
Supercomputing
in Plain English

The Tyranny of the Storage Hierarchy
Henry Neeman, Director

Director, OU Supercomputing Center for Education & Research (OSCER)
Assistant Vice President, Information Technology – Research Strategy Advisor

Associate Professor, College of Engineering
Adjunct Associate Professor, School of Computer Science

University of Oklahoma
Tuesday January 27 2015

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015 2

This is an experiment!
It’s the nature of these kinds of videoconferences that

FAILURES ARE GUARANTEED TO HAPPEN!
NO PROMISES!

So, please bear with us. Hopefully everything will work out
well enough.

If you lose your connection, you can retry the same kind of
connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone
bridge to fall back on.

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015 3

PLEASE MUTE YOURSELF
No matter how you connect, PLEASE MUTE YOURSELF,

so that we cannot hear you.
At OU, we will turn off the sound on all conferencing

technologies.
That way, we won’t have problems with echo cancellation.
Of course, that means we cannot hear questions.
So for questions, you’ll need to send e-mail.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

Download the Slides Beforehand
Before the start of the session, please download the slides from
the Supercomputing in Plain English website:

http://www.oscer.ou.edu/education/

That way, if anything goes wrong, you can still follow along
with just audio.

PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015 4

http://www.oscer.ou.edu/education/

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015 5

H.323 (Polycom etc) #1
If you want to use H.323 videoconferencing – for example,

Polycom – then:
 If you AREN’T registered with the OneNet gatekeeper (which

is probably the case), then:
 Dial 164.58.250.47

 Bring up the virtual keypad.
On some H.323 devices, you can bring up the virtual keypad by typing:

(You may want to try without first, then with; some devices won't work
with the #, but give cryptic error messages about it.)

 When asked for the conference ID, or if there's no response, enter:
0409

 On most but not all H.323 devices, you indicate the end of the ID with:
#

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015 6

H.323 (Polycom etc) #2
If you want to use H.323 videoconferencing – for example,

Polycom – then:
 If you ARE already registered with the OneNet gatekeeper

(most institutions aren’t), dial:
2500409

Many thanks to James Deaton, Skyler Donahue, Jeremy Wright
and Steven Haldeman of OneNet for providing this.

PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015 7

Wowza #1
You can watch from a Windows, MacOS or Linux laptop using

Wowza from the following URL:

http://jwplayer.onenet.net/stream6/sipe.html

Wowza behaves a lot like YouTube, except live.

Many thanks to James Deaton, Skyler Donahue, Jeremy Wright
and Steven Haldeman of OneNet for providing this.

PLEASE MUTE YOURSELF.

http://jwplayer.onenet.net/stream6/sipe.html

Wowza #2
Wowza has been tested on multiple browsers on each of:
 Windows (7 and 8): IE, Firefox, Chrome, Opera, Safari
 MacOS X: Safari, Firefox
 Linux: Firefox, Opera
We’ve also successfully tested it on devices with:
Android
iOS
However, we make no representations on the likelihood of it
working on your device, because we don’t know which
versions of Android or iOS it mi
PLEASE MUTE YOURSELF.
ght or might not work with.Supercomputing in Plain English: Storage Hierarchy

Tue Jan 27 2015 8

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015 9

Toll Free Phone Bridge
IF ALL ELSE FAILS, you can use our toll free phone bridge:

800-832-0736
* 623 2874 #

Please mute yourself and use the phone to listen.
Don’t worry, we’ll call out slide numbers as we go.
Please use the phone bridge ONLY if you cannot connect any

other way: the phone bridge can handle only 100
simultaneous connections, and we have over 500 participants.

Many thanks to OU CIO Loretta Early for providing the toll free
phone bridge.

PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015 10

Please Mute Yourself
No matter how you connect, PLEASE MUTE YOURSELF,

so that we cannot hear you.
(For Wowza, you don’t need to do that, because the

information only goes from us to you, not from you to us.)
At OU, we will turn off the sound on all conferencing

technologies.
That way, we won’t have problems with echo cancellation.
Of course, that means we cannot hear questions.
So for questions, you’ll need to send e-mail.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015 11

Questions via E-mail Only
Ask questions by sending e-mail to:

sipe2015@gmail.com

All questions will be read out loud and then answered out loud.

PLEASE MUTE YOURSELF.

mailto:sipe2015@gmail.com

Onsite: Talent Release Form
If you’re attending onsite, you MUST do one of the following:
 complete and sign the Talent Release Form,
OR
 sit behind the cameras (where you can’t be seen) and don’t

talk at all.

If you aren’t onsite, then PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015 12

TENTATIVE Schedule
Tue Jan 20: Storage Hierarchy: What the Heck is Supercomputing?
Tue Jan 27: The Tyranny of the Storage Hierarchy
Tue Feb 3: Instruction Level Parallelism
Tue Feb 10: Stupid Compiler Tricks
Tue Feb 17: Shared Memory Multithreading
Tue Feb 24: Distributed Multiprocessing
Tue March 3: Applications and Types of Parallelism
Tue March 10: Multicore Madness
Tue March 17: NO SESSION (OU's Spring Break)
Tue March 24: NO SESSION (Henry has a huge grant proposal due)
Tue March 31: High Throughput Computing
Tue Apr 7: GPGPU: Number Crunching in Your Graphics Card
Tue Apr 14: Grab Bag: Scientific Libraries, I/O Libraries,
Visualization

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015 13

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015 14

Thanks for helping!
 OU IT

 OSCER operations staff (Brandon George, Dave Akin, Brett
Zimmerman, Josh Alexander, Patrick Calhoun)

 Horst Severini, OSCER Associate Director for Remote &
Heterogeneous Computing

 Debi Gentis, OSCER Coordinator
 Jim Summers
 The OU IT network team

 James Deaton, Skyler Donahue, Jeremy Wright and Steven
Haldeman, OneNet

 Kay Avila, U Iowa
 Stephen Harrell, Purdue U

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015 15

This is an experiment!
It’s the nature of these kinds of videoconferences that

FAILURES ARE GUARANTEED TO HAPPEN!
NO PROMISES!

So, please bear with us. Hopefully everything will work out
well enough.

If you lose your connection, you can retry the same kind of
connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone
bridge to fall back on.

PLEASE MUTE YOURSELF.

