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Parallelism

Less fish …

More fish!

Parallelism means doing 
multiple things at the 
same time: you can get 
more work done in the 
same amount of time.
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What Is Parallelism?
Parallelism is the use of multiple processing units –

either processors or parts of an individual processor 
– to solve a problem, and in particular the use of 
multiple processing units operating concurrently on 
different parts of a problem.

The different parts could be different tasks, or the 
same task on different pieces of the problem’s data.
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Kinds of Parallelism
Shared Memory Multithreading (our topic today)
Distributed Memory Multiprocessing (next time)
Hybrid Shared/Distributed
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Why Parallelism Is Good
The Trees: We like parallelism because, as the 
number of processing units working on a problem 
grows, we can solve the same problem in less 
time.
The Forest: We like parallelism because, as the 
number of processing units working on a problem 
grows, we can solve bigger problems.
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Parallelism Jargon
Threads:  execution sequences that share a single 
memory area (“address space”)
Processes:  execution sequences with their own 
independent, private memory areas

… and thus:
Multithreading:   parallelism via multiple threads
Multiprocessing: parallelism via multiple processes

As a general rule, Shared Memory Parallelism is 
concerned with threads, and Distributed 
Parallelism is concerned with processes.
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Jargon Alert
In principle:

“shared memory parallelism” “multithreading”
“distributed parallelism”        “multiprocessing”

In practice, these terms are often used interchangeably:
Parallelism
Concurrency (not as popular these days)
Multithreading
Multiprocessing

Typically, you have to figure out what is meant based 
on the context.
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Amdahl’s Law
In 1967, Gene Amdahl came up with an idea so crucial 

to our understanding of parallelism that they named 
a Law for him:
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where S is the overall speedup achieved by 
parallelizing a code, Fp is the fraction of the code that’s 
parallelizable, and Sp is the speedup achieved in the 
parallel part.[1]
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Amdahl’s Law: Huh?
What does Amdahl’s Law tell us?  Well, imagine 

that you run your code on a zillion processors.  
The parallel part of the code could exhibit up to a 
factor of a zillion speedup. For sufficiently large 
values of a zillion, the parallel part would take 
zero time!

But, the serial (non-parallel) part would take the 
same amount of time as on a single processor.

So running your code on infinitely many processors 
would still take at least as much time as it takes to 
run just the serial part.
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Amdahl’s Law Example
PROGRAM amdahl_test

IMPLICIT NONE
REAL,DIMENSION(a_lot) :: array
REAL    :: scalar
INTEGER :: index

READ *, scalar      !! Serial part
DO index = 1, a_lot !! Parallel part

array(index) = scalar * index
END DO !! index = 1, a_lot

END PROGRAM amdahl_test

If we run this program on infinitely many CPUs, then 
the total run time will still be at least as much as the 
time it takes to perform the READ.
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The Point of Amdahl’s Law
Rule of Thumb:  When you write a parallel code, try 

to make as much of the code parallel as possible, 
because the serial part will be the limiting factor
on parallel speedup.

Note that this rule will not hold when the overhead
cost of parallelizing exceeds the parallel speedup. 
More on this presently.
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Speedup
The goal in parallelism is linear speedup: getting the 

speed of the job to increase by a factor equal to the 
number of processors.

Very few programs actually exhibit linear speedup, 
but some come close.
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Scalability

Platinum = NCSA 1024 processor PIII/1GHZ Linux ClusterPlatinum = NCSA 1024 processor PIII/1GHZ Linux Cluster
Note: NCSA Origin timings are scaled from 19x19x53 domains.Note: NCSA Origin timings are scaled from 19x19x53 domains.

Scalable means “performs just as well regardless of 
how big the problem is.” A scalable code has near 
linear speedup.
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Granularity
Granularity is the size of the subproblem that each 

thread or process works on, and in particular the 
size that it works on between communicating or 
synchronizing with the others.

Some codes are coarse grain (a few very big parallel 
parts) and some are fine grain (many little parallel 
parts).

