conference
http://www.linuxclustersinstitute.org/workshops/
https://www.pearc18.pearc.org/
https://cluster2018.github.io/
http://sc18.supercomputing.org/
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Outline
 What is the storage hierarchy?
 Registers
 Cache
 Main Memory (RAM)
 The Relationship Between RAM and Cache
 The Importance of Being Local
 Hard Disk
 Virtual Memory

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018
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The Storage Hierarchy

 Registers
 Cache memory
 Main memory (RAM)
 Hard disk
 Removable media (CD, DVD etc)
 Internet

Fast, expensive, few

Slow, cheap, a lot
[5]
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Henry’s Laptop

 Intel Core i3-4010U                         
dual core, 1.7 GHz, 3 MB L3 Cache

 12 GB 1600 MHz DDR3L SDRAM
 340 GB SATA 5400 RPM Hard Drive
 DVD+RW/CD-RW Drive
 1 Gbps Ethernet Adapter

Dell Latitude E5540[4]

http://content.hwigroup.net/images
/products/xl/204419/dell_latitude_

e5540_55405115.jpg

http://content.hwigroup.net/images/products/xl/204419/dell_latitude_e5540_55405115.jpg
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Storage Speed, Size, Cost

Henry’s
Laptop

Registers
(Intel  

Core2 Duo
1.6 GHz)

Cache
Memory

(L3)

Main
Memory

(1600MHz 
DDR3L 

SDRAM)

Hard 
Drive

Flash 
Thumb 
Drive 

(USB 3.0)

Ethernet
(1000 
Mbps)

Blu-Ray

Speed
(MB/sec)

[peak]

668,672[6]

(16 
GFLOP/s*)

46,000 15,000 [7] 100[9] 625 125 72             
[10]

Size
(MB)

10,752 
bytes**

[11]

3 12,288
4096 times as 
much as cache

340,000 1024 unlimited unlimited

Cost
($/MB) –

$20 [12] $0.0093     
[12]

~1/2000 as 
much as cache

$0.00003
[12]

$0.00018 
[12]

charged
per month
(typically)

$0.00006 
[12]

*   GFLOP/s: billions of floating point operations per second
** 168 256-bit integer vector registers,

168 256-bit floating point vector registers



Multicore

[25]
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Multicore
 A multicore CPU is a chip with multiple, independent “brains,” 

known as cores.
 These multiple cores can run completely separate programs, or 

they can cooperate together to work simultaneously in parallel 
on different parts of the same program.

 All of the cores share the same connection to memory –
and the same bandwidth (memory speed).

 NOTE: From now on, you can’t say “CPU” (or  “processor”)  
as a noun any more, only “chip” or “core,” because “CPU” is 
ambiguous. (You can say “CPU chip” or “CPU core.”)
 The technical term for a CPU chip is socket, which is where the 

chip gets plugged in to on the motherboard. So a computer with 
two CPU chips is called a “dual socket” computer.
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Multicore History (x86)
 Single core: November 1971 (Intel 4004)
 Dual core: October 2005 (Intel), March 2006 (AMD)
 Quad core: June 2006 (Intel), Sep 2007 (AMD)
 Hex core: Sep 2008 (Intel), June 2009 (AMD)
 8 core (Intel & AMD), 12 core (AMD only): March 2010
 16 core: Nov 2011 (AMD only)
 18 core: Sep 2014 (Intel only)
 22 core: March 2016 (Intel only)
 28 core: July 2017 (Intel only)
 32 core: June 2017 (AMD only)
http://www.intel.com/pressroom/kits/quickreffam.htm (dual core, quad core)
http://ark.intel.com/products/family/34348/Intel-Xeon-Processor-7000-Sequence#@Server (6 core)
http://ark.intel.com/ProductCollection.aspx?familyID=594&MarketSegment=SRV (8 core)
http://en.wikipedia.org/wiki/Intel_Nehalem_(microarchitecture) (8 core)
http://en.wikipedia.org/wiki/AMD_Opteron (12 core)
https://en.wikipedia.org/wiki/Broadwell_(microarchitecture) (22 core)
https://en.wikipedia.org/wiki/Skylake_(microarchitecture) (28 core)
https://en.wikipedia.org/wiki/Epyc (32 core)

Note that this is only for x86 – other 
processor families (for example, POWER) 
introduced multicore earlier.

