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This is an experiment!
It’s the nature of these kinds of videoconferences that 

FAILURES ARE GUARANTEED TO HAPPEN!       
NO PROMISES!

So, please bear with us. Hopefully everything will work out 
well enough.

If you lose your connection, you can retry the same kind of 
connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone
bridge to fall back on.
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Access Grid
This week’s Access Grid (AG) venue: Optiverse.

If you aren’t sure whether you have AG, you probably don’t.
Tue Feb 10 Optiverse

Tue Feb 17 Monte Carlo

Tue Feb 27 Helium

Tue March 3 Titan

Tue March 10 NO WORKSHOP

Tue March 17 NO WORKSHOP

Tue March 24 Axon

Tue March 31 Cactus

Tue Apr 7 Walkabout

Tue Apr 14 Cactus

Tue Apr 21 Verlet

Many thanks to 
John Chapman of 
U Arkansas for 
setting these up  

for us.
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H.323 (Polycom etc)
If you want to use H.323 videoconferencing – for example, 

Polycom – then dial
69.77.7.203##12345

any time after 2:00pm. Please connect early, at least today.
For assistance, contact Andy Fleming of KanREN/Kan-ed

(afleming@kanren.net or 785-865-6434).
KanREN/Kan-ed’s H.323 system can handle up to 40 

simultaneous H.323 connections. If you cannot connect, it 
may be that all 40 are already in use.

Many thanks to Andy and KanREN/Kan-ed for providing 
H.323 access.

http://www.kanren.net/
mailto:afleming@kanren.net
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iLinc
We have unlimited simultaneous iLinc connections available.
If you’re already on the SiPE e-mail list, then you should 

receive an e-mail about iLinc before each session begins.
If you want to use iLinc, please follow the directions in the 

iLinc e-mail.
For iLinc, you MUST use either Windows (XP strongly 

preferred) or MacOS X with Internet Explorer.
To use iLinc, you’ll need to download a client program to your 

PC. It’s free, and setup should take only a few minutes.
Many thanks to Katherine Kantardjieff of California State U 

Fullerton for providing the iLinc licenses.
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QuickTime Broadcaster
If you cannot connect via the Access Grid, H.323 or iLinc, 

then you can connect via QuickTime:
rtsp://129.15.254.141/test_hpc09.sdp

We recommend using QuickTime Player for this, because 
we’ve tested it successfully.

We recommend upgrading to the latest version at:
http://www.apple.com/quicktime/

When you run QuickTime Player, traverse the menus
File -> Open URL

Then paste in the rstp URL into the textbox, and click OK.
Many thanks to Kevin Blake of OU for setting up QuickTime 

Broadcaster for us.

http://www.apple.com/quicktime/
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Phone Bridge
If all else fails, you can call into our toll free phone bridge:

1-866-285-7778, access code 6483137#
Please mute yourself and use the phone to listen.
Don’t worry, we’ll call out slide numbers as we go.
Please use the phone bridge ONLY if you cannot connect any 

other way: the phone bridge is charged per connection per 
minute, so our preference is to minimize the number of 
connections.

Many thanks to Amy Apon and U Arkansas for providing the 
toll free phone bridge.
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Please Mute Yourself
No matter how you connect, please mute yourself, so that we 

cannot hear you.
At OU, we will turn off the sound on all conferencing 

technologies.
That way, we won’t have problems with echo cancellation.
Of course, that means we cannot hear questions.
So for questions, you’ll need to send some kind of text.

Also, if you’re on iLinc: SIT ON YOUR HANDS!
Please DON’T touch ANYTHING!
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Questions via Text: iLinc or E-mail
Ask questions via text, using one of the following:

iLinc’s text messaging facility;
e-mail to sipe2009@gmail.com.

All questions will be read out loud and then answered out loud.

mailto:sipe2009@gmail.com
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Thanks for helping!
OSCER operations staff (Brandon George, Dave Akin, Brett 
Zimmerman, Josh Alexander)
OU Research Campus staff (Patrick Calhoun, Josh Maxey)
Kevin Blake, OU IT (videographer)
Katherine Kantardjieff, CSU Fullerton
John Chapman and Amy Apon, U Arkansas
Andy Fleming, KanREN/Kan-ed
This material is based upon work supported by the National 
Science Foundation under Grant No. OCI-0636427, “CI-
TEAM Demonstration: Cyberinfrastructure Education for 
Bioinformatics and Beyond.”
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This is an experiment!
It’s the nature of these kinds of videoconferences that 

FAILURES ARE GUARANTEED TO HAPPEN!       
NO PROMISES!