Usually, coarse grain codes are more scalable than 
fine grain codes, because less time is spent 
managing the parallelism, so more is spent getting 
the work done.
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Parallel Overhead
Parallelism isn’t free.  Behind the scenes, the 

compiler and the hardware have to do a lot of 
overhead work to make parallelism happen.

The overhead typically includes:
Managing the multiple threads/processes
Communication among threads/processes
Synchronization (described later)



Shared Memory 
Parallelism
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The Jigsaw Puzzle Analogy
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Serial Computing
Suppose you want to do a jigsaw puzzle
that has, say, a thousand pieces.

We can imagine that it’ll take you a
certain amount of time.  Let’s say
that you can put the puzzle together in
an hour.
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Shared Memory Parallelism
If Julie sits across the table from you, 
then she can work on her half of the 
puzzle and you can work on yours.  
Once in a while, you’ll both reach into 
the pile of pieces at the same time 
(you’ll contend for the same resource), 
which will cause a little bit of 
slowdown.  And from time to time 
you’ll have to work together 
(communicate) at the interface 
between her half and yours.  The 
speedup will be nearly 2-to-1:  y’all 
might take 35 minutes instead of 30.
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The More the Merrier?
Now let’s put Lloyd and Jerry on the 
other two sides of the table.  Each of 
you can work on a part of the puzzle, 
but there’ll be a lot more contention for 
the shared resource (the pile of puzzle 
pieces) and a lot more communication 
at the interfaces.  So y’all will get 
noticeably less than a   4-to-1 speedup, 
but you’ll still have an improvement, 
maybe something like 3-to-1:  the four 
of you can get it done in 20 minutes 
instead of an hour.
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Diminishing Returns
If we now put Dave and Paul and Tom 
and Charlie on the corners of the table, 
there’s going to be a whole lot of 
contention for the shared resource, and 
a lot of communication at the many 
interfaces.  So the speedup y’all get 
will be much less than we’d like; 
you’ll be lucky to get 5-to-1.

So we can see that adding more and 
more workers onto a shared resource is 
eventually going to have a diminishing 
return.
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Load Balancing

Load balancing means giving everyone roughly the same 
amount of work to do.

For example, if the jigsaw puzzle is half grass and half sky, 
then you can do the grass and Julie can do the sky, and then 
y’all only have to communicate at the horizon – and the 
amount of work that each of you does on your own is roughly 
equal.  So you’ll get pretty good speedup.
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Load Balancing

Load balancing can be easy, if the problem splits up into 
chunks of roughly equal size, with one chunk per 
processor.  Or load balancing can be very hard.
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The Fork/Join Model
Many shared memory parallel systems use a 

programming model called Fork/Join.  Each 
program begins executing on just a single thread, 
called the parent.

Fork: When a parallel region is reached, the master 
thread spawns additional child threads as needed.

Join: When the parallel region ends, the child threads 
shut down, leaving only the parent still running.
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The Fork/Join Model (cont’d)
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The Fork/Join Model (cont’d)
In principle, as a parallel section completes, the child 

threads shut down (join the parent), forking off 
again when the parent reaches another parallel 
section.

In practice, the child threads often continue to exist 
but are idle.

Why?
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Principle vs. Practice

Fork

Join

Start

End

Fork

Join

Start

End

Idle



Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 31

Why Idle?
On some shared memory multithreading computers, 
the overhead cost of forking and joining is high 
compared to the cost of computing, so rather than 
waste time on overhead, the children simply sit idle 
until the next parallel section.
On some computers, joining threads releases a 
program’s control over the child processors, so they 
may not be available for more parallel work later in 
the run. Gang scheduling is preferable, because 
then all of the processors are guaranteed to be 
available for the whole run.



OpenMP

Most of this discussion is from [2], with a little bit from [3].
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What Is OpenMP?
OpenMP is a standardized way of expressing shared 

memory parallelism.
OpenMP consists of compiler directives, functions

and environment variables.
When you compile a program that has OpenMP in it, 

if your compiler knows OpenMP, then you get an 
executable that can run in parallel; otherwise, the 
compiler ignores the OpenMP stuff and you get a 
purely serial executable.

