
SupercomputingSupercomputing
in Plain Englishin Plain English

Part II: The Tyranny ofPart II: The Tyranny of
the Storage Hierarchythe Storage Hierarchy
Henry Neeman, Director

OU Supercomputing Center for Education & Research
University of Oklahoma Information Technology

Tuesday February 10 2009

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 2

This is an experiment!
It’s the nature of these kinds of videoconferences that

FAILURES ARE GUARANTEED TO HAPPEN!
NO PROMISES!

So, please bear with us. Hopefully everything will work out
well enough.

If you lose your connection, you can retry the same kind of
connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone
bridge to fall back on.

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 3

Access Grid
This week’s Access Grid (AG) venue: Optiverse.

If you aren’t sure whether you have AG, you probably don’t.
Tue Feb 10 Optiverse

Tue Feb 17 Monte Carlo

Tue Feb 27 Helium

Tue March 3 Titan

Tue March 10 NO WORKSHOP

Tue March 17 NO WORKSHOP

Tue March 24 Axon

Tue March 31 Cactus

Tue Apr 7 Walkabout

Tue Apr 14 Cactus

Tue Apr 21 Verlet

Many thanks to
John Chapman of
U Arkansas for
setting these up

for us.

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 4

H.323 (Polycom etc)
If you want to use H.323 videoconferencing – for example,

Polycom – then dial
69.77.7.203##12345

any time after 2:00pm. Please connect early, at least today.
For assistance, contact Andy Fleming of KanREN/Kan-ed

(afleming@kanren.net or 785-865-6434).
KanREN/Kan-ed’s H.323 system can handle up to 40

simultaneous H.323 connections. If you cannot connect, it
may be that all 40 are already in use.

Many thanks to Andy and KanREN/Kan-ed for providing
H.323 access.

http://www.kanren.net/
mailto:afleming@kanren.net

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 5

iLinc
We have unlimited simultaneous iLinc connections available.
If you’re already on the SiPE e-mail list, then you should

receive an e-mail about iLinc before each session begins.
If you want to use iLinc, please follow the directions in the

iLinc e-mail.
For iLinc, you MUST use either Windows (XP strongly

preferred) or MacOS X with Internet Explorer.
To use iLinc, you’ll need to download a client program to your

PC. It’s free, and setup should take only a few minutes.
Many thanks to Katherine Kantardjieff of California State U

Fullerton for providing the iLinc licenses.

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 6

QuickTime Broadcaster
If you cannot connect via the Access Grid, H.323 or iLinc,

then you can connect via QuickTime:
rtsp://129.15.254.141/test_hpc09.sdp

We recommend using QuickTime Player for this, because
we’ve tested it successfully.

We recommend upgrading to the latest version at:
http://www.apple.com/quicktime/

When you run QuickTime Player, traverse the menus
File -> Open URL

Then paste in the rstp URL into the textbox, and click OK.
Many thanks to Kevin Blake of OU for setting up QuickTime

Broadcaster for us.

http://www.apple.com/quicktime/

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 7

Phone Bridge
If all else fails, you can call into our toll free phone bridge:

1-866-285-7778, access code 6483137#
Please mute yourself and use the phone to listen.
Don’t worry, we’ll call out slide numbers as we go.
Please use the phone bridge ONLY if you cannot connect any

other way: the phone bridge is charged per connection per
minute, so our preference is to minimize the number of
connections.

Many thanks to Amy Apon and U Arkansas for providing the
toll free phone bridge.

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 8

Please Mute Yourself
No matter how you connect, please mute yourself, so that we

cannot hear you.
At OU, we will turn off the sound on all conferencing

technologies.
That way, we won’t have problems with echo cancellation.
Of course, that means we cannot hear questions.
So for questions, you’ll need to send some kind of text.

Also, if you’re on iLinc: SIT ON YOUR HANDS!
Please DON’T touch ANYTHING!

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 9

Questions via Text: iLinc or E-mail
Ask questions via text, using one of the following:

iLinc’s text messaging facility;
e-mail to sipe2009@gmail.com.

All questions will be read out loud and then answered out loud.

mailto:sipe2009@gmail.com

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 10

Thanks for helping!
OSCER operations staff (Brandon George, Dave Akin, Brett
Zimmerman, Josh Alexander)
OU Research Campus staff (Patrick Calhoun, Josh Maxey)
Kevin Blake, OU IT (videographer)
Katherine Kantardjieff, CSU Fullerton
John Chapman and Amy Apon, U Arkansas
Andy Fleming, KanREN/Kan-ed
This material is based upon work supported by the National
Science Foundation under Grant No. OCI-0636427, “CI-
TEAM Demonstration: Cyberinfrastructure Education for
Bioinformatics and Beyond.”

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 11

This is an experiment!
It’s the nature of these kinds of videoconferences that

FAILURES ARE GUARANTEED TO HAPPEN!
NO PROMISES!

So, please bear with us. Hopefully everything will work out
well enough.

If you lose your connection, you can retry the same kind of
connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone
bridge to fall back on.

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 12

Supercomputing Exercises
Want to do the “Supercomputing in Plain English” exercises?