http://www.intel.com/pressroom/kits/quickreffam.htm
http://ark.intel.com/products/family/34348/Intel-Xeon-Processor-7000-Sequence#@Server
http://ark.intel.com/ProductCollection.aspx?familyID=594&MarketSegment=SRV
http://en.wikipedia.org/wiki/Intel_Nehalem_(microarchitecture)
http://en.wikipedia.org/wiki/AMD_Opteron
https://en.wikipedia.org/wiki/Broadwell_(microarchitecture)
https://en.wikipedia.org/wiki/Skylake_(microarchitecture)
https://en.wikipedia.org/wiki/Epyc


Why Multicore?
 In the olden days (until the mid-2000s), the way you made 

your CPU chip faster was to increase its clock speed (GHz).
 The problem is, the heat dissipation of a chip rises 

exponentially, alongside the clock speed (GHz).
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“No one,” as [Patrick] Gelsinger
[of Intel] puts it, “wants to carry 
a nuclear reactor in their laptop 
onto a plane.”
https://www.theregister.co.uk/2001/02/06/intel_touts_alpha_ibm_designs/

https://newscenter.lbl.gov/wp-content/uploads/sites/2/2008/07/yelick-berkeleyview-july081.pdf

https://newscenter.lbl.gov/wp-content/uploads/sites/2/2008/07/yelick-
berkeleyview-july081.pdf

https://www.theregister.co.uk/2001/02/06/intel_touts_alpha_ibm_designs/
https://newscenter.lbl.gov/wp-content/uploads/sites/2/2008/07/yelick-berkeleyview-july081.pdf
https://newscenter.lbl.gov/wp-content/uploads/sites/2/2008/07/yelick-berkeleyview-july081.pdf


Registers

[25]
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What Are Registers?
Registers are memory-like locations inside the Central 

Processing Unit that hold data that are being used 
right now in operations.

…

Arithmetic/Logic UnitControl Unit Registers
Fetch Next Instruction Add Sub

Mult Div

And Or

Not …

Integer

Floating Point

…

Fetch Data Store Data

Increment Instruction Ptr

Execute Instruction

…

CPU
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How Registers Are Used
 Every arithmetic or logical operation has one or more 

operands and one result.
 Operands are contained in source registers.
 A “black box” of circuits performs the operation.
 The result goes into a destination register.

Ex
am

pl
e:

addend in R0

augend in R1
ADD sum in R2

5

7
12

Register Ri

Register Rj
Register Rk

operand

operand

result

Operation circuitry
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How Many Registers?
Typically, a CPU has less than 16 KB (16,384 bytes) of registers, 

usually split into registers for holding integer values and registers 
for holding floating point (real) values, plus a few special purpose 
registers.

Examples:
 IBM POWER7 (found in IBM p-Series supercomputers):            

226 64-bit integer registers and 348 128-bit merged       
vector/scalar registers (7376 bytes) [28]

 Intel Haswell: 168 256-bit integer vector registers,                     
168 256-bit floating point vector registers (10,752 bytes) [11]

 Intel Itanium2: 128 64-bit integer registers, 128 82-bit floating 
point registers (2304 bytes) [23]

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018



Why So Few Registers?
Why so few registers?
Because having more registers can be expensive, but doesn’t 
seem to help much:
“… [A]lthough for all applications, in average, the best size of 
[the] register file is 68 and above but in sizes near … half of 
this size performance penalty is lower that 5%.”
M. Alipour, M. E. Salehi, H. Shojaei Baghini, “Design Space Exploration to Find the 
Optimum Cache and Register File Size for Embedded Applications.” Int'l Conf. Embedded 
Systems and Applications (ESA'11), 214-219. 
http://arxiv.org/ftp/arxiv/papers/1205/1205.1871.pdf

In other words, you can add more registers, but your CPU will 
cost more, may draw more power, and your performance 
improvement will be very modest.

Supercomputing in Plain English: Storage Hierarchy
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http://arxiv.org/ftp/arxiv/papers/1205/1205.1871.pdf


Cache

[4]
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What is Cache?
 A special kind of memory where data reside that are

about to be used or have just been used.
 Very fast => very expensive => very small (typically 100 

to 10,000 times as expensive as RAM per byte)
 Data in cache can be loaded into or stored from registers 

at speeds comparable to the speed of performing 
computations.