Coming in 2015!
Linux Clusters Institute workshop May 18-22 2015 @ OU

http://www.linuxclustersinstitute.org/workshops/

Great Plains Network Annual Meeting, May 27-29, Kansas City
Advanced Cyberinfrastructure Research & Education Facilitators (ACI-REF) Virtual

Residency May 31 - June 6 2015
XSEDE2015, July 26-30, St. Louis MO

https://conferences.xsede.org/xsede15

IEEE Cluster 2015, Sep 23-27, Chicago IL
http://www.mcs.anl.gov/ieeecluster2015/

OKLAHOMA SUPERCOMPUTING SYMPOSIUM 2015, Sep 22-23 2015 @ OU
SC13, Nov 15-20 2015, Austin TX

http://sc15.supercomputing.org/

PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015 16

http://www.linuxclustersinstitute.org/workshops/
https://conferences.xsede.org/xsede15
http://www.mcs.anl.gov/ieeecluster2015/
http://sc15.supercomputing.org/

Outline
 What is the storage hierarchy?
 Registers
 Cache
 Main Memory (RAM)
 The Relationship Between RAM and Cache
 The Importance of Being Local
 Hard Disk
 Virtual Memory

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015 17

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015 18

The Storage Hierarchy

 Registers
 Cache memory
 Main memory (RAM)
 Hard disk
 Removable media (CD, DVD etc)
 Internet

Fast, expensive, few

Slow, cheap, a lot
[5]

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015 19

Henry’s Laptop

 Intel Core i3-4010U
dual core, 1.7 GHz, 3 MB L3 Cache

 12 GB 1600 MHz DDR3L SDRAM
 340 GB SATA 5400 RPM Hard Drive
 DVD+RW/CD-RW Drive
 1 Gbps Ethernet Adapter

Dell Latitude E5540[4]

http://content.hwigroup.net/images
/products/xl/204419/dell_latitude_

e5540_55405115.jpg

http://content.hwigroup.net/images/products/xl/204419/dell_latitude_e5540_55405115.jpg

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015 20

Storage Speed, Size, Cost

Henry’s
Laptop

Registers
(Intel

Core2 Duo
1.6 GHz)

Cache
Memory

(L3)

Main
Memory

(1600MHz
DDR3L

SDRAM)

Hard
Drive

Ethernet
(1000
Mbps)

DVD+R
(16x)

Phone
Modem

(56 Kbps)

Speed
(MB/sec)

[peak]

668,672[6]

(27.2
GFLOP/s*)

46,000 15,000 [7] 100[9] 125 32
[10]

0.007

Size
(MB)

832 bytes**
[11]

3 12,288
4096 times as
much as cache

340,000 unlimited unlimited unlimited

Cost
($/MB) –

$38 [12] $0.0084
[12]

~1/4500 as
much as cache

$0.00003
[12]

charged
per month
(typically)

$0.000045
[12]

charged
per month
(typically)

* GFLOP/s: billions of floating point operations per second
** 16 64-bit general purpose registers, 8 64-bit floating point registers,

8 128-bit floating point vector registers, 16 256-bit floating point registers

Registers

[25]

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

What Are Registers?
Registers are memory-like locations inside the Central

Processing Unit that hold data that are being used
right now in operations.

…

Arithmetic/Logic UnitControl Unit Registers
Fetch Next Instruction Add Sub

Mult Div

And Or

Not …

Integer

Floating Point

…

Fetch Data Store Data

Increment Instruction Ptr

Execute Instruction

…

CPU

22

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

How Registers Are Used
 Every arithmetic or logical operation has one or more

operands and one result.
 Operands are contained in source registers.
 A “black box” of circuits performs the operation.
 The result goes into a destination register.

Ex
am

pl
e:

addend in R0

augend in R1
ADD sum in R2

5

7
12

Register Ri

Register Rj
Register Rk

operand

operand

result

Operation circuitry

23

How Many Registers?
Typically, a CPU has less than 8 KB (8192 bytes) of registers, usually

split into registers for holding integer values and registers for
holding floating point (real) values, plus a few special purpose
registers.

Examples:
 IBM POWER7 (found in IBM p-Series supercomputers):

226 64-bit integer registers and 348 128-bit merged
vector/scalar registers (7376 bytes) [28]

 Intel Sandy Bridge: 16 64-bit general purpose registers, 8 64-bit
floating point registers, 8 128-bit floating point vector registers,
16 256-bit floating point registers (832 bytes) [29]

 Intel Itanium2: 128 64-bit integer registers, 128 82-bit floating
point registers (2304 bytes) [23]

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015 24

Why So Few Registers?
Why so few registers?
Because having more registers can be expensive, but doesn’t
seem to help much:
“… [A]lthough for all applications, in average, the best size of
[the] register file is 68 and above but in sizes near … half of
this size performance penalty is lower that 5%.”
M. Alipour, M. E. Salehi, H. Shojaei Baghini, “Design Space Exploration to Find the
Optimum Cache and Register File Size for Embedded Applications.” Int'l Conf. Embedded
Systems and Applications (ESA'11), 214-219.
http://arxiv.org/ftp/arxiv/papers/1205/1205.1871.pdf

In other words, you can add more registers, but your CPU will
cost more, may draw more power, and your performance
improvement will be modest.

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015 25

http://arxiv.org/ftp/arxiv/papers/1205/1205.1871.pdf

Cache

[4]

What is Cache?
 A special kind of memory where data reside that are

about to be used or have just been used.
 Very fast => very expensive => very small (typically 100

to 10,000 times as expensive as RAM per byte)
 Data in cache can be loaded into or stored from registers

at speeds comparable to the speed of performing
computations.

 Data that are not in cache (but that are in Main Memory)
take much longer to load or store.

 Cache is near the CPU: either inside the CPU or on the
motherboard that the CPU sits on.

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015 27

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015 28

From Cache to the CPU

Typically, data move between cache and the CPU at speeds
relatively near to that of the CPU performing calculations.

CPU

Cache

46 GB/sec (~3x RAM)[7]

653 GB/sec[7]

Multiple Levels of Cache
Most contemporary CPUs have more than one level of cache.