So, please bear with us. Hopefully everything will work out 
well enough.

If you lose your connection, you can retry the same kind of 
connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone
bridge to fall back on.
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Supercomputing Exercises
Want to do the “Supercomputing in Plain English” exercises?

The first two exercises are already posted at:
http://www.oscer.ou.edu/education.php

If you don’t yet have a supercomputer account, you can get 
a temporary account, just for the “Supercomputing in Plain 
English” exercises, by sending e-mail to:

hneeman@ou.edu
Please note that this account is for doing the exercises only, 

and will be shut down at the end of the series.
This week’s Tiling exercise will give you experience 
benchmarking various matrix-matrix multiplication 
algorithms.

http://www.oscer.ou.edu/education.php
mailto:hneeman@ou.edu


Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 13

OK Supercomputing Symposium

2006 Keynote:
Dan Atkins

Head of NSF’s
Office of
Cyber-

infrastructure

2004 Keynote:
Sangtae Kim
NSF Shared

Cyberinfrastructure
Division Director

2003 Keynote:
Peter Freeman

NSF
Computer &
Information
Science &
Engineering

Assistant Director

2005 Keynote:
Walt Brooks

NASA Advanced
Supercomputing
Division Director

http://symposium2009.oscer.ou.edu/

2007 Keynote:
Jay Boisseau

Director
Texas Advanced

Computing Center
U. Texas Austin

Wed Oct 7 2009 @ OU
Over 235 registrations already!

Over 150 in the first day, over 200 in the first 
week, over 225 in the first month.

Parallel Programming Workshop      
FREE! Tue Oct 6 2009 @ OU                                

Sponsored by SC09 Education Program
FREE! Symposium Wed Oct 7 2009 @ OU

2008 Keynote: 
José Munoz 

Deputy Office 
Director/ Senior 

Scientific Advisor 
Office of Cyber-

infrastructure 
National Science 

Foundation
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SC09 Summer Workshops
This coming summer, the SC09 Education Program, part of the 

SC09 (Supercomputing 2009) conference, is planning to 
hold two weeklong supercomputing-related workshops in 
Oklahoma, for FREE (except you pay your own travel):
At OU: Parallel Programming & Cluster Computing, date to 
be decided, weeklong, for FREE
At OSU: Computational Chemistry (tentative), date to be 
decided, weeklong, for FREE

We’ll alert everyone when the details have been ironed out and 
the registration webpage opens.

Please note that you must apply for a seat, and acceptance 
CANNOT be guaranteed.
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Outline
What is the storage hierarchy?
Registers
Cache
Main Memory (RAM)
The Relationship Between RAM and Cache
The Importance of Being Local
Hard Disk
Virtual Memory
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What is the Storage Hierarchy?

Registers
Cache memory
Main memory (RAM)
Hard disk
Removable media (CD, DVD etc)
Internet

Fast, expensive, few

Slow, cheap, a lot
[5]



Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 17

Henry’s Laptop

Pentium 4 Core Duo T2400             
1.83 GHz w/2 MB L2 Cache 
(“Yonah”)
2 GB (2048 MB)                               
667 MHz DDR2 SDRAM
100 GB 7200 RPM SATA Hard Drive
DVD+RW/CD-RW Drive (8x)
1 Gbps Ethernet Adapter
56 Kbps Phone Modem

Dell Latitude D620[4]
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Storage Speed, Size, Cost

Henry’s 
Laptop

Registers
(Pentium 4 
Core Duo
1.83 GHz)

Cache
Memory

(L2)

Main
Memory

(667 MHz 
DDR2 

SDRAM)

Hard 
Drive

(SATA 
7200 
RPM)

Ethernet
(1000 
Mbps)

DVD+RW
(8x)

Phone 
Modem

(56 Kbps)