 Data that are not in cache (but that are in Main Memory) 
take much longer to load or store.

 Cache is near the CPU: either inside the CPU or on the 
motherboard that the CPU sits on.

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018
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From Cache to the CPU

Typically, data move between cache and the CPU at speeds 
relatively near to that of the CPU performing calculations.

CPU

Cache

46 GB/sec (~3x RAM)[7]

653 GB/sec[7]
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Multiple Levels of Cache
Most contemporary CPUs have more than one level of cache. 

For example:
 Intel Skylake [31]

 Level 1 caches: 32 KB instruction, 32 KB data per core
 Level 2 cache: 256 KB - 1 MB unified (instruction+data)    

per core
 Level 3 cache: 8.25 - 38.5 MB, shared among all cores

 IBM POWER7 [28]

 Level 1 cache:      32 KB instruction, 32 KB data per core
 Level 2 cache: 256 KB unified per core
 Level 3 cache: 4096 KB unified per core

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018
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Why Multiple Levels of Cache?
The lower the level of cache:
 the faster the cache can transfer data to the CPU;
 the smaller that level of cache is (faster => more expensive => smaller).
Example: IBM POWER7 latency to the CPU [28]

 L1 cache:   1    cycle   =    0.29  ns for 3.5 GHz
 L2 cache:   8.5 cycles = 2.43  ns for 3.5 GHz (average)
 L3 cache:     23.5 cycles =    5.53  ns for 3.5 GHz (local to core)
 RAM:        346    cycles = 98.86  ns for 3.5 GHz (1066 MHz RAM)
Example: Intel Itanium2 latency to the CPU [19]

 L1 cache:   1 cycle   =   1.0 ns for 1.0 GHz
 L2 cache:   5 cycles =   5.0 ns for 1.0 GHz
 L3 cache: 12-15 cycles = 12 – 15 ns for 1.0 GHz
Example: Intel Skylake[32]

 L1 cache 4-5 cycles =2-2.5 ns      @ 2.0 GHz = 128-160 calculations
 L2 cache: 12 cycles =  6 ns @ 2.0 GHz =   384 calculations
 L3 cache: 42 cycles =  21 ns        @ 2.0 GHz = 1344 calculations
 RAM: 42 cycles + 51 ns = 72 ns  @ 2.0 GHz = 2160 calculations 

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018
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Cache & RAM Latencies

0

10

20
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40
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 (c
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 cy
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es

)

Array Size (bytes)

Cache & RAM Latency: Intel T2400 (1.83 GHz)

Memory Latency

3 cycles

14 cycles

47 cycles

Better
[26]
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Main Memory

[13]



38

What is Main Memory?
 Where data reside for a program that is  currently running
 Sometimes called RAM (Random Access Memory): you can 

load from or store into any main memory location at any time
 Sometimes called core (from magnetic “cores” that some 

memories used, many years ago)
 Much slower => much cheaper => much bigger

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018
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What Main Memory Looks Like

…
0 1 2 3 4 5 6 7 8 9 10

536,870,911

You can think of main memory as a 
big long 1D array of bytes.



The Relationship 
Between

Main Memory & Cache
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RAM is Slow
CPU 653 GB/sec

15 GB/sec (2.3%)

Bottleneck

The speed of data transfer
between Main Memory and the
CPU is much slower than the
speed of calculating, so the CPU
spends most of its time waiting
for data to come in or go out.
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Why Have Cache?
CPUCache is much closer to the speed

of the CPU, so the CPU doesn’t
have to wait nearly as long for
stuff that’s already in cache:
it can do more
operations per second! 15 GB/sec (2.3%)(1%)

46 GB/sec (8%)



43

Cache & RAM Bandwidths

0
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Array Size (bytes)

Cache & RAM Bandwidth: Intel T2400 (1.83 GHz)

Read BW
Write BW

32 KB (L1 cache size)

2 MB (L2 cache size)

7.7 GB/sec14.2 GB/sec

3.5 GB/sec

1.4 GB/sec

Better

[26]
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Cache Use Jargon
 Cache Hit:  the data that the CPU needs right now are 

already in cache.
 Cache Miss: the data that the CPU needs right now are 

not currently in cache.
If all of your data are small enough to fit in cache, then when 

you run your program, you’ll get almost all cache hits 
(except at the very beginning), which means that your 
performance could be excellent!