For example:
 Intel Sandy Bridge [29]

 Level 1 caches: 32 KB instruction, 32 KB data
 Level 2 cache: 256 KB unified (instruction+data)
 Level 3 cache: 20,480 KB, shared among all cores

 IBM POWER7 [28]

 Level 1 cache: 32 KB instruction, 32 KB data per core
 Level 2 cache: 256 KB unified per core
 Level 3 cache: 4096 KB unified per core

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015 29

30

Why Multiple Levels of Cache?
The lower the level of cache:
 the faster the cache can transfer data to the CPU;
 the smaller that level of cache is (faster => more expensive => smaller).
Example: IBM POWER7 latency to the CPU [28]

 L1 cache: 1 cycle = 0.29 ns for 3.5 GHz
 L2 cache: 8.5 cycles = 2.43 ns for 3.5 GHz (average)
 L3 cache: 23.5 cycles = 5.53 ns for 3.5 GHz (local to core)
 RAM: 346 cycles = 98.86 ns for 3.5 GHz (1066 MHz RAM)
Example: Intel Itanium2 latency to the CPU [19]

 L1 cache: 1 cycle = 1.0 ns for 1.0 GHz
 L2 cache: 5 cycles = 5.0 ns for 1.0 GHz
 L3 cache: 12-15 cycles = 12 – 15 ns for 1.0 GHz
Example: Intel Sandy Bridge[29]

 L1 cache: 4 cycles = 2 ns @ 2.0 GHz = 32 calculations
 L2 cache: 12 cycles = 6 ns @ 2.0 GHz = 96 calculations
 RAM: 26-31 cycles = 13 – 15.5 ns @ 2.0 GHz = 200-248 calculations

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

31

Cache & RAM Latencies
Cache & RAM Latency: Intel T2400 (1.83 GHz)

0

10

20

30

40

50

60

10
24

20
48

40
32

72
96

12
48

0
21

05
6
35

13
6
58

17
6
96

00
0

15
76

32

25
84

96

42
35

52

69
35

04

11
35

48
8

18
58

43
2

30
41

40
8

49
76

96
0

81
43

74
4

Array Size (bytes)

L
at

en
cy

 (c
lo

ck
 c

yc
le

s)

Memory Latency

3 cycles

14 cycles

47 cycles

Better
[26]

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

Main Memory

[13]

33

What is Main Memory?
 Where data reside for a program that is currently running
 Sometimes called RAM (Random Access Memory): you can

load from or store into any main memory location at any time
 Sometimes called core (from magnetic “cores” that some

memories used, many years ago)
 Much slower => much cheaper => much bigger

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015 34

What Main Memory Looks Like

…
0 1 2 3 4 5 6 7 8 9 10

536,870,911

You can think of main memory as a
big long 1D array of bytes.

The Relationship
Between

Main Memory & Cache

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015 36

RAM is Slow
CPU 653 GB/sec

15 GB/sec (2.3%)

Bottleneck

The speed of data transfer
between Main Memory and the
CPU is much slower than the
speed of calculating, so the CPU
spends most of its time waiting
for data to come in or go out.

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015 37

Why Have Cache?
CPUCache is much closer to the speed

of the CPU, so the CPU doesn’t
have to wait nearly as long for
stuff that’s already in cache:
it can do more
operations per second! 15 GB/sec (2.3%)(1%)

46 GB/sec (8%)

38

Cache & RAM Bandwidths

0

2000

4000

6000

8000

10000

12000

14000

16000

B
an

dw
id

th
 (M

B
/s

ec
)

Array Size (bytes)

Cache & RAM Bandwidth: Intel T2400 (1.83 GHz)

Read BW
Write BW

32 KB (L1 cache size)

2 MB (L2 cache size)

7.7 GB/sec14.2 GB/sec

3.5 GB/sec

1.4 GB/sec

Better

[26]

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

39

Cache Use Jargon
 Cache Hit: the data that the CPU needs right now are

already in cache.
 Cache Miss: the data that the CPU needs right now are

not currently in cache.
If all of your data are small enough to fit in cache, then when

you run your program, you’ll get almost all cache hits
(except at the very beginning), which means that your
performance could be excellent!

Sadly, this rarely happens in real life: most problems of
scientific or engineering interest are bigger than just a few
MB.

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

40

Cache Lines
 A cache line is a small, contiguous region in cache,

corresponding to a contiguous region in RAM of the same
size, that is loaded all at once.

 Typical size: 32 to 1024 bytes
 Examples

 Intel Sandy Bridge [29]

 L1 data cache: 64 bytes per line
 L2 cache: 64 bytes per line

 POWER7 [28]

 L1 instruction cache: 128 bytes per line
 L1 data cache: 128 bytes per line
 L2 cache: 128 bytes per line
 L3 cache: 128bytes per line

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

41

How Cache Works
When you request data from a particular address in Main

Memory, here’s what happens:
1. The hardware checks whether the data for that address is

already in cache. If so, it uses it.
2. Otherwise, it loads from Main Memory the entire cache

line that contains the address.
For example, on a 2.0 GHz Sandy Bridge, a cache miss makes

the program stall (wait) at least 26 cycles (13 nanoseconds)
for the next cache line to load – time that could have been
spent performing up to 208 calculations! [29]

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

42

If It’s in Cache, It’s Also in RAM
If a particular memory address is currently in cache, then it’s

also in Main Memory (RAM).
That is, all of a program’s data are in Main Memory, but some

are also in cache.
We’ll revisit this point shortly.

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

43

Mapping Cache Lines to RAM
Main memory typically maps into cache in one of three

ways:
 Direct mapped (occasionally)
 Fully associative (very rare these days)
 Set associative (common)

DON’T
PANIC!

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

44

Direct Mapped Cache
Direct Mapped Cache is a scheme in which each location in

main memory corresponds to exactly one location in cache
(but not the reverse, since cache is much smaller than main
memory).

Typically, if a cache address is represented by c bits, and a
main memory address is represented by m bits, then the
cache location associated with main memory address A is
MOD(A,2c); that is, the lowest c bits of A.

Example: POWER4 L1 instruction cache

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015 45

Direct Mapped Cache Illustration
Must go into
cache address

11100101

Main Memory Address
0100101011100101

Notice that 11100101
is the low 8 bits of
0100101011100101.

46

Jargon: Cache Conflict
Suppose that the cache address 11100101 currently contains

RAM address 0100101011100101.
But, we now need to load RAM address 1100101011100101,

which maps to the same cache address as
0100101011100101.