The first two exercises are already posted at:
http://www.oscer.ou.edu/education.php

If you don’t yet have a supercomputer account, you can get
a temporary account, just for the “Supercomputing in Plain
English” exercises, by sending e-mail to:

hneeman@ou.edu
Please note that this account is for doing the exercises only,

and will be shut down at the end of the series.
This week’s Tiling exercise will give you experience
benchmarking various matrix-matrix multiplication
algorithms.

http://www.oscer.ou.edu/education.php
mailto:hneeman@ou.edu

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 13

OK Supercomputing Symposium

2006 Keynote:
Dan Atkins

Head of NSF’s
Office of
Cyber-

infrastructure

2004 Keynote:
Sangtae Kim
NSF Shared

Cyberinfrastructure
Division Director

2003 Keynote:
Peter Freeman

NSF
Computer &
Information
Science &
Engineering

Assistant Director

2005 Keynote:
Walt Brooks

NASA Advanced
Supercomputing
Division Director

http://symposium2009.oscer.ou.edu/

2007 Keynote:
Jay Boisseau

Director
Texas Advanced

Computing Center
U. Texas Austin

Wed Oct 7 2009 @ OU
Over 235 registrations already!

Over 150 in the first day, over 200 in the first
week, over 225 in the first month.

Parallel Programming Workshop
FREE! Tue Oct 6 2009 @ OU

Sponsored by SC09 Education Program
FREE! Symposium Wed Oct 7 2009 @ OU

2008 Keynote:
José Munoz

Deputy Office
Director/ Senior

Scientific Advisor
Office of Cyber-

infrastructure
National Science

Foundation

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 14

SC09 Summer Workshops
This coming summer, the SC09 Education Program, part of the

SC09 (Supercomputing 2009) conference, is planning to
hold two weeklong supercomputing-related workshops in
Oklahoma, for FREE (except you pay your own travel):
At OU: Parallel Programming & Cluster Computing, date to
be decided, weeklong, for FREE
At OSU: Computational Chemistry (tentative), date to be
decided, weeklong, for FREE

We’ll alert everyone when the details have been ironed out and
the registration webpage opens.

Please note that you must apply for a seat, and acceptance
CANNOT be guaranteed.

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 15

Outline
What is the storage hierarchy?
Registers
Cache
Main Memory (RAM)
The Relationship Between RAM and Cache
The Importance of Being Local
Hard Disk
Virtual Memory

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 16

What is the Storage Hierarchy?

Registers
Cache memory
Main memory (RAM)
Hard disk
Removable media (CD, DVD etc)
Internet

Fast, expensive, few

Slow, cheap, a lot
[5]

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 17

Henry’s Laptop

Pentium 4 Core Duo T2400
1.83 GHz w/2 MB L2 Cache
(“Yonah”)
2 GB (2048 MB)
667 MHz DDR2 SDRAM
100 GB 7200 RPM SATA Hard Drive
DVD+RW/CD-RW Drive (8x)
1 Gbps Ethernet Adapter
56 Kbps Phone Modem

Dell Latitude D620[4]

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 18

Storage Speed, Size, Cost

Henry’s
Laptop

Registers
(Pentium 4
Core Duo
1.83 GHz)

Cache
Memory

(L2)

Main
Memory

(667 MHz
DDR2

SDRAM)

Hard
Drive

(SATA
7200
RPM)

Ethernet
(1000
Mbps)

DVD+RW
(8x)

Phone
Modem

(56 Kbps)

125

unlimited

charged
per month
(typically)

0.007

unlimited

charged
per month
(typically)

Speed
(MB/sec)

[peak]

359,792[6]

(14,640
MFLOP/s*)

14,500 [7] 3400 [7] 100
[9]

10.8
[10]

Size
(MB)

304 bytes**
[11]

2 2048 100,000 unlimited

Cost
($/MB) –

$5 [12] $0.03
[12]

$0.0001
[12]

$0.00003
[12]

* MFLOP/s: millions of floating point operations per second
** 8 32-bit integer registers, 8 80-bit floating point registers, 8 64-bit MMX integer registers,

8 128-bit floating point XMM registers

Registers

[25]

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 20

What Are Registers?
Registers are memory-like locations inside the Central

Processing Unit that hold data that are being used
right now in operations.

…

Arithmetic/Logic UnitControl Unit Registers
Fetch Next Instruction Add Sub

Mult Div

And Or

Not …

Integer

Floating Point

…

Fetch Data Store Data

Increment Instruction Ptr

Execute Instruction

…

CPU

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 21

How Registers Are Used
Every arithmetic or logical operation has one or more
operands and one result.
Operands are contained in source registers.
A “black box” of circuits performs the operation.
The result goes into a destination register.

Ex
am

pl
e:

addend in R0

augend in R1
ADD sum in R2

5

7
12

Register Ri

Register Rj
Register Rk

operand

operand

result

Operation circuitry

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 22

How Many Registers?
Typically, a CPU has less than 4 KB (4096 bytes) of registers, usually

split into registers for holding integer values and registers for
holding floating point (real) values, plus a few special purpose
registers.

Examples:
IBM POWER5+ (found in IBM p-Series supercomputers):
80 64-bit integer registers and 72 64-bit floating point
registers (1,216 bytes) [12]

Intel Pentium4 EM64T: 8 64-bit integer registers, 8 80-bit
floating point registers, 16 128-bit floating point vector registers
(400 bytes) [4]

Intel Itanium2: 128 64-bit integer registers, 128 82-bit floating
point registers (2304 bytes) [23]

Cache

[4]

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 24

What is Cache?
A special kind of memory where data reside that are
about to be used or have just been used.
Very fast => very expensive => very small (typically 100
to 10,000 times as expensive as RAM per byte)
Data in cache can be loaded into or stored from registers
at speeds comparable to the speed of performing
computations.
Data that are not in cache (but that are in Main Memory)
take much longer to load or store.
Cache is near the CPU: either inside the CPU or on the
motherboard that the CPU sits on.