125

unlimited

charged
per month
(typically)

0.007

unlimited

charged 
per month 
(typically)

Speed
(MB/sec)

[peak]

359,792[6]

(14,640
MFLOP/s*)

14,500 [7] 3400 [7] 100      
[9]

10.8             
[10]

Size
(MB)

304 bytes**
[11]

2 2048 100,000 unlimited

Cost
($/MB) –

$5 [12] $0.03     
[12]

$0.0001 
[12]

$0.00003 
[12]

*   MFLOP/s: millions of floating point operations per second
** 8 32-bit integer registers, 8 80-bit floating point registers, 8 64-bit MMX integer registers,

8 128-bit floating point XMM registers



Registers

[25]
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What Are Registers?
Registers are memory-like locations inside the Central 

Processing Unit that hold data that are being used 
right now in operations.

…

Arithmetic/Logic UnitControl Unit Registers
Fetch Next Instruction Add Sub

Mult Div

And Or

Not …

Integer

Floating Point

…

Fetch Data Store Data

Increment Instruction Ptr

Execute Instruction

…

CPU
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How Registers Are Used
Every arithmetic or logical operation has one or more 
operands and one result.
Operands are contained in source registers.
A “black box” of circuits performs the operation.
The result goes into a destination register.

Ex
am

pl
e:

addend in R0

augend in R1
ADD sum in R2

5

7
12

Register Ri

Register Rj
Register Rk

operand

operand

result

Operation circuitry
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How Many Registers?
Typically, a CPU has less than 4 KB (4096 bytes) of registers, usually 

split into registers for holding integer values and registers for 
holding floating point (real) values, plus a few special purpose 
registers.

Examples:
IBM POWER5+ (found in IBM p-Series supercomputers):         
80 64-bit integer registers and 72 64-bit floating point         
registers (1,216 bytes) [12]

Intel Pentium4 EM64T: 8 64-bit integer registers, 8 80-bit 
floating point registers, 16 128-bit floating point vector registers 
(400 bytes) [4]

Intel Itanium2: 128 64-bit integer registers, 128 82-bit floating 
point registers (2304 bytes) [23]



Cache

[4]
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What is Cache?
A special kind of memory where data reside that are
about to be used or have just been used.
Very fast => very expensive => very small (typically 100 
to 10,000 times as expensive as RAM per byte)
Data in cache can be loaded into or stored from registers 
at speeds comparable to the speed of performing 
computations.
Data that are not in cache (but that are in Main Memory) 
take much longer to load or store.
Cache is near the CPU: either inside the CPU or on the 
motherboard that the CPU sits on.
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From Cache to the CPU

Typically, data move between cache and the CPU at speeds 
relatively near to that of the CPU performing calculations.

CPU

Cache

14.2 GB/sec (4x RAM)[8]

351 GB/sec[7]
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Multiple Levels of Cache
Most contemporary CPUs have more than one level of cache. 

For example:
Intel Pentium4 EM64T (Yonah) [??]

Level 1 caches:    32 KB instruction, 32 KB data
Level 2 cache:  2048 KB unified (instruction+data)

IBM POWER4 [12]

Level 1 cache: 64 KB instruction, 32 KB data
Level 2 cache: 1440 KB unified for each 2 CPUs
Level 3 cache: 32 MB unified for each 2 CPUS
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Why Multiple Levels of Cache?
The lower the level of cache:

the faster the cache can transfer data to the CPU;
the smaller that level of cache is, because
faster => more expensive => smaller.

Example: IBM POWER4 latency to the CPU [12]

L1 cache:   4 cycles =   3.6 ns for 1.1 GHz CPU
L2 cache: 14 cycles = 12.7 ns for 1.1 GHz CPU

Example: Intel Itanium2 latency to the CPU [19]

L1 cache:   1 cycle   =   1.0 ns for 1.0 GHz CPU
L2 cache:   5 cycles =   5.0 ns for 1.0 GHz CPU
L3 cache: 12-15 cycles = 12 – 15 ns for 1.0 GHz CPU