This is called a cache conflict : the CPU needs a RAM
location that maps to a cache line already in use.

In the case of direct mapped cache, every cache conflict leads
to the new cache line clobbering the old cache line.

This can lead to serious performance problems.

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

47

Problem with Direct Mapped: F90
If you have two arrays that start in the same place relative

to cache, then they might clobber each other all the
time: no cache hits!

REAL,DIMENSION(multiple_of_cache_size) :: a, b, c
INTEGER :: index

DO index = 1, multiple_of_cache_size
a(index) = b(index) + c(index)

END DO

In this example, a(index), b(index) and c(index) all
map to the same cache line, so loading c(index) clobbers
b(index) – no cache reuse!

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

48

Problem with Direct Mapped: C
If you have two arrays that start in the same place relative

to cache, then they might clobber each other all the
time: no cache hits!

float a[multiple_of_cache_size],
b[multiple_of_cache_size,
c[multiple_of_cache_size];

int index;

for (index = 0; index < multiple_of_cache_size;
index++)
{ a[index] = b[index] + c[index]; }

In this example, a[index], b[index] and c[index] all
map to the same cache line, so loading c[index] clobbers
b[index] – no cache reuse!

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

49

Fully Associative Cache
Fully Associative Cache can put any line of main memory into

any cache line.
Typically, the cache management system will put the newly

loaded data into the Least Recently Used cache line, though
other strategies are possible (e.g., Random, First In First
Out, Round Robin, Least Recently Modified).

So, this can solve, or at least reduce, the cache conflict
problem.

But, fully associative cache tends to be expensive, so it’s pretty
rare: you need Ncache

. NRAM connections!

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015 50

Fully Associative Illustration

Could go into
any cache line

Main Memory Address
0100101011100101

51

Set Associative Cache
Set Associative Cache is a compromise between direct

mapped and fully associative. A line in main memory
can map to any of a fixed number of cache lines.

For example, 2-way Set Associative Cache can map each
main memory line to either of 2 cache lines (e.g., to the
Least Recently Used), 3-way maps to any of 3 cache
lines, 4-way to 4 lines, and so on.

Set Associative cache is cheaper than fully associative –
you need K . NRAM connections – but more robust than
direct mapped.

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015 52

2-Way Set Associative Illustration
Could go into
cache address

11100101

Main Memory Address
0100101011100101

Could go into
cache address

01100101

OR

53

Cache Associativity Examples
 Sandy Bridge [29]

 L1 data cache: 8-way set associative
 L2 cache: 8-way set associative
 L3 cache: varies with cache size

 POWER4 [12]

 L1 instruction cache: direct mapped
 L1 data cache: 2-way set associative
 L2 cache: 8-way set associative
 L3 cache: 8-way set associative

 POWER7 [28]

 L1 instruction cache: 4-way set associative
 L1 data cache: 8-way set associative
 L2 cache: 8-way set associative
 L3 cache: 8-way set associative

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

54

If It’s in Cache, It’s Also in RAM
As we saw earlier:

If a particular memory address is currently in cache, then
it’s also in Main Memory (RAM).
That is, all of a program’s data are in Main Memory, but
some are also in cache.

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

55

Changing a Value That’s in Cache
Suppose that you have in cache a particular line of main

memory (RAM).
If you don’t change the contents of any of that line’s bytes

while it’s in cache, then when it gets clobbered by another
main memory line coming into cache, there’s no loss of
information.

But, if you change the contents of any byte while it’s in cache,
then you need to store it back out to main memory before
clobbering it.

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

56

Cache Store Strategies
Typically, there are two possible cache store strategies:
 Write-through: every single time that a value in cache is

changed, that value is also stored back into main memory
(RAM).

 Write-back: every single time that a value in cache is
changed, the cache line containing that cache location gets
marked as dirty. When a cache line gets clobbered, then if it
has been marked as dirty, then it is stored back into main
memory (RAM). [14]

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

57

Cache Store Examples
 Intel Sandy Bridge [29]

 L1 cache: write-back
 Pentium D [26]

 L1 cache: write-through

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

The Importance of
Being Local

[15]

59

More Data Than Cache
Let’s say that you have 1000 times more data than cache.

Then won’t most of your data be outside the cache?

YES!
Okay, so how does cache help?

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

60

Improving Your Cache Hit Rate
Many scientific codes use a lot more data than can fit in cache

all at once.
Therefore, you need to ensure a high cache hit rate even

though you’ve got much more data than cache.
So, how can you improve your cache hit rate?
Use the same solution as in Real Estate:
Location, Location, Location!

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

61

Data Locality
Data locality is the principle that, if you use data in a particular

memory address, then very soon you’ll use either the same
address or a nearby address.

 Temporal locality: if you’re using address A now, then
you’ll probably soon use address A again.

 Spatial locality: if you’re using address A now, then you’ll
probably soon use addresses between A-k and A+k, where
k is small.

Note that this principle works well for sufficiently small values
of “soon.”

Cache is designed to exploit locality, which is why a cache miss
causes a whole line to be loaded.

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

62

Data Locality Is Empirical: C
Data locality has been observed empirically in many, many

programs.

void ordered_fill (float* array, int array_length)
{ /* ordered_fill */
int index;

for (index = 0; index < array_length; index++) {
array[index] = index;

} /* for index */
} /* ordered_fill */

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

63

Data Locality Is Empirical: F90
Data locality has been observed empirically in many, many

programs.

SUBROUTINE ordered_fill (array, array_length)
IMPLICIT NONE
INTEGER,INTENT(IN) :: array_length
REAL,DIMENSION(array_length),INTENT(OUT) :: array
INTEGER :: index

DO index = 1, array_length
array(index) = index

END DO
END SUBROUTINE ordered_fill

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

64

No Locality Example: C
In principle, you could write a program that exhibited

absolutely no data locality at all:

void random_fill (float* array,
int* random_permutation_index,
int array_length)

{ /* random_fill */
int index;

for (index = 0; index < array_length; index++) {
array[random_permutation_index[index]] = index;

} /* for index */
} /* random_fill */

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

65

No Locality Example: F90
In principle, you could write a program that exhibited

absolutely no data locality at all:
SUBROUTINE random_fill (array,

random_permutation_index, array_length)
IMPLICIT NONE
INTEGER,INTENT(IN) :: array_length
INTEGER,DIMENSION(array_length),INTENT(IN) :: &

& random_permutation_index
REAL,DIMENSION(array_length),INTENT(OUT) :: array
INTEGER :: index

DO index = 1, array_length
array(random_permutation_index(index)) = index

END DO
END SUBROUTINE random_fill

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

66

Permuted vs. Ordered

In a simple array fill, locality provides a factor of 8 to 20
speedup over a randomly ordered fill on a Pentium4.