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 25

From Cache to the CPU

Typically, data move between cache and the CPU at speeds
relatively near to that of the CPU performing calculations.

CPU

Cache

14.2 GB/sec (4x RAM)[8]

351 GB/sec[7]

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 26

Multiple Levels of Cache
Most contemporary CPUs have more than one level of cache.

For example:
Intel Pentium4 EM64T (Yonah) [??]

Level 1 caches: 32 KB instruction, 32 KB data
Level 2 cache: 2048 KB unified (instruction+data)

IBM POWER4 [12]

Level 1 cache: 64 KB instruction, 32 KB data
Level 2 cache: 1440 KB unified for each 2 CPUs
Level 3 cache: 32 MB unified for each 2 CPUS

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 27

Why Multiple Levels of Cache?
The lower the level of cache:

the faster the cache can transfer data to the CPU;
the smaller that level of cache is, because
faster => more expensive => smaller.

Example: IBM POWER4 latency to the CPU [12]

L1 cache: 4 cycles = 3.6 ns for 1.1 GHz CPU
L2 cache: 14 cycles = 12.7 ns for 1.1 GHz CPU

Example: Intel Itanium2 latency to the CPU [19]

L1 cache: 1 cycle = 1.0 ns for 1.0 GHz CPU
L2 cache: 5 cycles = 5.0 ns for 1.0 GHz CPU
L3 cache: 12-15 cycles = 12 – 15 ns for 1.0 GHz CPU

Example: Intel Pentium4 (Yonah) [??]
L1 cache: 3 cycles = 1.64 ns for a 1.83 GHz CPU = 12 calculations
L2 cache: 14 cycles = 7.65 ns for a 1.83 GHz CPU = 56 calculations
RAM: 48 cycles = 26.2 ns for a 1.83 GHz CPU = 192 calculations

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 28

Cache & RAM Latencies
Cache & RAM Latency: Intel T2400 (1.83 GHz)

0

10

20

30

40

50

60

10
24

204
8

40
32

72
96

12
48

0
210

56
35

13
6

58
17

6
960

00
15

763
2

258
49

6
42

35
52

69
350

4
11

35
488

185
84

32
30

41
40

8
49

76
960

814
37

44

Array Size (bytes)

L
at

en
cy

 (c
lo

ck
 c

yc
le

s)

Memory Latency

3 cycles

14 cycles

47 cycles

Better
[26]

Main Memory

[13]

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 30

What is Main Memory?
Where data reside for a program that is currently running
Sometimes called RAM (Random Access Memory): you can
load from or store into any main memory location at any time
Sometimes called core (from magnetic “cores” that some
memories used, many years ago)
Much slower => much cheaper => much bigger

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 31

What Main Memory Looks Like

…
0 1 2 3 4 5 6 7 8 9 10

536,870,911

You can think of main memory as a
big long 1D array of bytes.

The Relationship
Between

Main Memory & Cache

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 33

RAM is Slow
CPU 351 GB/sec[6]

3.4 GB/sec[7] (1%)

Bottleneck

The speed of data transfer
between Main Memory and the
CPU is much slower than the
speed of calculating, so the CPU
spends most of its time waiting
for data to come in or go out.

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 34

Why Have Cache?
CPUCache is much closer to the speed

of the CPU, so the CPU doesn’t
have to wait nearly as long for
stuff that’s already in cache:
it can do more
operations per second! 3.4 GB/sec[7] (1%)

14.2 GB/sec (4x RAM)[7]

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 35

Cache & RAM Bandwidths
Cache & RAM Bandwidth: Intel T2400 (1.83 GHz)

0

2000

4000

6000

8000

10000

12000

14000

16000

10
24

17
40

8
33

79
2

66
56

0
12

08
32

20
68

48
34

81
60

58
06

08
96

05
12

15
84

12
8

26
00

96
0

42
65

98
4

69
88

80
0

Array Size (bytes)

B
an

dw
id

th
 (M

B
/s

ec
)

Read BW
Write BW

32 KB (L1 cache size)

2 MB (L2 cache size)

7.7 GB/sec14.2 GB/sec

3.5 GB/sec

1.4 GB/secBetter
[26]

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 36

Cache Use Jargon
Cache Hit: the data that the CPU needs right now are
already in cache.
Cache Miss: the data that the CPU needs right now are
not currently in cache.

If all of your data are small enough to fit in cache, then when
you run your program, you’ll get almost all cache hits
(except at the very beginning), which means that your
performance could be excellent!

Sadly, this rarely happens in real life: most problems of
scientific or engineering interest are bigger than just a few
MB.