Sadly, this rarely happens in real life: most problems of 
scientific or engineering interest are bigger than just a few 
MB.

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018
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Cache Lines
 A cache line is a small, contiguous region in cache, 

corresponding to a contiguous region in RAM of the same 
size, that is loaded all at once.

 Typical size:  32 to 1024 bytes
 Examples

 Intel Skylake [32]

 L1 data cache:           64 bytes per line
 L2 cache:                 64 bytes per line
 L3 cache: 64 bytes per line

 POWER7 [28]

 L1 instruction cache: 128 bytes per line
 L1 data cache:         128 bytes per line
 L2 cache:                  128 bytes per line
 L3 cache:                   128 bytes per line 

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018
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How Cache Works
When you request data from a particular address in Main 

Memory, here’s what happens:
1. The hardware checks whether the data for that address is 

already in cache. If so, it uses it.
2. Otherwise, it loads from Main Memory the entire cache 

line that contains the address.
For example, on a 2.0 GHz Sandy Bridge, a cache miss makes 

the program stall (wait) at least 26 cycles (13 nanoseconds) 
for the next cache line to load – time that could have been 
spent performing up to 208 calculations! [29]

Supercomputing in Plain English: Storage Hierarchy
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If It’s in Cache, It’s Also in RAM
If a particular memory address is currently in cache, then it’s 

also in Main Memory (RAM).
That is, all of a program’s data are in Main Memory, but some

are also in cache.
We’ll revisit this point shortly.

Supercomputing in Plain English: Storage Hierarchy
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Mapping Cache Lines to RAM
Main memory typically maps into cache in one of three 

ways:
 Direct mapped    (occasionally)
 Fully associative (very rare these days)
 Set associative    (common)

DON’T
PANIC!

Supercomputing in Plain English: Storage Hierarchy
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Direct Mapped Cache
Direct Mapped Cache is a scheme in which each location in 

main memory corresponds to exactly one location in cache 
(but not the reverse, since cache is much smaller than main 
memory).

Typically, if a cache address is represented by c bits, and a 
main memory address is represented by m bits, then the 
cache location associated with main memory address A is 
MOD(A,2c); that is,  the lowest c bits of A.

Example: POWER4 L1 instruction cache

Supercomputing in Plain English: Storage Hierarchy
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Direct Mapped Cache Illustration
Must go into
cache address

11100101

Main Memory Address
0100101011100101

Notice that 11100101 
is the low 8 bits of 
0100101011100101.
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Jargon: Cache Conflict
Suppose that the cache address 11100101 currently contains 

RAM address 0100101011100101.
But, we now need to load RAM address 1100101011100101, 

which maps to the same cache address as 
0100101011100101.

This is called a cache conflict : the CPU needs a RAM 
location that maps to a cache line already in use.

In the case of direct mapped cache, every cache conflict leads 
to the new cache line clobbering the old cache line.

This can lead to serious performance problems.

Supercomputing in Plain English: Storage Hierarchy
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Problem with Direct Mapped: F90
If you have two arrays that start in the same place relative 

to cache, then they might clobber each other all the 
time: no cache hits!

REAL,DIMENSION(multiple_of_cache_size) :: a, b, c
INTEGER :: index

DO index = 1, multiple_of_cache_size
a(index) = b(index) + c(index)

END DO

In this example, a(index), b(index) and c(index) all 
map to the same cache line, so loading c(index) clobbers  
b(index) – no cache reuse!

Supercomputing in Plain English: Storage Hierarchy
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Problem with Direct Mapped: C
If you have two arrays that start in the same place relative 

to cache, then they might clobber each other all the 
time: no cache hits!

float a[multiple_of_cache_size],
b[multiple_of_cache_size,
c[multiple_of_cache_size];

int index;

for (index = 0; index < multiple_of_cache_size;
index++)
{ a[index] = b[index] + c[index]; }

In this example, a[index], b[index] and c[index] all 
map to the same cache line, so loading c[index] clobbers  
b[index] – no cache reuse!

Supercomputing in Plain English: Storage Hierarchy
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Fully Associative Cache
Fully Associative Cache can put any line of main memory into 

any cache line.
Typically, the cache management system will put the newly 

loaded data into the Least Recently Used cache line, though 
other strategies are possible (e.g., Random, First In First 
Out, Round Robin, Least Recently Modified).