Example: Intel Pentium4 (Yonah) [??]
L1 cache:   3 cycles =  1.64 ns for a 1.83 GHz CPU =  12 calculations
L2 cache: 14 cycles =  7.65 ns for a 1.83 GHz CPU =  56 calculations
RAM:       48 cycles = 26.2 ns for a 1.83 GHz CPU = 192 calculations 
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Cache & RAM Latencies
Cache & RAM Latency: Intel T2400 (1.83 GHz)
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Main Memory

[13]
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What is Main Memory?
Where data reside for a program that is  currently running
Sometimes called RAM (Random Access Memory): you can 
load from or store into any main memory location at any time
Sometimes called core (from magnetic “cores” that some 
memories used, many years ago)
Much slower => much cheaper => much bigger
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What Main Memory Looks Like

…
0 1 2 3 4 5 6 7 8 9 10

536,870,911

You can think of main memory as a 
big long 1D array of bytes.



The Relationship 
Between

Main Memory & Cache
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RAM is Slow
CPU 351 GB/sec[6]

3.4 GB/sec[7] (1%)

Bottleneck

The speed of data transfer
between Main Memory and the
CPU is much slower than the
speed of calculating, so the CPU
spends most of its time waiting
for data to come in or go out.
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Why Have Cache?
CPUCache is much closer to the speed

of the CPU, so the CPU doesn’t
have to wait nearly as long for
stuff that’s already in cache:
it can do more
operations per second! 3.4 GB/sec[7] (1%)

14.2 GB/sec (4x RAM)[7]
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Cache & RAM Bandwidths
Cache & RAM Bandwidth: Intel T2400 (1.83 GHz)
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Cache Use Jargon
Cache Hit:  the data that the CPU needs right now are 
already in cache.
Cache Miss: the data that the CPU needs right now are 
not currently in cache.

If all of your data are small enough to fit in cache, then when 
you run your program, you’ll get almost all cache hits 
(except at the very beginning), which means that your 
performance could be excellent!

Sadly, this rarely happens in real life: most problems of 
scientific or engineering interest are bigger than just a few 
MB.
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Cache Lines
A cache line is a small, contiguous region in cache, 
corresponding to a contiguous region in RAM of the same 
size, that is loaded all at once.
Typical size:  32 to 1024 bytes
Examples

Pentium 4 (Yonah) [26]

L1 data cache:           64 bytes per line
L2 cache:                 128 bytes per line

POWER4 [12]

L1 instruction cache: 128 bytes per line
L1 data cache:           128 bytes per line
L2 cache:                   128 bytes per line
L3 cache:                   512 bytes per line 
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How Cache Works
When you request data from a particular address in Main 

Memory, here’s what happens:
1. The hardware checks whether the data for that address is 

already in cache. If so, it uses it.
2. Otherwise, it loads from Main Memory the entire cache 

line that contains the address.
For example, on a 1.83 GHz Pentium4 Core Duo (Yonah), a 

cache miss makes the program stall (wait) at least 48 
cycles (26.2 nanoseconds) for the next cache line to load –
time that could have been spent performing up to 192 
calculations! [26]
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If It’s in Cache, It’s Also in RAM
If a particular memory address is currently in cache, then it’s 

also in Main Memory (RAM).
That is, all of a program’s data are in Main Memory, but some

are also in cache.
We’ll revisit this point shortly.
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Mapping Cache Lines to RAM
Main memory typically maps into cache in one of three 

ways:
Direct mapped    (occasionally)
Fully associative (very rare these days)
Set associative    (common)

DON’T
PANIC!
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Direct Mapped Cache
Direct Mapped Cache is a scheme in which each location in 

main memory corresponds to exactly one location in cache 
(but not the reverse, since cache is much smaller than main 
memory).

Typically, if a cache address is represented by c bits, and a 
main memory address is represented by m bits, then the 
cache location associated with main memory address A is 
MOD(A,2c); that is,  the lowest c bits of A.

Example: POWER4 L1 instruction cache
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Direct Mapped Cache Illustration
Must go into
cache address

11100101

Main Memory Address
0100101011100101

Notice that 11100101 
is the low 8 bits of 
0100101011100101.
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Jargon: Cache Conflict
Suppose that the cache address 11100101 currently contains 

RAM address 0100101011100101.
But, we now need to load RAM address 1100101011100101, 

which maps to the same cache address as 
0100101011100101.