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 37

Cache Lines
A cache line is a small, contiguous region in cache,
corresponding to a contiguous region in RAM of the same
size, that is loaded all at once.
Typical size: 32 to 1024 bytes
Examples

Pentium 4 (Yonah) [26]

L1 data cache: 64 bytes per line
L2 cache: 128 bytes per line

POWER4 [12]

L1 instruction cache: 128 bytes per line
L1 data cache: 128 bytes per line
L2 cache: 128 bytes per line
L3 cache: 512 bytes per line

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 38

How Cache Works
When you request data from a particular address in Main

Memory, here’s what happens:
1. The hardware checks whether the data for that address is

already in cache. If so, it uses it.
2. Otherwise, it loads from Main Memory the entire cache

line that contains the address.
For example, on a 1.83 GHz Pentium4 Core Duo (Yonah), a

cache miss makes the program stall (wait) at least 48
cycles (26.2 nanoseconds) for the next cache line to load –
time that could have been spent performing up to 192
calculations! [26]

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 39

If It’s in Cache, It’s Also in RAM
If a particular memory address is currently in cache, then it’s

also in Main Memory (RAM).
That is, all of a program’s data are in Main Memory, but some

are also in cache.
We’ll revisit this point shortly.

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 40

Mapping Cache Lines to RAM
Main memory typically maps into cache in one of three

ways:
Direct mapped (occasionally)
Fully associative (very rare these days)
Set associative (common)

DON’T
PANIC!

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 41

Direct Mapped Cache
Direct Mapped Cache is a scheme in which each location in

main memory corresponds to exactly one location in cache
(but not the reverse, since cache is much smaller than main
memory).

Typically, if a cache address is represented by c bits, and a
main memory address is represented by m bits, then the
cache location associated with main memory address A is
MOD(A,2c); that is, the lowest c bits of A.

Example: POWER4 L1 instruction cache

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 42

Direct Mapped Cache Illustration
Must go into
cache address

11100101

Main Memory Address
0100101011100101

Notice that 11100101
is the low 8 bits of
0100101011100101.

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 43

Jargon: Cache Conflict
Suppose that the cache address 11100101 currently contains

RAM address 0100101011100101.
But, we now need to load RAM address 1100101011100101,

which maps to the same cache address as
0100101011100101.

This is called a cache conflict : the CPU needs a RAM
location that maps to a cache line already in use.

In the case of direct mapped cache, every cache conflict leads
to the new cache line clobbering the old cache line.

This can lead to serious performance problems.

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 44

Problem with Direct Mapped: F90
If you have two arrays that start in the same place relative

to cache, then they might clobber each other all the
time: no cache hits!

REAL,DIMENSION(multiple_of_cache_size) :: a, b, c
INTEGER :: index

DO index = 1, multiple_of_cache_size
a(index) = b(index) + c(index)

END DO

In this example, a(index), b(index) and
c(index) all map to the same cache line, so loading
c(index) clobbers b(index) – no cache reuse!

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 45

Problem with Direct Mapped: C
If you have two arrays that start in the same place relative

to cache, then they might clobber each other all the
time: no cache hits!
float a[multiple_of_cache_size],

b[multiple_of_cache_size,
c[multiple_of_cache_size];

int index;

for (index = 0; index < multiple_of_cache_size;
index++)
{ a[index] = b[index] + c[index]; }

In this example, a[index], b[index] and
c[index] all map to the same cache line, so loading
c[index] clobbers b[index] – no cache reuse!

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 46

Fully Associative Cache
Fully Associative Cache can put any line of main memory into

any cache line.
Typically, the cache management system will put the newly

loaded data into the Least Recently Used cache line, though
other strategies are possible (e.g., Random, First In First
Out, Round Robin, Least Recently Modified).

So, this can solve, or at least reduce, the cache conflict
problem.

But, fully associative cache tends to be expensive, so it’s pretty
rare: you need Ncache

. NRAM connections!

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 47

Fully Associative Illustration

Could go into
any cache line

Main Memory Address
0100101011100101

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 48

Set Associative Cache
Set Associative Cache is a compromise between direct

mapped and fully associative. A line in main memory
can map to any of a fixed number of cache lines.

For example, 2-way Set Associative Cache can map each
main memory line to either of 2 cache lines (e.g., to the
Least Recently Used), 3-way maps to any of 3 cache
lines, 4-way to 4 lines, and so on.

Set Associative cache is cheaper than fully associative –
you need K . NRAM connections – but more robust than
direct mapped.

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 49

2-Way Set Associative Illustration
Could go into
cache address

11100101

Main Memory Address
0100101011100101

Could go into
cache address

01100101

OR

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 50

Cache Associativity Examples
Pentium 4 EM64T (Yonah) [26]

L1 data cache: 8-way set associative
L2 cache: 8-way set associative

POWER4 [12]

L1 instruction cache: direct mapped
L1 data cache: 2-way set associative
L2 cache: 8-way set associative
L3 cache: 8-way set associative

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 51

If It’s in Cache, It’s Also in RAM
As we saw earlier:

If a particular memory address is currently in cache, then
it’s also in Main Memory (RAM).
That is, all of a program’s data are in Main Memory, but
some are also in cache.

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 52

Changing a Value That’s in Cache
Suppose that you have in cache a particular line of main

memory (RAM).
If you don’t change the contents of any of that line’s bytes

while it’s in cache, then when it gets clobbered by another
main memory line coming into cache, there’s no loss of
information.

But, if you change the contents of any byte while it’s in cache,
then you need to store it back out to main memory before
clobbering it.