OpenMP can be used in Fortran, C and C++, but only 
if your preferred compiler explicitly supports it.
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Compiler Directives
A compiler directive is a line of source code that 

gives the compiler special information about the 
statement or block of code that immediately 
follows.

C++ and C programmers already know about 
compiler directives:

#include "MyClass.h"

Many Fortran programmers already have seen at least 
one compiler directive:

INCLUDE ‘mycommon.inc’
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OpenMP Compiler Directives
OpenMP compiler directives in Fortran look like this:
!$OMP …stuff…
In C++ and C, OpenMP directives look like:
#pragma omp …stuff…
Both directive forms mean “the rest of this line 

contains OpenMP information.”
Aside: “pragma” is the Greek word for “thing.” Go 

figure.
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Example OpenMP Directives
Fortran

!$OMP PARALLEL DO
!$OMP CRITICAL
!$OMP MASTER
!$OMP BARRIER
!$OMP SINGLE
!$OMP ATOMIC
!$OMP SECTION
!$OMP FLUSH
!$OMP ORDERED

C++/C
#pragma omp parallel for
#pragma omp critical
#pragma omp master
#pragma omp barrier
#pragma omp single
#pragma omp atomic
#pragma omp section
#pragma omp flush
#pragma omp ordered

Note that we won’t cover all of these.
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A First OpenMP Program
PROGRAM hello_world
IMPLICIT NONE
INTEGER :: number_of_threads, this_thread, iteration

number_of_threads = omp_get_max_threads()
WRITE (0,"(I2,A)") number_of_threads, " threads"

!$OMP PARALLEL DO DEFAULT(PRIVATE) &
!$OMP             SHARED(number_of_threads)
DO iteration = 0, number_of_threads - 1
this_thread = omp_get_thread_num()
WRITE (0,"(A,I2,A,I2,A) ")"Iteration ", &

&    iteration, ", thread ", this_thread, &
&    ": Hello, world!"
END DO

END PROGRAM hello_world
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Running hello_world
% setenv OMP_NUM_THREADS  4
% hello_world
4 threads
Iteration  0, thread  0: Hello, world!
Iteration  1, thread  1: Hello, world!
Iteration  3, thread  3: Hello, world!
Iteration  2, thread  2: Hello, world!
% hello_world
4 threads
Iteration  2, thread  2: Hello, world!
Iteration  1, thread  1: Hello, world!
Iteration  0, thread  0: Hello, world!
Iteration  3, thread  3: Hello, world!
% hello_world
4 threads
Iteration  1, thread  1: Hello, world!
Iteration  2, thread  2: Hello, world!
Iteration  0, thread  0: Hello, world!
Iteration  3, thread  3: Hello, world!
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OpenMP Issues Observed
From the hello_world program, we learn that:

at some point before running an OpenMP program, 
you must set an environment variable
OMP_NUM_THREADS

that represents the number of threads to use;
the order in which the threads execute is 
nondeterministic.
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The PARALLEL DO Directive
The PARALLEL DO directive tells the compiler that 

the DO loop immediately after the directive should 
be executed in parallel; for example:

!$OMP PARALLEL DO
DO index = 1, length

array(index) = index * index
END DO

The iterations of the loop will be computed in parallel 
(note that they are independent of one another).
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A Change to hello_world

% hello_world
4 threads
Iteration  9, thread  3: Hello, world!
Iteration  0, thread  0: Hello, world!
Iteration 10, thread  3: Hello, world!
Iteration 11, thread  3: Hello, world!
Iteration  1, thread  0: Hello, world!
Iteration  2, thread  0: Hello, world!
Iteration  3, thread  1: Hello, world!
Iteration  6, thread  2: Hello, world!
Iteration  7, thread  2: Hello, world!
Iteration  8, thread  2: Hello, world!
Iteration  4, thread  1: Hello, world!
Iteration  5, thread  1: Hello, world!