This is called a cache conflict : the CPU needs a RAM 
location that maps to a cache line already in use.

In the case of direct mapped cache, every cache conflict leads 
to the new cache line clobbering the old cache line.

This can lead to serious performance problems.
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Problem with Direct Mapped: F90
If you have two arrays that start in the same place relative 

to cache, then they might clobber each other all the 
time: no cache hits!

REAL,DIMENSION(multiple_of_cache_size) :: a, b, c
INTEGER :: index

DO index = 1, multiple_of_cache_size
a(index) = b(index) + c(index)

END DO

In this example, a(index), b(index) and 
c(index) all map to the same cache line, so loading 
c(index) clobbers  b(index) – no cache reuse!
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Problem with Direct Mapped: C
If you have two arrays that start in the same place relative 

to cache, then they might clobber each other all the 
time: no cache hits!
float a[multiple_of_cache_size],

b[multiple_of_cache_size,
c[multiple_of_cache_size];

int index;

for (index = 0; index < multiple_of_cache_size;
index++)
{ a[index] = b[index] + c[index]; }

In this example, a[index], b[index] and 
c[index] all map to the same cache line, so loading 
c[index] clobbers  b[index] – no cache reuse!
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Fully Associative Cache
Fully Associative Cache can put any line of main memory into 

any cache line.
Typically, the cache management system will put the newly 

loaded data into the Least Recently Used cache line, though 
other strategies are possible (e.g., Random, First In First 
Out, Round Robin, Least Recently Modified).

So, this can solve, or at least reduce, the cache conflict 
problem.

But, fully associative cache tends to be expensive, so it’s pretty 
rare: you need Ncache

. NRAM connections!
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Fully Associative Illustration

Could go into
any cache line

Main Memory Address
0100101011100101
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Set Associative Cache
Set Associative Cache is a compromise between direct 

mapped and fully associative.  A line in main memory 
can map to any of a fixed number of cache lines.

For example, 2-way Set Associative Cache can map each 
main memory line to either of 2 cache lines (e.g., to the 
Least Recently Used), 3-way maps to any of 3 cache 
lines, 4-way to 4 lines, and so on.

Set Associative cache is cheaper than fully associative –
you need K . NRAM connections – but more robust than 
direct mapped.
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2-Way Set Associative Illustration
Could go into 
cache address

11100101

Main Memory Address
0100101011100101

Could go into
cache address

01100101

OR
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Cache Associativity Examples
Pentium 4 EM64T (Yonah) [26]

L1 data cache:           8-way set associative
L2 cache:                   8-way set associative

POWER4 [12]

L1 instruction cache:  direct mapped
L1 data cache:            2-way set associative
L2 cache:                    8-way set associative
L3 cache:                    8-way set associative
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If It’s in Cache, It’s Also in RAM
As we saw earlier:

If a particular memory address is currently in cache, then 
it’s also in Main Memory (RAM).
That is, all of a program’s data are in Main Memory, but 
some are also in cache.
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Changing a Value That’s in Cache
Suppose that you have in cache a particular line of main 

memory (RAM).
If you don’t change the contents of any of that line’s bytes 

while it’s in cache, then when it gets clobbered by another 
main memory line coming into cache, there’s no loss of 
information.

But, if you change the contents of any byte while it’s in cache, 
then you need to store it back out to main memory before 
clobbering it. 
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Cache Store Strategies
Typically, there are two possible cache store strategies:

Write-through: every single time that a value in cache is 
changed, that value is also stored back into main memory 
(RAM).
Write-back: every single time that a value in cache is 
changed, the cache line containing that cache location gets 
marked as dirty. When a cache line gets clobbered, then if it 
has been marked as dirty, then it is stored back into main 
memory (RAM). [14]



The Importance of 
Being Local

[15]
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More Data Than Cache
Let’s say that you have 1000 times more data than cache.  

Then won’t most of your data be outside the cache?