So, this can solve, or at least reduce, the cache conflict 
problem.

But, fully associative cache tends to be expensive, so it’s pretty 
rare: you need Ncache

. NRAM connections!
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Fully Associative Illustration

Could go into
any cache line

Main Memory Address
0100101011100101
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Set Associative Cache
Set Associative Cache is a compromise between direct 

mapped and fully associative.  A line in main memory 
can map to any of a fixed number of cache lines.

For example, 2-way Set Associative Cache can map each 
main memory line to either of 2 cache lines (e.g., to the 
Least Recently Used), 3-way maps to any of 3 cache 
lines, 4-way to 4 lines, and so on.

Set Associative cache is cheaper than fully associative –
you need K . NRAM connections – but more robust than 
direct mapped.
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2-Way Set Associative Illustration
Could go into 
cache address

11100101

Main Memory Address
0100101011100101

Could go into
cache address

01100101

OR
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Cache Associativity Examples
 Sandy Bridge [31]

 L1 data cache:           8-way set associative
 L2 cache:                   8-way set associative
 L3 cache:                   varies with cache size

 POWER4 [12]

 L1 instruction cache:  direct mapped
 L1 data cache:            2-way set associative
 L2 cache:                    8-way set associative
 L3 cache:                    8-way set associative

 POWER7 [28]

 L1 instruction cache:  4-way set associative
 L1 data cache:             8-way set associative
 L2 cache:                     8-way set associative
 L3 cache:                     8-way set associative
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If It’s in Cache, It’s Also in RAM
As we saw earlier:

If a particular memory address is currently in cache, then 
it’s also in Main Memory (RAM).
That is, all of a program’s data are in Main Memory, but 
some are also in cache.
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Changing a Value That’s in Cache
Suppose that you have in cache a particular line of main 

memory (RAM).
If you don’t change the contents of any of that line’s bytes 

while it’s in cache, then when it gets clobbered by another 
main memory line coming into cache, there’s no loss of 
information.

But, if you change the contents of any byte while it’s in cache, 
then you need to store it back out to main memory before 
clobbering it. 
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Cache Store Strategies
Typically, there are two possible cache store strategies:
 Write-through: Every single time that a value in cache is 

changed, that value is also stored back into main memory 
(RAM).

 Write-back: Every single time that a value in cache is 
changed, the cache line containing that cache location gets 
marked as dirty. When a cache line gets clobbered, then if it 
has been marked as dirty, then it is stored back into main 
memory (RAM). [14]
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Cache Store Examples
 Intel Sandy Bridge [31]

 L1 cache:     write-back
 Pentium D [26]

 L1 cache:                   write-through
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More Data Than Cache
Let’s say that you have 1000 times more data than cache.  

Then won’t most of your data be outside the cache?

YES!
Okay, so how does cache help?
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Improving Your Cache Hit Rate
Many scientific codes use a lot more data than can fit in cache 

all at once.
Therefore, you need to ensure a high cache hit rate even 

though you’ve got much more data than cache.
So, how can you improve your cache hit rate?
Use the same solution as in Real Estate:
Location, Location, Location!

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018



66

Data Locality
Data locality is the principle that, if you use data in a particular 

memory address, then very soon you’ll use either the same 
address or a nearby address.

 Temporal locality:  if you’re using address A now, then 
you’ll probably soon use address A again.

 Spatial locality:  if you’re using address A now, then you’ll 
probably soon use addresses between  A-k and  A+k, where 
k is small.

Note that this principle works well for sufficiently small values 
of “soon.”

Cache is designed to exploit locality, which is why a cache miss 
causes a whole line to be loaded.

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 30 - Tue Feb 6 2018



67

Data Locality Is Empirical: C
Data locality has been observed empirically in many, many 

programs. This routine marches from the beginning of the 
array to the end.

void ordered_fill (float* array, int array_length)
{ /* ordered_fill */
int index;

for (index = 0; index < array_length; index++) {
array[index] = index;

} /* for index */
} /* ordered_fill */
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Data Locality Is Empirical: F90
Data locality has been observed empirically in many, many 

programs. This routine marches from the beginning of the 
array to the end.