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 53

Cache Store Strategies
Typically, there are two possible cache store strategies:

Write-through: every single time that a value in cache is
changed, that value is also stored back into main memory
(RAM).
Write-back: every single time that a value in cache is
changed, the cache line containing that cache location gets
marked as dirty. When a cache line gets clobbered, then if it
has been marked as dirty, then it is stored back into main
memory (RAM). [14]

The Importance of
Being Local

[15]

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 55

More Data Than Cache
Let’s say that you have 1000 times more data than cache.

Then won’t most of your data be outside the cache?

YES!
Okay, so how does cache help?

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 56

Improving Your Cache Hit Rate
Many scientific codes use a lot more data than can fit in cache

all at once.
Therefore, you need to ensure a high cache hit rate even

though you’ve got much more data than cache.
So, how can you improve your cache hit rate?
Use the same solution as in Real Estate:
Location, Location, Location!

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 57

Data Locality
Data locality is the principle that, if you use data in a particular

memory address, then very soon you’ll use either the same
address or a nearby address.
Temporal locality: if you’re using address A now, then
you’ll probably soon use address A again.
Spatial locality: if you’re using address A now, then you’ll
probably soon use addresses between A-k and A+k,
where k is small.

Note that this principle works well for sufficiently small values
of “soon.”

Cache is designed to exploit locality, which is why a cache miss
causes a whole line to be loaded.

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 58

Data Locality Is Empirical: C
Data locality has been observed empirically in many, many

programs.

void ordered_fill (float* array, int array_length)
{ /* ordered_fill */

int index;

for (index = 0; index < array_length; index++) {
array[index] = index;

} /* for index */
} /* ordered_fill */

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 59

Data Locality Is Empirical: F90
Data locality has been observed empirically in many, many

programs.

SUBROUTINE ordered_fill (array, array_length)
IMPLICIT NONE
INTEGER,INTENT(IN) :: array_length
REAL,DIMENSION(array_length),INTENT(OUT) :: array
INTEGER :: index

DO index = 1, array_length
array(index) = index

END DO
END SUBROUTINE ordered_fill

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 60

No Locality Example: C
In principle, you could write a program that exhibited

absolutely no data locality at all:

void random_fill (float* array,
int* random_permutation_index,
int array_length)

{ /* random_fill */
int index;

for (index = 0; index < array_length; index++) {
array[random_permutation_index[index]] = index;

} /* for index */
} /* random_fill */

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 61

No Locality Example: F90
In principle, you could write a program that exhibited

absolutely no data locality at all:
SUBROUTINE random_fill (array,

random_permutation_index, array_length)
IMPLICIT NONE
INTEGER,INTENT(IN) :: array_length
INTEGER,DIMENSION(array_length),INTENT(IN) :: &

& random_permutation_index
REAL,DIMENSION(array_length),INTENT(OUT) :: array
INTEGER :: index

DO index = 1, array_length
array(random_permutation_index(index)) = index

END DO
END SUBROUTINE random_fill

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 62

Permuted vs. Ordered

In a simple array fill, locality provides a factor of 8 to 20
speedup over a randomly ordered fill on a Pentium4.

Better
0

5

10

15

20

25

30

0 5 10 15 20 25 30

Array size (log2 bytes)

C
PU

 s
ec

on
ds

Random
Ordered

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 63

Exploiting Data Locality
If you know that your code is capable of operating with a

decent amount of data locality, then you can get speedup by
focusing your energy on improving the locality of the
code’s behavior.

This will substantially increase your cache reuse.

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 64

A Sample Application
Matrix-Matrix Multiply
Let A, B and C be matrices of sizes
nr × nc, nr × nk and nk × nc, respectively:

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

ncnrnrnrnr

nc

nc

nc

aaaa

aaaa
aaaa
aaaa

,3,2,1,

,33,32,31,3

,23,22,21,2

,13,12,11,1

L

MOMMM

L

L

L

A

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

nknrnrnrnr

nk

nk

nk

bbbb

bbbb
bbbb
bbbb

,3,2,1,

,33,32,31,3

,23,22,21,2

,13,12,11,1

L

MOMMM

L

L

L

B

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

ncnknknknk

nc

nc

nc

cccc

cccc
cccc
cccc

,3,2,1,

,33,32,31,3

,23,22,21,2

,13,12,11,1

L

MOMMM

L

L

L

C

∑
=

⋅++⋅+⋅+⋅=⋅=
nk

k
cnknkrcrcrcrckkrcr cbcbcbcbcba

1
,,,33,,22,,11,,,, K

The definition of A = B • C is

for r ∈ {1, nr}, c ∈ {1, nc}.

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 65

Matrix Multiply w/Initialization
SUBROUTINE matrix_matrix_mult_by_init (dst, src1, src2, &
& nr, nc, nq)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN) :: src1
REAL,DIMENSION(nq,nc),INTENT(IN) :: src2

INTEGER :: r, c, q

DO c = 1, nc
DO r = 1, nr
dst(r,c) = 0.0
DO q = 1, nq
dst(r,c) = dst(r,c) + src1(r,q) * src2(q,c)

END DO !! q = 1, nq
END DO !! r = 1, nr

END DO !! c = 1, nc
END SUBROUTINE matrix_matrix_mult_by_init

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 66

Matrix Multiply Via Intrinsic
SUBROUTINE matrix_matrix_mult_by_intrinsic (&
& dst, src1, src2, nr, nc, nq)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN) :: src1
REAL,DIMENSION(nq,nc),INTENT(IN) :: src2

dst = MATMUL(src1, src2)
END SUBROUTINE matrix_matrix_mult_by_intrinsic

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 67

Matrix Multiply Behavior

If the matrix is big, then each sweep of a row will clobber nearby values in cache.