Better
0

5

10

15

20

25

30

0 5 10 15 20 25 30

Array size (log2 bytes)

C
PU

 s
ec

on
ds

Random
Ordered

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

67

Exploiting Data Locality
If you know that your code is capable of operating with a

decent amount of data locality, then you can get speedup by
focusing your energy on improving the locality of the
code’s behavior.

This will substantially increase your cache reuse.

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

68

A Sample Application
Matrix-Matrix Multiply
Let A, B and C be matrices of sizes
nr × nc, nr × nk and nk × nc, respectively:

=

ncnrnrnrnr

nc

nc

nc

aaaa

aaaa
aaaa
aaaa

,3,2,1,

,33,32,31,3

,23,22,21,2

,13,12,11,1

A

=

nknrnrnrnr

nk

nk

nk

bbbb

bbbb
bbbb
bbbb

,3,2,1,

,33,32,31,3

,23,22,21,2

,13,12,11,1

B

=

ncnknknknk

nc

nc

nc

cccc

cccc
cccc
cccc

,3,2,1,

,33,32,31,3

,23,22,21,2

,13,12,11,1

C

∑
=

⋅++⋅+⋅+⋅=⋅=
nk

k
cnknkrcrcrcrckkrcr cbcbcbcbcba

1
,,,33,,22,,11,,,,

The definition of A = B • C is

for r ∈ {1, nr}, c ∈ {1, nc}.
Supercomputing in Plain English: Storage Hierarchy

Tue Jan 27 2015

69

Matrix Multiply w/Initialization
SUBROUTINE matrix_matrix_mult_by_init (dst, src1, src2, &
& nr, nc, nq)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN) :: src1
REAL,DIMENSION(nq,nc),INTENT(IN) :: src2

INTEGER :: r, c, q

DO c = 1, nc
DO r = 1, nr

dst(r,c) = 0.0
DO q = 1, nq

dst(r,c) = dst(r,c) + src1(r,q) * src2(q,c)
END DO !! q

END DO !! r
END DO !! c

END SUBROUTINE matrix_matrix_mult_by_init
Supercomputing in Plain English: Storage Hierarchy

Tue Jan 27 2015

70

Matrix Multiply w/Initialization
void matrix_matrix_mult_by_init (

float** dst, float** src1, float** src2,
int nr, int nc, int nq)

{ /* matrix_matrix_mult_by_init */
int r, c, q;

for (r = 0; r < nr; r++) {
for (c = 0; c < nc; c++) {

dst[r][c] = 0.0;
for (q = 0; q < nq; q++) {

dst[r][c] = dst[r][c] + src1[r][q] * src2[q][c];
} /* for q */

} /* for c */
} /* for r */

} /* matrix_matrix_mult_by_init */

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

71

Matrix Multiply Via Intrinsic
SUBROUTINE matrix_matrix_mult_by_intrinsic (&
& dst, src1, src2, nr, nc, nq)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN) :: src1
REAL,DIMENSION(nq,nc),INTENT(IN) :: src2

dst = MATMUL(src1, src2)
END SUBROUTINE matrix_matrix_mult_by_intrinsic

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015 72

Matrix Multiply Behavior

If the matrix is big, then each sweep of a row will clobber nearby values in cache.

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015 73

Performance of Matrix Multiply
Matrix-Matrix Multiply

0

100

200

300

400

500

600

700

800

0 10000000 20000000 30000000 40000000 50000000 60000000

Total Problem Size in bytes (nr*nc+nr*nq+nq*nc)

C
PU

 se
c

Naive

Init

IntrinsicBetter

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015 74

Tiling

75

Tiling
 Tile: a small rectangular subdomain of a problem domain.

Sometimes called a block or a chunk.
 Tiling: breaking the domain into tiles.
 Tiling strategy: operate on each tile to completion, then

move to the next tile.
 Tile size can be set at runtime, according to what’s best for

the machine that you’re running on.

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

76

Tiling Code: F90
SUBROUTINE matrix_matrix_mult_by_tiling (dst, src1, src2, nr, nc, nq, &
& rtilesize, ctilesize, qtilesize)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN) :: src1
REAL,DIMENSION(nq,nc),INTENT(IN) :: src2
INTEGER,INTENT(IN) :: rtilesize, ctilesize, qtilesize

INTEGER :: rstart, rend, cstart, cend, qstart, qend

DO cstart = 1, nc, ctilesize
cend = cstart + ctilesize - 1
IF (cend > nc) cend = nc
DO rstart = 1, nr, rtilesize

rend = rstart + rtilesize - 1
IF (rend > nr) rend = nr
DO qstart = 1, nq, qtilesize

qend = qstart + qtilesize - 1
IF (qend > nq) qend = nq
CALL matrix_matrix_mult_tile(dst, src1, src2, nr, nc, nq, &

& rstart, rend, cstart, cend, qstart, qend)
END DO !! qstart

END DO !! rstart
END DO !! cstart

END SUBROUTINE matrix_matrix_mult_by_tiling

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

77

Tiling Code: C
void matrix_matrix_mult_by_tiling (

float** dst, float** src1, float** src2,
int nr, int nc, int nq,
int rtilesize, int ctilesize, int qtilesize)

{ /* matrix_matrix_mult_by_tiling */
int rstart, rend, cstart, cend, qstart, qend;

for (rstart = 0; rstart < nr; rstart += rtilesize) {
rend = rstart + rtilesize – 1;
if (rend >= nr) rend = nr - 1;
for (cstart = 0; cstart < nc; cstart += ctilesize) {
cend = cstart + ctilesize – 1;
if (cend >= nc) cend = nc - 1;
for (qstart = 0; qstart < nq; qstart += qtilesize) {
qend = qstart + qtilesize – 1;
if (qend >= nq) qend = nq - 1;
matrix_matrix_mult_tile(dst, src1, src2, nr, nc, nq,

rstart, rend, cstart, cend, qstart, qend);
} /* for qstart */

} /* for cstart */
} /* for rstart */

} /* matrix_matrix_mult_by_tiling */

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

78

Multiplying Within a Tile: F90
SUBROUTINE matrix_matrix_mult_tile (dst, src1, src2, nr, nc, nq, &
& rstart, rend, cstart, cend, qstart, qend)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN) :: src1
REAL,DIMENSION(nq,nc),INTENT(IN) :: src2
INTEGER,INTENT(IN) :: rstart, rend, cstart, cend, qstart, qend