SUBROUTINE ordered_fill (array, array_length)
IMPLICIT NONE
INTEGER,INTENT(IN) :: array_length
REAL,DIMENSION(array_length),INTENT(OUT) :: array
INTEGER :: index

DO index = 1, array_length
array(index) = index

END DO
END SUBROUTINE ordered_fill
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No Locality Example: C
In principle, you could write a program that exhibited 

absolutely no data locality at all: it randomly jumps from 
one index to another with no pattern at all.

void random_fill (float* array,
int* random_permutation_index,
int array_length)

{ /* random_fill */
int index;

for (index = 0; index < array_length; index++) {
array[random_permutation_index[index]] = index;

} /* for index */
} /* random_fill */
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No Locality Example: F90
In principle, you could write a program that exhibited 

absolutely no data locality at all:it randomly jumps from 
one index to another with no pattern at all.

SUBROUTINE random_fill (array,
random_permutation_index, array_length)

IMPLICIT NONE
INTEGER,INTENT(IN) :: array_length
INTEGER,DIMENSION(array_length),INTENT(IN) :: &

&   random_permutation_index
REAL,DIMENSION(array_length),INTENT(OUT) :: array
INTEGER :: index

DO index = 1, array_length
array(random_permutation_index(index)) = index

END DO
END SUBROUTINE random_fill
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Permuted vs. Ordered

In a simple array fill, locality provides a factor of 8 to 20 
speedup over a randomly ordered fill on a Pentium4.
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Exploiting Data Locality
If you know that your code is capable of operating with a 

decent amount of data locality, then you can get speedup by 
focusing your energy on improving the locality of the 
code’s behavior.

This will substantially increase your cache reuse.
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A Sample Application
Matrix-Matrix Multiply
Let A, B and C be matrices of sizes
nr × nc, nr × nk and nk × nc, respectively:
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The definition of A = B • C  is

for r ∈ {1, nr}, c ∈ {1, nc}.
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Matrix Multiply w/Initialization
SUBROUTINE matrix_matrix_mult_by_init (dst, src1, src2, &
&                                     nr, nc, nq)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN)  :: src1
REAL,DIMENSION(nq,nc),INTENT(IN)  :: src2

INTEGER :: r, c, q

DO c = 1, nc
DO r = 1, nr

dst(r,c) = 0.0
DO q = 1, nq

dst(r,c) = dst(r,c) + src1(r,q) * src2(q,c)
END DO !! q

END DO !! r
END DO !! c

END SUBROUTINE matrix_matrix_mult_by_init
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Matrix Multiply w/Initialization
void matrix_matrix_mult_by_init (

float** dst, float** src1, float** src2,
int nr, int nc, int nq)

{ /* matrix_matrix_mult_by_init */
int r, c, q;

for (r = 0; r < nr; r++) {
for (c = 0; c < nc; c++) {

dst[r][c] = 0.0;
for (q = 0; q < nq; q++) {

dst[r][c] = dst[r][c] + src1[r][q] * src2[q][c];
} /* for q */

} /* for c */
} /* for r */

} /* matrix_matrix_mult_by_init */
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Matrix Multiply Via Intrinsic
SUBROUTINE matrix_matrix_mult_by_intrinsic ( &
&           dst, src1, src2, nr, nc, nq)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN)  :: src1
REAL,DIMENSION(nq,nc),INTENT(IN)  :: src2

dst = MATMUL(src1, src2)
END SUBROUTINE matrix_matrix_mult_by_intrinsic
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Matrix Multiply Behavior

If the matrix is big, then each sweep of a row will clobber nearby values in cache.
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Performance of Matrix Multiply
Matrix-Matrix Multiply
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Tiling
 Tile: a small rectangular subdomain of a problem domain.  