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 68

Performance of Matrix Multiply
Matrix-Matrix Multiply

0

100

200

300

400

500

600

700

800

0 10000000 20000000 30000000 40000000 50000000 60000000

Total Problem Size in bytes (nr*nc+nr*nq+nq*nc)

C
PU

 se
c

Naive

Init

IntrinsicBetter

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 69

Tiling

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 70

Tiling
Tile: a small rectangular subdomain of a problem domain.
Sometimes called a block or a chunk.
Tiling: breaking the domain into tiles.
Tiling strategy: operate on each tile to completion, then
move to the next tile.
Tile size can be set at runtime, according to what’s best for
the machine that you’re running on.

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 71

Tiling Code
SUBROUTINE matrix_matrix_mult_by_tiling (dst, src1, src2, nr, nc, nq, &
& rtilesize, ctilesize, qtilesize)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN) :: src1
REAL,DIMENSION(nq,nc),INTENT(IN) :: src2
INTEGER,INTENT(IN) :: rtilesize, ctilesize, qtilesize

INTEGER :: rstart, rend, cstart, cend, qstart, qend

DO cstart = 1, nc, ctilesize
cend = cstart + ctilesize - 1
IF (cend > nc) cend = nc
DO rstart = 1, nr, rtilesize

rend = rstart + rtilesize - 1
IF (rend > nr) rend = nr
DO qstart = 1, nq, qtilesize

qend = qstart + qtilesize - 1
IF (qend > nq) qend = nq
CALL matrix_matrix_mult_tile(dst, src1, src2, nr, nc, nq, &

& rstart, rend, cstart, cend, qstart, qend)
END DO !! qstart = 1, nq, qtilesize

END DO !! rstart = 1, nr, rtilesize
END DO !! cstart = 1, nc, ctilesize

END SUBROUTINE matrix_matrix_mult_by_tiling

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 72

Multiplying Within a Tile
SUBROUTINE matrix_matrix_mult_tile (dst, src1, src2, nr, nc, nq, &
& rstart, rend, cstart, cend, qstart, qend)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN) :: src1
REAL,DIMENSION(nq,nc),INTENT(IN) :: src2
INTEGER,INTENT(IN) :: rstart, rend, cstart, cend, qstart, qend

INTEGER :: r, c, q

DO c = cstart, cend
DO r = rstart, rend
IF (qstart == 1) dst(r,c) = 0.0
DO q = qstart, qend
dst(r,c) = dst(r,c) + src1(r,q) * src2(q,c)

END DO !! q = qstart, qend
END DO !! r = rstart, rend

END DO !! c = cstart, cend
END SUBROUTINE matrix_matrix_mult_tile

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 73

Performance with Tiling

Matrix-Matrix Mutiply Via Tiling (log-log)

0.1

1

10

100

1000

101001000100001000001000000100000001E+08

Tile Size (bytes)

C
PU

 se
c

512x256

512x512

1024x512

1024x1024

2048x1024

Matrix-Matrix Mutiply Via Tiling

0

50

100

150

200

250

10100100010000100000100000010000000100000000

Tile Size (bytes)

Better

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 74

The Advantages of Tiling
It allows your code to exploit data locality better, to get
much more cache reuse: your code runs faster!
It’s a relatively modest amount of extra coding (typically a
few wrapper functions and some changes to loop bounds).
If you don’t need tiling – because of the hardware, the
compiler or the problem size – then you can turn it off by
simply setting the tile size equal to the problem size.

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 75

Will Tiling Always Work?
Tiling WON’T always work. Why?
Well, tiling works well when:

the order in which calculations occur doesn’t matter much,
AND
there are lots and lots of calculations to do for each memory
movement.

If either condition is absent, then tiling won’t help.

Hard Disk

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 77

Why Is Hard Disk Slow?
Your hard disk is much much slower than main memory (factor of

10-1000). Why?
Well, accessing data on the hard disk involves physically moving:

the disk platter
the read/write head

In other words, hard disk is slow because objects move much slower
than electrons: Newtonian speeds are much slower than
Einsteinian speeds.

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 78

I/O Strategies
Read and write the absolute minimum amount.

Don’t reread the same data if you can keep it in memory.
Write binary instead of characters.
Use optimized I/O libraries like NetCDF [17] and HDF [18].

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 79

Avoid Redundant I/O
An actual piece of code seen at OU:

for (thing = 0; thing < number_of_things; thing++) {
for (time = 0; time < number_of_timesteps; time++) {

read(file[time]);
do_stuff(thing, time);

} /* for time */
} /* for thing */

Improved version:
for (time = 0; time < number_of_timesteps; time++) {
read(file[time]);
for (thing = 0; thing < number_of_things; thing++) {

do_stuff(thing, time);
} /* for thing */

} /* for time */

Savings (in real life): factor of 500!

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 80

Write Binary, Not ASCII
When you write binary data to a file, you’re writing (typically)

4 bytes per value.
When you write ASCII (character) data, you’re writing

(typically) 8-16 bytes per value.
So binary saves a factor of 2 to 4 (typically).

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 81

Problem with Binary I/O
There are many ways to represent data inside a computer,

especially floating point (real) data.
Often, the way that one kind of computer (e.g., a Pentium4)

saves binary data is different from another kind of
computer (e.g., a POWER5).