INTEGER :: r, c, q

DO c = cstart, cend
DO r = rstart, rend
IF (qstart == 1) dst(r,c) = 0.0
DO q = qstart, qend
dst(r,c) = dst(r,c) + src1(r,q) * src2(q,c)

END DO !! q
END DO !! r

END DO !! c
END SUBROUTINE matrix_matrix_mult_tile

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

79

Multiplying Within a Tile: C
void matrix_matrix_mult_tile (

float** dst, float** src1, float** src2,
int nr, int nc, int nq,
int rstart, int rend, int cstart, int cend,
int qstart, int qend)

{ /* matrix_matrix_mult_tile */
int r, c, q;

for (r = rstart; r <= rend; r++) {
for (c = cstart; c <= cend; c++) {

if (qstart == 0) dst[r][c] = 0.0;
for (q = qstart; q <= qend; q++) {

dst[r][c] = dst[r][c] + src1[r][q] * src2[q][c];
} /* for q */

} /* for c */
} /* for r */

} /* matrix_matrix_mult_tile */

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015 80

Performance with Tiling

Matrix-Matrix Mutiply Via Tiling (log-log)

0.1

1

10

100

1000

101001000100001000001000000100000001E+08

Tile Size (bytes)

C
PU

 se
c

512x256

512x512

1024x512

1024x1024

2048x1024

Matrix-Matrix Mutiply Via Tiling

0

50

100

150

200

250

10100100010000100000100000010000000100000000

Tile Size (bytes)

Better

81

The Advantages of Tiling
 It allows your code to exploit data locality better, to get

much more cache reuse: your code runs faster!
 It’s a relatively modest amount of extra coding (typically a

few wrapper functions and some changes to loop bounds).
 If you don’t need tiling – because of the hardware, the

compiler or the problem size – then you can turn it off by
simply setting the tile size equal to the problem size.

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

82

Will Tiling Always Work?
Tiling WON’T always work. Why?
Well, tiling works well when:
 the order in which calculations occur doesn’t matter much,

AND
 there are lots and lots of calculations to do for each memory

movement.
If either condition is absent, then tiling won’t help.

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

Hard Disk

84

Why Is Hard Disk Slow?
Your hard disk is much much slower than main memory (factor of

1000+). Why?
Well, accessing data on the hard disk involves physically moving:

 the disk platter
 the read/write head

In other words, hard disk is slow because objects move much slower
than electrons: Newtonian speeds are much slower than
Einsteinian speeds.

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

85

I/O Strategies
Read and write the absolute minimum amount.
 Don’t reread the same data if you can keep it in memory.
 Write binary instead of characters.
 Use optimized I/O libraries like NetCDF [17] and HDF [18].

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

86

Avoid Redundant I/O: C
An actual piece of code seen at OU:
for (thing = 0; thing < number_of_things; thing++) {

for (timestep = 0; timestep < number_of_timesteps; timestep++) {
read_file(filename[timestep]);
do_stuff(thing, timestep);

} /* for timestep */
} /* for thing */

Improved version:
for (timestep = 0; timestep < number_of_timesteps; timestep++) {

read_file(filename[timestep]);
for (thing = 0; thing < number_of_things; thing++) {

do_stuff(thing, timestep);
} /* for thing */

} /* for timestep */

Savings (in real life): factor of 500!
Supercomputing in Plain English: Storage Hierarchy

Tue Jan 27 2015

87

Avoid Redundant I/O: F90
An actual piece of code seen at OU:

DO thing = 1, number_of_things
DO timestep = 1, number_of_timesteps

CALL read_file(filename(timestep))
CALL do_stuff(thing, timestep)

END DO !! timestep
END DO !! thing

Improved version:
DO timestep = 1, number_of_timesteps

CALL read_file(filename(timestep))
DO thing = 1, number_of_things

CALL do_stuff(thing, timestep)
END DO !! thing

END DO !! timestep

Savings (in real life): factor of 500!
Supercomputing in Plain English: Storage Hierarchy

Tue Jan 27 2015

88

Write Binary, Not ASCII
When you write binary data to a file, you’re writing (typically)

4 bytes per value.
When you write ASCII (character) data, you’re writing

(typically) 8-16 bytes per value.
So binary saves a factor of 2 to 4 (typically).

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

89

Problem with Binary I/O
There are many ways to represent data inside a computer,

especially floating point (real) data.
Often, the way that one kind of computer (e.g., an Intel i7)

saves binary data is different from another kind of
computer (e.g., an IBM POWER7).

So, a file written on an Intel i7 machine may not be readable
on an IBM POWER7.

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

90

Portable I/O Libraries
NetCDF and HDF are the two most commonly used I/O

libraries for scientific computing.
Each has its own internal way of representing numerical data.

When you write a file using, say, HDF, it can be read by a
HDF on any kind of computer.

Plus, these libraries are optimized to make the I/O very fast.

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

Virtual Memory

92

Virtual Memory
 Typically, the amount of main memory (RAM) that a CPU

can address is larger than the amount of data physically
present in the computer.

 For example, consider a laptop that can address 1 TB of
main memory (roughly 1 trillion bytes), but only contains
4 GB (roughly 4 billion bytes).

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

93

Virtual Memory (cont’d)
 Locality: Most programs don’t jump all over the memory

that they use; instead, they work in a particular area of
memory for a while, then move to another area.

 So, you can offload onto hard disk much of the
memory image of a program that’s running.

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

94

Virtual Memory (cont’d)
 Memory is chopped up into many pages of modest size

(e.g., 1 KB – 32 KB; typically 4 KB).
 Only pages that have been recently used actually reside in

memory; the rest are stored on hard disk.
 Hard disk is 1,000+ times slower than main memory, so you

get better performance if you rarely get a page fault, which
forces a read from (and maybe a write to) hard disk: exploit
data locality!