Sometimes called a block or a chunk.
 Tiling: breaking the domain into tiles.
 Tiling strategy: operate on each tile to completion, then 

move to the next tile.
 Tile size can be set at runtime, according to what’s best for 

the machine that you’re running on.
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Tiling Code: F90
SUBROUTINE matrix_matrix_mult_by_tiling (dst, src1, src2, nr, nc, nq, &
&           rtilesize, ctilesize, qtilesize)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN)  :: src1
REAL,DIMENSION(nq,nc),INTENT(IN)  :: src2
INTEGER,INTENT(IN) :: rtilesize, ctilesize, qtilesize

INTEGER :: rstart, rend, cstart, cend, qstart, qend

DO cstart = 1, nc, ctilesize
cend = cstart + ctilesize - 1
IF (cend > nc) cend = nc
DO rstart = 1, nr, rtilesize

rend = rstart + rtilesize - 1
IF (rend > nr) rend = nr
DO qstart = 1, nq, qtilesize

qend = qstart + qtilesize - 1
IF (qend > nq) qend = nq
CALL matrix_matrix_mult_tile(dst, src1, src2, nr, nc, nq, &

&                                   rstart, rend, cstart, cend, qstart, qend)
END DO !! qstart

END DO !! rstart
END DO !! cstart

END SUBROUTINE matrix_matrix_mult_by_tiling
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Tiling Code: C
void matrix_matrix_mult_by_tiling (

float** dst, float** src1, float** src2,
int nr, int nc, int nq,
int rtilesize, int ctilesize, int qtilesize)

{ /* matrix_matrix_mult_by_tiling */
int rstart, rend, cstart, cend, qstart, qend;

for (rstart = 0; rstart < nr; rstart += rtilesize) {
rend = rstart + rtilesize – 1;
if (rend >= nr) rend = nr - 1;
for (cstart = 0; cstart < nc; cstart += ctilesize) {
cend = cstart + ctilesize – 1;
if (cend >= nc) cend = nc - 1;
for (qstart = 0; qstart < nq; qstart += qtilesize) {
qend = qstart + qtilesize – 1;
if (qend >= nq) qend = nq - 1;
matrix_matrix_mult_tile(dst, src1, src2, nr, nc, nq,

rstart, rend, cstart, cend, qstart, qend);
} /* for qstart */

} /* for cstart */
} /* for rstart */

} /* matrix_matrix_mult_by_tiling */
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Multiplying Within a Tile: F90
SUBROUTINE matrix_matrix_mult_tile (dst, src1, src2, nr, nc, nq, &
&             rstart, rend, cstart, cend, qstart, qend)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN)  :: src1
REAL,DIMENSION(nq,nc),INTENT(IN)  :: src2
INTEGER,INTENT(IN) :: rstart, rend, cstart, cend, qstart, qend

INTEGER :: r, c, q

DO c = cstart, cend
DO r = rstart, rend
IF (qstart == 1) dst(r,c) = 0.0
DO q = qstart, qend
dst(r,c) = dst(r,c) + src1(r,q) * src2(q,c)

END DO !! q
END DO !! r

END DO !! c
END SUBROUTINE matrix_matrix_mult_tile
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Multiplying Within a Tile: C
void matrix_matrix_mult_tile (

float** dst, float** src1, float** src2,
int nr, int nc, int nq,
int rstart, int rend, int cstart, int cend,
int qstart, int qend)

{ /* matrix_matrix_mult_tile */
int r, c, q;

for (r = rstart; r <= rend; r++) {
for (c = cstart; c <= cend; c++) {

if (qstart == 0) dst[r][c] = 0.0;
for (q = qstart; q <= qend; q++) {

dst[r][c] = dst[r][c] + src1[r][q] * src2[q][c];
} /* for q */

} /* for c */
} /* for r */

} /* matrix_matrix_mult_tile */
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Performance with Tiling

Matrix-Matrix Mutiply Via Tiling (log-log)

0.1

1

10

100

1000

101001000100001000001000000100000001E+08

Tile Size (bytes)

C
PU

 se
c

512x256

512x512

1024x512

1024x1024

2048x1024

Matrix-Matrix Mutiply Via Tiling

0

50

100

150

200

250

10100100010000100000100000010000000100000000

Tile Size (bytes)

Better



86

The Advantages of Tiling
 It allows your code to exploit data locality better, to get 

much more cache reuse: your code runs faster!
 It’s a relatively modest amount of extra coding (typically a 

few wrapper functions and some changes to loop bounds).
 If you don’t need tiling – because of the hardware, the 

compiler or the problem size – then you can  turn it off by 
simply setting the tile size equal to the problem size.
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Will Tiling Always Work?
Tiling WON’T always work. Why?
Well, tiling works well when:
 the order in which calculations occur doesn’t matter much, 