YES!
Okay, so how does cache help?
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Improving Your Cache Hit Rate
Many scientific codes use a lot more data than can fit in cache 

all at once.
Therefore, you need to ensure a high cache hit rate even 

though you’ve got much more data than cache.
So, how can you improve your cache hit rate?
Use the same solution as in Real Estate:
Location, Location, Location!
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Data Locality
Data locality is the principle that, if you use data in a particular 

memory address, then very soon you’ll use either the same 
address or a nearby address.
Temporal locality:  if you’re using address A now, then 
you’ll probably soon use address A again.
Spatial locality:  if you’re using address A now, then you’ll 
probably soon use addresses between  A-k and  A+k, 
where k is small.

Note that this principle works well for sufficiently small values 
of “soon.”

Cache is designed to exploit locality, which is why a cache miss
causes a whole line to be loaded.
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Data Locality Is Empirical: C
Data locality has been observed empirically in many, many 

programs.

void ordered_fill (float* array, int array_length)
{ /* ordered_fill */

int index;

for (index = 0; index < array_length; index++) {
array[index] = index;

} /* for index */
} /* ordered_fill */
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Data Locality Is Empirical: F90
Data locality has been observed empirically in many, many 

programs.

SUBROUTINE ordered_fill (array, array_length)
IMPLICIT NONE
INTEGER,INTENT(IN) :: array_length
REAL,DIMENSION(array_length),INTENT(OUT) :: array
INTEGER :: index

DO index = 1, array_length
array(index) = index

END DO
END SUBROUTINE ordered_fill
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No Locality Example: C
In principle, you could write a program that exhibited 

absolutely no data locality at all:

void random_fill (float* array,
int* random_permutation_index,
int array_length)

{ /* random_fill */
int index;

for (index = 0; index < array_length; index++) {
array[random_permutation_index[index]] = index;

} /* for index */
} /* random_fill */
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No Locality Example: F90
In principle, you could write a program that exhibited 

absolutely no data locality at all:
SUBROUTINE random_fill (array,

random_permutation_index, array_length)
IMPLICIT NONE
INTEGER,INTENT(IN) :: array_length
INTEGER,DIMENSION(array_length),INTENT(IN) :: &

&   random_permutation_index
REAL,DIMENSION(array_length),INTENT(OUT) :: array
INTEGER :: index

DO index = 1, array_length
array(random_permutation_index(index)) = index

END DO
END SUBROUTINE random_fill
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Permuted vs. Ordered

In a simple array fill, locality provides a factor of 8 to 20 
speedup over a randomly ordered fill on a Pentium4.
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Exploiting Data Locality
If you know that your code is capable of operating with a 

decent amount of data locality, then you can get speedup by 
focusing your energy on improving the locality of the 
code’s behavior.

This will substantially increase your cache reuse.
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A Sample Application
Matrix-Matrix Multiply
Let A, B and C be matrices of sizes
nr × nc, nr × nk and nk × nc, respectively:
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The definition of A = B • C  is

for r ∈ {1, nr}, c ∈ {1, nc}.
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Matrix Multiply w/Initialization
SUBROUTINE matrix_matrix_mult_by_init (dst, src1, src2, &
&                                     nr, nc, nq)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN)  :: src1
REAL,DIMENSION(nq,nc),INTENT(IN)  :: src2

INTEGER :: r, c, q

DO c = 1, nc
DO r = 1, nr
dst(r,c) = 0.0
DO q = 1, nq
dst(r,c) = dst(r,c) + src1(r,q) * src2(q,c)

END DO !! q = 1, nq
END DO !! r = 1, nr

END DO !! c = 1, nc
END SUBROUTINE matrix_matrix_mult_by_init
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Matrix Multiply Via Intrinsic
SUBROUTINE matrix_matrix_mult_by_intrinsic ( &
&           dst, src1, src2, nr, nc, nq)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN)  :: src1
REAL,DIMENSION(nq,nc),INTENT(IN)  :: src2

dst = MATMUL(src1, src2)
END SUBROUTINE matrix_matrix_mult_by_intrinsic
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Matrix Multiply Behavior