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

95

Cache vs. Virtual Memory
 Lines (cache) vs. pages (VM)
 Cache faster than RAM (cache) vs.

RAM faster than disk (VM)

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

96

Storage Use Strategies
 Register reuse: do a lot of work on the same data before

working on new data.
 Cache reuse: the program is much more efficient if all of

the data and instructions fit in cache; if not, try to use what’s
in cache a lot before using anything that isn’t in cache (e.g.,
tiling).

 Data locality: try to access data that are near each other in
memory before data that are far.

 I/O efficiency: do a bunch of I/O all at once rather than a
little bit at a time; don’t mix calculations and I/O.

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

TENTATIVE Schedule
Tue Jan 20: Storage Hierarchy: What the Heck is Supercomputing?
Tue Jan 27: The Tyranny of the Storage Hierarchy
Tue Feb 3: Instruction Level Parallelism
Tue Feb 10: Stupid Compiler Tricks
Tue Feb 17: Shared Memory Multithreading
Tue Feb 24: Distributed Multiprocessing
Tue March 3: Applications and Types of Parallelism
Tue March 10: Multicore Madness
Tue March 17: NO SESSION (OU's Spring Break)
Tue March 24: NO SESSION (Henry has a huge grant proposal due)
Tue March 31: High Throughput Computing
Tue Apr 7: GPGPU: Number Crunching in Your Graphics Card
Tue Apr 14: Grab Bag: Scientific Libraries, I/O Libraries,
Visualization

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015 97

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015 98

Thanks for helping!
 OU IT

 OSCER operations staff (Brandon George, Dave Akin, Brett
Zimmerman, Josh Alexander, Patrick Calhoun)

 Horst Severini, OSCER Associate Director for Remote &
Heterogeneous Computing

 Debi Gentis, OSCER Coordinator
 Jim Summers
 The OU IT network team

 James Deaton, Skyler Donahue, Jeremy Wright and Steven
Haldeman, OneNet

 Kay Avila, U Iowa
 Stephen Harrell, Purdue U

Coming in 2015!
Red Hat Tech Day, Thu Jan 22 2015 @ OU

http://goo.gl/forms/jORZCz9xh7

Linux Clusters Institute workshop May 18-22 2015 @ OU
http://www.linuxclustersinstitute.org/workshops/

Great Plains Network Annual Meeting, May 27-29, Kansas City
Advanced Cyberinfrastructure Research & Education Facilitators (ACI-REF) Virtual

Residency May 31 - June 6 2015
XSEDE2015, July 26-30, St. Louis MO

https://conferences.xsede.org/xsede15

IEEE Cluster 2015, Sep 23-27, Chicago IL
http://www.mcs.anl.gov/ieeecluster2015/

OKLAHOMA SUPERCOMPUTING SYMPOSIUM 2015, Sep 22-23 2015 @ OU
SC13, Nov 15-20 2015, Austin TX

http://sc15.supercomputing.org/

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015 99

http://goo.gl/forms/jORZCz9xh7
http://www.linuxclustersinstitute.org/workshops/
https://conferences.xsede.org/xsede15
http://www.mcs.anl.gov/ieeecluster2015/
http://sc15.supercomputing.org/

100

OK Supercomputing Symposium 2015

2006 Keynote:
Dan Atkins

Head of NSF’s
Office of

Cyberinfrastructure

2004 Keynote:
Sangtae Kim
NSF Shared

Cyberinfrastructure
Division Director

2003 Keynote:
Peter Freeman

NSF
Computer & Information
Science & Engineering

Assistant Director

2005 Keynote:
Walt Brooks

NASA Advanced
Supercomputing
Division Director

2007 Keynote:
Jay Boisseau

Director
Texas Advanced

Computing Center
U. Texas Austin

2008 Keynote:
José Munoz

Deputy Office
Director/Senior

Scientific Advisor
NSF Office of

Cyberinfrastructure

2009 Keynote:
Douglass Post
Chief Scientist

US Dept of Defense
HPC Modernization

Program

FREE!
Wed Sep 23 2015

@ OU
Over 235 registra2ons already!
Over 152 inhe first day, over

200 in the first week, over 225
in the first month.

Reception/Poster Session
Tue Sep 22 2015 @ OU

Symposium
Wed Sep 23 2015 @ OU

2010 Keynote:
Horst Simon

Deputy Director
Lawrence Berkeley
National Laboratory

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015

2011 Keynote:
Barry Schneider

Program Manager
National Science

Foundation

2012 Keynote:
Thom Dunning

Director
National Center for

Supercomputing
Applications

2013 Keynote:
John Shalf

Dept Head CS
Lawrence

Berkeley Lab
CTO, NERSC

2014 Keynote:
Irene Qualters

Division Director
Advanced

Cyberinfarstructure
Division, NSF

Thanks for your
attention!