AND
 there are lots and lots of calculations to do for each memory 

movement.
If either condition is absent, then tiling won’t help.
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Why Is Hard Disk Slow?
Your hard disk is much much slower than main memory (factor of 

1000+).  Why?
Well, accessing data on the hard disk involves physically moving:

 the disk platter
 the read/write head

In other words, hard disk is slow because objects move much slower 
than electrons: Newtonian speeds are much slower than 
Einsteinian speeds.
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I/O Strategies
Read and write the absolute minimum amount.
 Don’t reread the same data if you can keep it in memory.
 Write binary instead of characters.
 Use optimized I/O libraries like NetCDF [17] and HDF [18].
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Avoid Redundant I/O: C
An actual piece of code seen at OU:
for (thing = 0; thing < number_of_things; thing++) {

for (timestep = 0; timestep < number_of_timesteps; timestep++) {
read_file(filename[timestep]);
do_stuff(thing, timestep);

} /* for timestep */
} /* for thing */

Improved version:
for (timestep = 0; timestep < number_of_timesteps; timestep++) {

read_file(filename[timestep]);
for (thing = 0; thing < number_of_things; thing++) {

do_stuff(thing, timestep);
} /* for thing */

} /* for timestep */

Savings (in real life):  factor of 500!
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Avoid Redundant I/O: F90
An actual piece of code seen at OU:

DO thing = 1, number_of_things
DO timestep = 1, number_of_timesteps

CALL read_file(filename(timestep))
CALL do_stuff(thing, timestep)

END DO !! timestep
END DO !! thing

Improved version:
DO timestep = 1, number_of_timesteps

CALL read_file(filename(timestep))
DO thing = 1, number_of_things

CALL do_stuff(thing, timestep)
END DO !! thing

END DO !! timestep

Savings (in real life):  factor of 500!
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Write Binary, Not ASCII
When you write binary data to a file, you’re writing (typically) 

4 bytes per value.
When you write ASCII (character) data, you’re writing 

(typically) 8-16 bytes per value.
So binary saves a factor of 2 to 4 (typically).
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Problem with Binary I/O
There are many ways to represent data inside a computer, 

especially floating point (real) data.
Often, the way that one kind of computer (e.g., an Intel i7) 

saves binary data is different from another kind of 
computer (e.g., an IBM POWER7).

So, a file written on an Intel i7 machine may not be readable 
on an IBM POWER7.
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Portable I/O Libraries
NetCDF and HDF are the two most commonly used I/O 

libraries for scientific computing.
Each has its own internal way of representing numerical data.  

When you write a file using, say, HDF, it can be read by a 
HDF on any kind of computer.

Plus, these libraries are optimized to make the I/O very fast.
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Virtual Memory
 Typically, the amount of main memory (RAM) that a CPU 

can address is larger than the amount of data physically 
present in the computer.

 For example, consider a laptop that can address 1 TB of 
main memory (roughly 1 trillion bytes), but only contains        
12 GB (roughly 4 billion bytes).
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Virtual Memory (cont’d)
 Locality:  Most programs don’t jump all over the memory 

that they use; instead, they work in a particular area of 
memory for a while, then move to another area.

 So, you can offload onto hard disk much of the 
memory image of a program that’s running.
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Virtual Memory (cont’d)
 Memory is chopped up into many pages of modest size    

(e.g., 1 KB – 32 KB; typically 4 KB).
 Only pages that have been recently used actually reside in 

memory; the rest are stored on hard disk.
 Hard disk is 1,000+ times slower than main memory, so you 

get better performance if you rarely get a page fault, which 
forces a read from (and maybe a write to) hard disk: exploit 
data locality!
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Cache vs. Virtual Memory
 Lines (cache) vs. pages (VM)
 Cache faster than RAM (cache) vs. 

RAM faster than disk (VM)
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Storage Use Strategies
 Register reuse: do a lot of work on the same data before 

working on new data.
 Cache reuse: the program is much more efficient if all of 

the data and instructions fit in cache; if not, try to use what’s 
in cache a lot before using anything that isn’t in cache (e.g., 
tiling).

 Data locality: try to access data that are near each other in 
memory before data that are far.

 I/O efficiency: do a bunch of I/O all at once rather than a 
little bit at a time; don’t mix calculations and I/O.
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Thanks for your 
attention!

Questions?
www.oscer.ou.edu

http://www.oscer.ou.edu/
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