Suppose we do 3 loop iterations per thread:
DO iteration = 0, number_of_threads * 3 – 1

Notice that the 
iterations are split 
into contiguous 
chunks, and each 
thread gets one 
chunk of iterations.
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Chunks
By default, OpenMP splits the iterations of a loop into 

chunks of equal (or roughly equal) size, assigns 
each chunk to a thread, and lets each thread loop 
through its subset of the iterations.

So, for example, if you have 4 threads and 12 
iterations, then each thread gets three iterations:
Thread 0: iterations 0, 1, 2
Thread 1: iterations 3, 4, 5
Thread 2: iterations 6, 7, 8
Thread 3: iterations 9, 10, 11

Notice that each thread performs its own chunk in 
deterministic order, but that the overall order is 
nondeterministic.
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Private and Shared Data
Private data are data that are owned by, and only 

visible to, a single individual thread.
Shared data are data that are owned by and visible to 

all threads.

(Note: in distributed computing, all data are private, 
as we’ll see next time.)
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Should All Data Be Shared?
In our example program, we saw this:
!$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(number_of_threads)

What do DEFAULT(PRIVATE) and SHARED mean?
We said that OpenMP uses shared memory 

parallelism.  So PRIVATE and SHARED refer to 
memory.

Would it make sense for all data within a parallel loop 
to be shared?
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A Private Variable
Consider this loop:
!$OMP PARALLEL DO …
DO iteration = 0, number_of_threads - 1
this_thread = omp_get_thread_num()
WRITE (0,"(A,I2,A,I2,A) ") "Iteration ", iteration, &

&    ", thread ", this_thread, ": Hello, world!"
END DO

Notice that, if the iterations of the loop are executed 
concurrently, then the loop index variable named 
iteration will be wrong for all but one of the 
threads.

Each thread should get its own copy of the  variable 
named iteration.
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Another Private Variable

!$OMP PARALLEL DO …
DO iteration = 0, number_of_threads - 1
this_thread = omp_get_thread_num()
WRITE (0,"(A,I2,A,I2,A)") "Iteration ", iteration, &

&    ", thread ", this_thread, ": Hello, world!"
END DO

Notice that, if the iterations of the loop are executed 
concurrently, then this_thread will be wrong 
for all but one of the threads.

Each thread should get its own copy of the  variable 
named this_thread.
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A Shared Variable

!$OMP PARALLEL DO …
DO iteration = 0, number_of_threads - 1
this_thread = omp_get_thread_num()
WRITE (0,"(A,I2,A,I2,A)"“) "Iteration ", iteration, &

&    ", thread ", this_thread, ": Hello, world!"
END DO

Notice that, regardless of whether the iterations of the 
loop are executed serially or in parallel, 
number_of_threads will be correct for all of 
the threads.

All threads should share a single instance of 
number_of_threads.
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SHARED & PRIVATE Clauses
The PARALLEL DO directive allows extra clauses to 

be appended that tell the compiler which variables 
are shared and which are private:

!$OMP PARALLEL DO PRIVATE(iteration,this_thread) &
!$OMP SHARED (number_of_threads)

This tells that compiler that iteration and 
this_thread are private but that 
number_of_threads is shared.

(Note the syntax for continuing a directive.)
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DEFAULT Clause
If your loop has lots of variables, it may be 

cumbersome to put all of them into SHARED and 
PRIVATE clauses.

So, OpenMP allows you to declare one kind of data 
to be the default, and then you only need to 
explicitly declare variables of the other kind:

!$OMP PARALLEL DO DEFAULT(PRIVATE) &
!$OMP             SHARED(number_of_threads)

The default DEFAULT (so to speak) is 
SHARED,except for the loop index variable, which 
by default is PRIVATE.



Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 50

Different Workloads
What happens if the threads have different amounts 

of work to do?
!$OMP PARALLEL DO
DO index = 1, length
x(index) = index / 3.0
IF ((index / 1000) < 1) THEN
y(index) = LOG(x(index))

ELSE
y(index) = x(index) + 2

END IF
END DO

The threads that finish early have to wait.
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Chunks
By default, OpenMP splits the iterations of a loop into 

chunks of equal (or roughly equal) size, assigns 
each chunk to a thread, and lets each thread loop 
through its subset of the iterations.

So, for example, if you have 4 threads and 12 
iterations, then each thread gets three iterations:
Thread 0: iterations 0, 1, 2
Thread 1: iterations 3, 4, 5
Thread 2: iterations 6, 7, 8
Thread 3: iterations 9, 10, 11

Notice that each thread performs its own chunk in 
deterministic order, but that the overall order is 
nondeterministic.
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Scheduling Strategies
OpenMP supports three scheduling strategies:

Static: the default, as described in the previous 
slides – good for iterations that are inherently load 
balanced
Dynamic: each thread gets a chunk of a few 
iterations, and when it finishes that chunk it goes 
back for more, and so on until all of the iterations 
are done – good when iterations aren’t load 
balanced at all
Guided: each thread gets smaller and smaller 
chunks over time – a compromise
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Static Scheduling
For Ni iterations and Nt threads, each thread gets one 

chunk of Ni/Nt loop iterations:

Thread #0: iterations     0 through Ni/Nt-1
Thread #1: iterations Ni/Nt through 2Ni/Nt-1
Thread #2: iterations 2Ni/Nt through 3Ni/Nt-1

…
Thread #Nt-1: iterations (Nt-1)Ni/Nt through Ni-1
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Dynamic Scheduling
For Ni iterations and Nt threads, each thread gets a 

fixed-size chunk of k loop iterations:

When a particular thread finishes its chunk of 
iterations, it gets assigned a new chunk. So, the 
relationship between iterations and threads is 
nondeterministic.
Advantage: very flexible
Disadvantage: high overhead – lots of decision 
making about which thread gets each chunk
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Guided Scheduling
For Ni iterations and Nt threads, initially each thread 

gets a fixed-size chunk of k < Ni/Nt loop iterations:

After each thread finishes its chunk of k iterations, it 
gets a chunk of k/2 iterations, then k/4, etc. Chunks 
are assigned dynamically, as threads finish their 
previous chunks.
Advantage over static: can handle imbalanced load
Advantage over dynamic: fewer decisions, so less 
overhead
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How to Know Which Schedule?
Test all three using a typical case as a benchmark.
Whichever wins is probably the one you want to use 

most of the time on that particular platform.
This may vary depending on problem size, new 

versions of the compiler, who’s on the machine, 
what day of the week it is, etc, so you may want to 
benchmark the three schedules from time to time.
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SCHEDULE Clause
The PARALLEL DO directive allows a SCHEDULE

clause to be appended that tell the compiler which 
variables are shared and which are private:

!$OMP PARALLEL DO … SCHEDULE(STATIC)

This tells that compiler that the schedule will be static.
Likewise, the schedule could be GUIDED or DYNAMIC.
However, the very best schedule to put in the 
SCHEDULE clause is RUNTIME.

You can then set the environment variable 
OMP_SCHEDULE to STATIC or GUIDED or 
DYNAMIC at runtime – great for benchmarking!
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Synchronization
Jargon: waiting for other threads to finish a parallel 

loop (or other parallel section) before going on to 
the work after the parallel section is called 
synchronization.

Synchronization is bad, because when a thread is 
waiting for the others to finish, it isn’t getting any 
work done, so it isn’t contributing to speedup.

So why would anyone ever synchronize?
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Why Synchronize?
Synchronizing is necessary when the code that follows 

a parallel section needs all threads to have their final 
answers.