Questions?
www.oscer.ou.edu

http://www.oscer.ou.edu/

Supercomputing in Plain English: Storage Hierarchy
Tue Jan 27 2015 102

References
[1] http://graphics8.nytimes.com/images/2007/07/13/sports/auto600.gif
[2] http://www.vw.com/newbeetle/
[3] http://img.dell.com/images/global/products/resultgrid/sm/latit_d630.jpg
[4] http://en.wikipedia.org/wiki/X64
[5] Richard Gerber, The Software Optimization Cookbook: High-performance Recipes for the Intel Architecture. Intel Press, 2002, pp. 161-168.
[6] http://www.anandtech.com/showdoc.html?i=1460&p=2
[8] http://www.toshiba.com/taecdpd/products/features/MK2018gas-Over.shtml
[9] http://www.toshiba.com/taecdpd/techdocs/sdr2002/2002spec.shtml
[10] ftp://download.intel.com/design/Pentium4/manuals/24896606.pdf
[11] http://www.pricewatch.com/
[12] http://en.wikipedia.org/wiki/POWER7
[13] http://www.kingston.com/branded/image_files/nav_image_desktop.gif
14] M. Wolfe, High Performance Compilers for Parallel Computing. Addison-Wesley Publishing Company, Redwood City CA, 1996.
[15] http://www.visit.ou.edu/vc_campus_map.htm
[16] http://www.storagereview.com/
[17] http://www.unidata.ucar.edu/packages/netcdf/
[18] http://hdf.ncsa.uiuc.edu/
[23] http://en.wikipedia.org/wiki/Itanium
[19] ftp://download.intel.com/design/itanium2/manuals/25111003.pdf
[20] http://images.tomshardware.com/2007/08/08/extreme_fsb_2/qx6850.jpg (em64t)
[21] http://www.pcdo.com/images/pcdo/20031021231900.jpg (power5)
[22] http://vnuuk.typepad.com/photos/uncategorized/itanium2.jpg (i2)
[??] http://www.anandtech.com/cpuchipsets/showdoc.aspx?i=2353&p=2 (Prescott cache latency)
[??] http://www.xbitlabs.com/articles/mobile/print/core2duo.html (T2400 Merom cache)
[??] http://www.lenovo.hu/kszf/adatlap/Prosi_Proc_Core2_Mobile.pdf (Merom cache line size)
[25] http://www.lithium.it/nove3.jpg
[26] http://cpu.rightmark.org/
[27] Tribuvan Kumar Prakash, “Performance Analysis of Intel Core 2 Duo Processor.” MS Thesis, Dept of Electrical and Computer Engineering, Louisiana
State University, 2007.
[28] R. Kalla, IBM, personal communication, 10/26/2010.
[29] Intel® 64 and IA-32 Architectures Optimization Reference Manual
http://www.intel.com/Assets/en_US/PDF/manual/248966.pdf

http://graphics8.nytimes.com/images/2007/07/13/sports/auto600.gif
http://www.vw.com/newbeetle/
http://img.dell.com/images/global/products/resultgrid/sm/latit_d630.jpg
http://en.wikipedia.org/wiki/X64
http://www.anandtech.com/showdoc.html?i=1460&p=2
http://www.toshiba.com/taecdpd/products/features/MK2018gas-Over.shtml
http://www.toshiba.com/taecdpd/techdocs/sdr2002/2002spec.shtml
ftp://download.intel.com/design/Pentium4/manuals/24896606.pdf
http://www.pricewatch.com/
http://en.wikipedia.org/wiki/POWER7
http://www.kingston.com/branded/image_files/nav_image_desktop.gif
http://www.visit.ou.edu/vc_campus_map.htm
http://www.storagereview.com/
http://www.unidata.ucar.edu/packages/netcdf/
http://hdf.ncsa.uiuc.edu/
http://en.wikipedia.org/wiki/Itanium
ftp://download.intel.com/design/itanium2/manuals/25111003.pdf
http://images.tomshardware.com/2007/08/08/extreme_fsb_2/qx6850.jpg
http://www.pcdo.com/images/pcdo/20031021231900.jpg
http://vnuuk.typepad.com/photos/uncategorized/itanium2.jpg
http://www.anandtech.com/cpuchipsets/showdoc.aspx?i=2353&p=2
http://www.xbitlabs.com/articles/mobile/print/core2duo.html
http://www.lenovo.hu/kszf/adatlap/Prosi_Proc_Core2_Mobile.pdf
http://www.lithium.it/nove3.jpg
http://cpu.rightmark.org/
http://www.intel.com/Assets/en_US/PDF/manual/248966.pdf

	Supercomputing�in Plain English�The Tyranny of the Storage Hierarchy
	This is an experiment!
	PLEASE MUTE YOURSELF
	Download the Slides Beforehand
	H.323 (Polycom etc) #1
	H.323 (Polycom etc) #2
	Wowza #1
	Wowza #2
	Toll Free Phone Bridge
	Please Mute Yourself
	Questions via E-mail Only
	Onsite: Talent Release Form
	TENTATIVE Schedule
	Thanks for helping!
	This is an experiment!
	Coming in 2015!
	Outline
	The Storage Hierarchy
	Henry’s Laptop
	Storage Speed, Size, Cost
	�Registers
	What Are Registers?
	How Registers Are Used
	How Many Registers?
	Why So Few Registers?
	�Cache
	What is Cache?
	From Cache to the CPU
	Multiple Levels of Cache
	Why Multiple Levels of Cache?
	Cache & RAM Latencies
	Main Memory
	What is Main Memory?
	What Main Memory Looks Like
	The Relationship Between�Main Memory & Cache
	RAM is Slow
	Why Have Cache?
	Cache & RAM Bandwidths
	Cache Use Jargon
	Cache Lines
	How Cache Works
	If It’s in Cache, It’s Also in RAM
	Mapping Cache Lines to RAM
	Direct Mapped Cache
	Direct Mapped Cache Illustration
	Jargon: Cache Conflict
	Problem with Direct Mapped: F90
	Problem with Direct Mapped: C
	Fully Associative Cache
	Fully Associative Illustration
	Set Associative Cache
	2-Way Set Associative Illustration
	Cache Associativity Examples
	If It’s in Cache, It’s Also in RAM
	Changing a Value That’s in Cache
	Cache Store Strategies
	Cache Store Examples
	The Importance of Being Local
	More Data Than Cache
	Improving Your Cache Hit Rate
	Data Locality
	Data Locality Is Empirical: C
	Data Locality Is Empirical: F90
	No Locality Example: C
	No Locality Example: F90
	Permuted vs. Ordered
	Exploiting Data Locality
	A Sample Application
	Matrix Multiply w/Initialization
	Matrix Multiply w/Initialization
	Matrix Multiply Via Intrinsic
	Matrix Multiply Behavior
	Performance of Matrix Multiply
	Tiling
	Tiling
	Tiling Code: F90
	Tiling Code: C
	Multiplying Within a Tile: F90
	Multiplying Within a Tile: C
	Performance with Tiling
	The Advantages of Tiling
	Will Tiling Always Work?
	Hard Disk
	Why Is Hard Disk Slow?
	I/O Strategies
	Avoid Redundant I/O: C
	Avoid Redundant I/O: F90
	Write Binary, Not ASCII
	Problem with Binary I/O
	Portable I/O Libraries
	Virtual Memory
	Virtual Memory
	Virtual Memory (cont’d)
	Virtual Memory (cont’d)
	Cache vs. Virtual Memory
	Storage Use Strategies
	TENTATIVE Schedule
	Thanks for helping!
	Coming in 2015!
	OK Supercomputing Symposium 2015
	Thanks for your attention!���Questions?�www.oscer.ou.edu
	References