If the matrix is big, then each sweep of a row will clobber nearby values in cache.
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Performance of Matrix Multiply
Matrix-Matrix Multiply
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Tiling
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Tiling
Tile: a small rectangular subdomain of a problem domain.  
Sometimes called a block or a chunk.
Tiling: breaking the domain into tiles.
Tiling strategy: operate on each tile to completion, then 
move to the next tile.
Tile size can be set at runtime, according to what’s best for 
the machine that you’re running on.
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Tiling Code
SUBROUTINE matrix_matrix_mult_by_tiling (dst, src1, src2, nr, nc, nq, &
&           rtilesize, ctilesize, qtilesize)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN)  :: src1
REAL,DIMENSION(nq,nc),INTENT(IN)  :: src2
INTEGER,INTENT(IN) :: rtilesize, ctilesize, qtilesize

INTEGER :: rstart, rend, cstart, cend, qstart, qend

DO cstart = 1, nc, ctilesize
cend = cstart + ctilesize - 1
IF (cend > nc) cend = nc
DO rstart = 1, nr, rtilesize

rend = rstart + rtilesize - 1
IF (rend > nr) rend = nr
DO qstart = 1, nq, qtilesize

qend = qstart + qtilesize - 1
IF (qend > nq) qend = nq
CALL matrix_matrix_mult_tile(dst, src1, src2, nr, nc, nq, &

&                                   rstart, rend, cstart, cend, qstart, qend)
END DO !! qstart = 1, nq, qtilesize

END DO !! rstart = 1, nr, rtilesize
END DO !! cstart = 1, nc, ctilesize

END SUBROUTINE matrix_matrix_mult_by_tiling
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Multiplying Within a Tile
SUBROUTINE matrix_matrix_mult_tile (dst, src1, src2, nr, nc, nq, &
&             rstart, rend, cstart, cend, qstart, qend)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN)  :: src1
REAL,DIMENSION(nq,nc),INTENT(IN)  :: src2
INTEGER,INTENT(IN) :: rstart, rend, cstart, cend, qstart, qend

INTEGER :: r, c, q

DO c = cstart, cend
DO r = rstart, rend
IF (qstart == 1) dst(r,c) = 0.0
DO q = qstart, qend
dst(r,c) = dst(r,c) + src1(r,q) * src2(q,c)

END DO !! q = qstart, qend
END DO !! r = rstart, rend

END DO !! c = cstart, cend
END SUBROUTINE matrix_matrix_mult_tile
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Performance with Tiling

Matrix-Matrix Mutiply Via Tiling (log-log)
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The Advantages of Tiling
It allows your code to exploit data locality better, to get 
much more cache reuse: your code runs faster!
It’s a relatively modest amount of extra coding (typically a 
few wrapper functions and some changes to loop bounds).
If you don’t need tiling – because of the hardware, the 
compiler or the problem size – then you can  turn it off by 
simply setting the tile size equal to the problem size.
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Will Tiling Always Work?
Tiling WON’T always work. Why?
Well, tiling works well when:

the order in which calculations occur doesn’t matter much, 
AND
there are lots and lots of calculations to do for each memory 
movement.

If either condition is absent, then tiling won’t help.



Hard Disk
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Why Is Hard Disk Slow?
Your hard disk is much much slower than main memory (factor of 

10-1000).  Why?
Well, accessing data on the hard disk involves physically moving:

the disk platter
the read/write head

In other words, hard disk is slow because objects move much slower 
than electrons: Newtonian speeds are much slower than 
Einsteinian speeds.
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I/O Strategies
Read and write the absolute minimum amount.

Don’t reread the same data if you can keep it in memory.
Write binary instead of characters.
Use optimized I/O libraries like NetCDF [17] and HDF [18].
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Avoid Redundant I/O
An actual piece of code seen at OU:

for (thing = 0; thing < number_of_things; thing++) {
for (time = 0; time < number_of_timesteps; time++) {

read(file[time]);
do_stuff(thing, time);

} /* for time */
} /* for thing */

Improved version:
for (time = 0; time < number_of_timesteps; time++) {
read(file[time]);
for (thing = 0; thing < number_of_things; thing++) {

do_stuff(thing, time);
} /* for thing */

} /* for time */

Savings (in real life):  factor of 500!
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Write Binary, Not ASCII
When you write binary data to a file, you’re writing (typically) 

4 bytes per value.
When you write ASCII (character) data, you’re writing 

(typically) 8-16 bytes per value.
So binary saves a factor of 2 to 4 (typically).
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Problem with Binary I/O
There are many ways to represent data inside a computer, 

especially floating point (real) data.
Often, the way that one kind of computer (e.g., a Pentium4) 

saves binary data is different from another kind of 
computer (e.g., a POWER5).