So, a file written on a Pentium4 machine may not be readable
on a POWER5.

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 82

Portable I/O Libraries
NetCDF and HDF are the two most commonly used I/O

libraries for scientific computing.
Each has its own internal way of representing numerical data.

When you write a file using, say, HDF, it can be read by a
HDF on any kind of computer.

Plus, these libraries are optimized to make the I/O very fast.

Virtual Memory

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 84

Virtual Memory
Typically, the amount of main memory (RAM) that a CPU
can address is larger than the amount of data physically
present in the computer.
For example, Henry’s laptop can address 32 GB of main
memory (roughly 32 billion bytes), but only contains
2 GB (roughly 2 billion bytes).

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 85

Virtual Memory (cont’d)
Locality: most programs don’t jump all over the memory
that they use; instead, they work in a particular area of
memory for a while, then move to another area.
So, you can offload onto hard disk much of the memory
image of a program that’s running.

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 86

Virtual Memory (cont’d)
Memory is chopped up into many pages of modest size (e.g.,
1 KB – 32 KB; typically 4 KB).
Only pages that have been recently used actually reside in
memory; the rest are stored on hard disk.
Hard disk is 10 to 1,000 times slower than main memory, so
you get better performance if you rarely get a page fault,
which forces a read from (and maybe a write to) hard disk:
exploit data locality!

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 87

Cache vs. Virtual Memory
Lines (cache) vs. pages (VM)
Cache faster than RAM (cache) vs. RAM faster than disk
(VM)

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 88

Storage Use Strategies
Register reuse: do a lot of work on the same data before
working on new data.
Cache reuse: the program is much more efficient if all of
the data and instructions fit in cache; if not, try to use what’s
in cache a lot before using anything that isn’t in cache (e.g.,
tiling).
Data locality: try to access data that are near each other in
memory before data that are far.
I/O efficiency: do a bunch of I/O all at once rather than a
little bit at a time; don’t mix calculations and I/O.

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 89

OK Supercomputing Symposium

2006 Keynote:
Dan Atkins

Head of NSF’s
Office of
Cyber-

infrastructure

2004 Keynote:
Sangtae Kim
NSF Shared

Cyberinfrastructure
Division Director

2003 Keynote:
Peter Freeman

NSF
Computer &
Information
Science &
Engineering

Assistant Director

2005 Keynote:
Walt Brooks

NASA Advanced
Supercomputing
Division Director

http://symposium2009.oscer.ou.edu/

2007 Keynote:
Jay Boisseau

Director
Texas Advanced

Computing Center
U. Texas Austin

Wed Oct 7 2009 @ OU
Over 235 registrations already!

Over 150 in the first day, over 200 in the first
week, over 225 in the first month.

Parallel Programming Workshop
FREE! Tue Oct 6 2009 @ OU

Sponsored by SC09 Education Program
FREE! Symposium Wed Oct 7 2009 @ OU

2008 Keynote:
José Munoz

Deputy Office
Director/ Senior

Scientific Advisor
Office of Cyber-

infrastructure
National Science

Foundation

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 90

SC09 Summer Workshops
This coming summer, the SC09 Education Program, part of the

SC09 (Supercomputing 2009) conference, is planning to
hold two weeklong supercomputing-related workshops in
Oklahoma, for FREE (except you pay your own travel):
At OU: Parallel Programming & Cluster Computing, date to
be decided, weeklong, for FREE
At OSU: Computational Chemistry (tentative), date to be
decided, weeklong, for FREE

We’ll alert everyone when the details have been ironed out and
the registration webpage opens.

Please note that you must apply for a seat, and acceptance
CANNOT be guaranteed.

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 91

To Learn More Supercomputing
http://www.oscer.ou.edu/education.php

http://www.oscer.ou.edu/education.php

Thanks for your
attention!

Questions?

Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 93

References
[1] http://graphics8.nytimes.com/images/2007/07/13/sports/auto600.gif
[2] http://www.vw.com/newbeetle/
[3] http://img.dell.com/images/global/products/resultgrid/sm/latit_d630.jpg
[4] http://en.wikipedia.org/wiki/X64
[5] Richard Gerber, The Software Optimization Cookbook: High-performance Recipes for the Intel Architecture. Intel Press, 2002, pp. 161-168.
[6] http://www.anandtech.com/showdoc.html?i=1460&p=2
[8] http://www.toshiba.com/taecdpd/products/features/MK2018gas-Over.shtml
[9] http://www.toshiba.com/taecdpd/techdocs/sdr2002/2002spec.shtml
[10] ftp://download.intel.com/design/Pentium4/manuals/24896606.pdf
[11] http://www.pricewatch.com/
[12] S. Behling, R. Bell, P. Farrell, H. Holthoff, F. O’Connell and W. Weir, “The POWER4 Processor Introduction and Tuning Guide.” IBM Redbooks,
2001.
[13] http://www.kingston.com/branded/image_files/nav_image_desktop.gif
14] M. Wolfe, High Performance Compilers for Parallel Computing. Addison-Wesley Publishing Company, Redwood City CA, 1996.
[15] http://www.visit.ou.edu/vc_campus_map.htm
[16] http://www.storagereview.com/
[17] http://www.unidata.ucar.edu/packages/netcdf/
[18] http://hdf.ncsa.uiuc.edu/
[23] http://en.wikipedia.org/wiki/Itanium
[19] ftp://download.intel.com/design/itanium2/manuals/25111003.pdf
[20] http://images.tomshardware.com/2007/08/08/extreme_fsb_2/qx6850.jpg (em64t)
[21] http://www.pcdo.com/images/pcdo/20031021231900.jpg (power5)
[22] http://vnuuk.typepad.com/photos/uncategorized/itanium2.jpg (i2)
[??] http://www.anandtech.com/cpuchipsets/showdoc.aspx?i=2353&p=2 (Prescott cache latency)
[??] http://www.xbitlabs.com/articles/mobile/print/core2duo.html (T2400 Merom cache)
[??] http://www.lenovo.hu/kszf/adatlap/Prosi_Proc_Core2_Mobile.pdf (Merom cache line size)
[25] http://www.lithium.it/nove3.jpg
[26] http://cpu.rightmark.org/