!$OMP PARALLEL DO
DO index = 1, length
x(index) = index / 1024.0
IF ((index / 1000) < 1) THEN
y(index) = LOG(x(index))

ELSE
y(index) = x(index) + 2

END IF
END DO

! Need to synchronize here!
DO index = 1, length
z(index) = y(index) + y(length – index + 1)

END DO
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Barriers
A barrier is a place where synchronization is forced to 

occur; that is, where faster threads have to wait for 
slower ones.

The PARALLEL DO directive automatically puts an 
invisible, implied barrier at the end of its DO loop:

!$OMP PARALLEL DO
DO index = 1, length

… parallel stuff …
END DO

! Implied barrier
… serial stuff …

OpenMP also has an explicit BARRIER directive, but 
most people don’t need it.
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Critical Sections
A critical section is a piece of code that any thread 

can execute, but that only one thread can execute at 
a time.

!$OMP PARALLEL DO
DO index = 1, length

… parallel stuff …
!$OMP CRITICAL(summing)

sum = sum + x(index) * y(index)
!$OMP END CRITICAL(summing)

… more parallel stuff …
END DO

What’s the point?
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Why Have Critical Sections?
If only one thread at a time can execute a critical 

section, that slows the code down, because the other 
threads may be waiting to enter the critical section.

But, for certain statements, if you don’t ensure mutual 
exclusion, then you can get nondeterministic results.
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If No Critical Section
!$OMP CRITICAL(summing)

sum = sum + x(index) * y(index)
!$OMP END CRITICAL(summing)

Suppose for thread #0, index is 27, and for thread #1, 
index is 92.

If the two threads execute the above statement at the 
same time, sum could be
the value after adding x(27)*y(27), or
the value after adding x(92)*y(92), or
garbage!

This is called a race condition: the result depends on 
who wins the race.
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Reductions
A reduction converts an array to a scalar: sum, 

product, minimum value, maximum value, location 
of minimum value, location of maximum value, 
Boolean AND, Boolean OR, number of occurrences, 
etc.

Reductions are so common, and so important, that 
OpenMP has a specific construct to handle them:  
the REDUCTION clause in a PARALLEL DO
directive.
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Reduction Clause
total_mass = 0

!$OMP PARALLEL DO REDUCTION(+:total_mass)
DO index = 1, length

total_mass = total_mass + mass(index)
END DO !! index = 1, length

This is equivalent to:
total_mass = 0
DO thread = 0, number_of_threads – 1

thread_mass(thread) = 0
END DO

$OMP PARALLEL DO
DO index = 1, length

thread = omp_get_thread_num()
thread_mass(thread) = thread_mass(thread) + mass(index)

END DO !! index = 1, length
DO thread = 0, number_of_threads – 1

total_mass = total_mass + thread_mass(thread)
END DO
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Parallelizing a Serial Code #1
PROGRAM big_science
… declarations …

DO …
… parallelizable work …
END DO

… serial work …

DO …
… more parallelizable work …
END DO

… serial work …
… etc …
END PROGRAM big_science

PROGRAM big_science
… declarations …
!$OMP PARALLEL DO …
DO …
… parallelizable work …
END DO

… serial work …
!$OMP PARALLEL DO …
DO …
… more parallelizable work …
END DO

… serial work …
… etc …
END PROGRAM big_science

This way may have lots of synchronization overhead.
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Parallelizing a Serial Code #2
PROGRAM big_science
… declarations …

DO task = 1, numtasks
CALL science_task(…)

END DO
END PROGRAM big_science
SUBROUTINE science_task (…)
… parallelizable work …

… serial work …

… more parallelizable work …

… serial work …

… etc …
END PROGRAM big_science

PROGRAM big_science
… declarations …
!$OMP PARALLEL DO …
DO task = 1, numtasks
CALL science_task(…)

END DO
END PROGRAM big_science
SUBROUTINE science_task (…)
… parallelizable work …
!$OMP MASTER
… serial work …
!$OMP END MASTER
… more parallelizable work …
!$OMP MASTER
… serial work …
!$OMP END MASTER
… etc …
END PROGRAM big_science
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Next Time

Part VI:
Distributed Multiprocessing
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