So, a file written on a Pentium4 machine may not be readable 
on a POWER5.



Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 82

Portable I/O Libraries
NetCDF and HDF are the two most commonly used I/O 

libraries for scientific computing.
Each has its own internal way of representing numerical data.  

When you write a file using, say, HDF, it can be read by a 
HDF on any kind of computer.

Plus, these libraries are optimized to make the I/O very fast.



Virtual Memory
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Virtual Memory
Typically, the amount of main memory (RAM) that a CPU 
can address is larger than the amount of data physically 
present in the computer.
For example, Henry’s laptop can address 32 GB of main 
memory (roughly 32 billion bytes), but only contains        
2 GB (roughly 2 billion bytes).
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Virtual Memory (cont’d)
Locality:  most programs don’t jump all over the memory 
that they use; instead, they work in a particular area of 
memory for a while, then move to another area.
So, you can offload onto hard disk much of the memory 
image of a program that’s running.
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Virtual Memory (cont’d)
Memory is chopped up into many pages of modest size (e.g., 
1 KB – 32 KB; typically 4 KB).
Only pages that have been recently used actually reside in 
memory; the rest are stored on hard disk.
Hard disk is 10 to 1,000 times slower than main memory, so 
you get better performance if you rarely get a page fault, 
which forces a read from (and maybe a write to) hard disk: 
exploit data locality!



Supercomputing in Plain English: Storage Hierarchy
Tuesday February 10 2009 87

Cache vs. Virtual Memory
Lines (cache) vs. pages (VM)
Cache faster than RAM (cache) vs. RAM faster than disk 
(VM)
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Storage Use Strategies
Register reuse: do a lot of work on the same data before 
working on new data.
Cache reuse: the program is much more efficient if all of 
the data and instructions fit in cache; if not, try to use what’s 
in cache a lot before using anything that isn’t in cache (e.g., 
tiling).
Data locality: try to access data that are near each other in 
memory before data that are far.
I/O efficiency: do a bunch of I/O all at once rather than a 
little bit at a time; don’t mix calculations and I/O.
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OK Supercomputing Symposium

2006 Keynote:
Dan Atkins

Head of NSF’s
Office of
Cyber-

infrastructure

2004 Keynote:
Sangtae Kim
NSF Shared

Cyberinfrastructure
Division Director

2003 Keynote:
Peter Freeman

NSF
Computer &
Information
Science &
Engineering

Assistant Director

2005 Keynote:
Walt Brooks

NASA Advanced
Supercomputing
Division Director

http://symposium2009.oscer.ou.edu/

2007 Keynote:
Jay Boisseau

Director
Texas Advanced

Computing Center
U. Texas Austin

Wed Oct 7 2009 @ OU
Over 235 registrations already!

Over 150 in the first day, over 200 in the first 
week, over 225 in the first month.

Parallel Programming Workshop      
FREE! Tue Oct 6 2009 @ OU                                

Sponsored by SC09 Education Program
FREE! Symposium Wed Oct 7 2009 @ OU

2008 Keynote: 
José Munoz 

Deputy Office 
Director/ Senior 

Scientific Advisor 
Office of Cyber-

infrastructure 
National Science 

Foundation
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SC09 Summer Workshops
This coming summer, the SC09 Education Program, part of the 

SC09 (Supercomputing 2009) conference, is planning to 
hold two weeklong supercomputing-related workshops in 
Oklahoma, for FREE (except you pay your own travel):
At OU: Parallel Programming & Cluster Computing, date to 
be decided, weeklong, for FREE
At OSU: Computational Chemistry (tentative), date to be 
decided, weeklong, for FREE

We’ll alert everyone when the details have been ironed out and 
the registration webpage opens.

Please note that you must apply for a seat, and acceptance 
CANNOT be guaranteed.
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To Learn More Supercomputing
http://www.oscer.ou.edu/education.php

http://www.oscer.ou.edu/education.php


Thanks for your 
attention!

Questions?
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