http://graphics8.nytimes.com/images/2007/07/13/sports/auto600.gif
http://www.vw.com/newbeetle/
http://img.dell.com/images/global/products/resultgrid/sm/latit_d630.jpg
http://en.wikipedia.org/wiki/X64
http://www.anandtech.com/showdoc.html?i=1460&p=2
http://www.toshiba.com/taecdpd/products/features/MK2018gas-Over.shtml
http://www.toshiba.com/taecdpd/techdocs/sdr2002/2002spec.shtml
ftp://download.intel.com/design/Pentium4/manuals/24896606.pdf
http://www.pricewatch.com/
http://www.kingston.com/branded/image_files/nav_image_desktop.gif
http://www.visit.ou.edu/vc_campus_map.htm
http://www.storagereview.com/
http://www.unidata.ucar.edu/packages/netcdf/
http://hdf.ncsa.uiuc.edu/
http://en.wikipedia.org/wiki/Itanium
ftp://download.intel.com/design/itanium2/manuals/25111003.pdf
http://images.tomshardware.com/2007/08/08/extreme_fsb_2/qx6850.jpg
http://www.pcdo.com/images/pcdo/20031021231900.jpg
http://vnuuk.typepad.com/photos/uncategorized/itanium2.jpg
http://www.anandtech.com/cpuchipsets/showdoc.aspx?i=2353&p=2
http://www.xbitlabs.com/articles/mobile/print/core2duo.html
http://www.lenovo.hu/kszf/adatlap/Prosi_Proc_Core2_Mobile.pdf
http://www.lithium.it/nove3.jpg
http://cpu.rightmark.org/

	Supercomputing�in Plain English�Part II: The Tyranny of�the Storage Hierarchy
	This is an experiment!
	Access Grid
	H.323 (Polycom etc)
	iLinc
	QuickTime Broadcaster
	Phone Bridge
	Please Mute Yourself
	Questions via Text: iLinc or E-mail
	Thanks for helping!
	This is an experiment!
	Supercomputing Exercises
	OK Supercomputing Symposium
	SC09 Summer Workshops
	Outline
	What is the Storage Hierarchy?
	Henry’s Laptop
	Storage Speed, Size, Cost
	Registers
	What Are Registers?
	How Registers Are Used
	How Many Registers?
	Cache
	What is Cache?
	From Cache to the CPU
	Multiple Levels of Cache
	Why Multiple Levels of Cache?
	Cache & RAM Latencies
	Main Memory
	What is Main Memory?
	What Main Memory Looks Like
	The Relationship Between�Main Memory & Cache
	RAM is Slow
	Why Have Cache?
	Cache & RAM Bandwidths
	Cache Use Jargon
	Cache Lines
	How Cache Works
	If It’s in Cache, It’s Also in RAM
	Mapping Cache Lines to RAM
	Direct Mapped Cache
	Direct Mapped Cache Illustration
	Jargon: Cache Conflict
	Problem with Direct Mapped: F90
	Problem with Direct Mapped: C
	Fully Associative Cache
	Fully Associative Illustration
	Set Associative Cache
	2-Way Set Associative Illustration
	Cache Associativity Examples
	If It’s in Cache, It’s Also in RAM
	Changing a Value That’s in Cache
	Cache Store Strategies
	The Importance of Being Local
	More Data Than Cache
	Improving Your Cache Hit Rate
	Data Locality
	Data Locality Is Empirical: C
	Data Locality Is Empirical: F90
	No Locality Example: C
	No Locality Example: F90
	Permuted vs. Ordered
	Exploiting Data Locality
	A Sample Application
	Matrix Multiply w/Initialization
	Matrix Multiply Via Intrinsic
	Matrix Multiply Behavior
	Performance of Matrix Multiply
	Tiling
	Tiling
	Tiling Code
	Multiplying Within a Tile
	Performance with Tiling
	The Advantages of Tiling
	Will Tiling Always Work?
	Hard Disk
	Why Is Hard Disk Slow?
	I/O Strategies
	Avoid Redundant I/O
	Write Binary, Not ASCII
	Problem with Binary I/O
	Portable I/O Libraries
	Virtual Memory
	Virtual Memory
	Virtual Memory (cont’d)
	Virtual Memory (cont’d)
	Cache vs. Virtual Memory
	Storage Use Strategies
	OK Supercomputing Symposium
	SC09 Summer Workshops
	To Learn More Supercomputing
	Thanks for your attention!��Questions?
	References

