
SupercomputingSupercomputing
in Plain Englishin Plain English

Shared Memory Multithreading

Henry Neeman
Director

OU Supercomputing Center for Education & Research
October 29 2004

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 2

Outline

Parallelism
Shared Memory Parallelism
OpenMP

Parallelism

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 4

Parallelism

Less fish …

More fish!

Parallelism means doing
multiple things at the
same time: you can get
more work done in the
same amount of time.

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 5

What Is Parallelism?
Parallelism is the use of multiple processing units –

either processors or parts of an individual processor
– to solve a problem, and in particular the use of
multiple processing units operating concurrently on
different parts of a problem.

The different parts could be different tasks, or the
same task on different pieces of the problem’s data.

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 6

Kinds of Parallelism
Shared Memory Multithreading (our topic today)
Distributed Memory Multiprocessing (next time)
Hybrid Shared/Distributed

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 7

Why Parallelism Is Good
The Trees: We like parallelism because, as the
number of processing units working on a problem
grows, we can solve the same problem in less
time.
The Forest: We like parallelism because, as the
number of processing units working on a problem
grows, we can solve bigger problems.

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 8

Parallelism Jargon
Threads: execution sequences that share a single
memory area (“address space”)
Processes: execution sequences with their own
independent, private memory areas

… and thus:
Multithreading: parallelism via multiple threads
Multiprocessing: parallelism via multiple processes

As a general rule, Shared Memory Parallelism is
concerned with threads, and Distributed
Parallelism is concerned with processes.

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 9

Jargon Alert
In principle:

“shared memory parallelism” “multithreading”
“distributed parallelism” “multiprocessing”

In practice, these terms are often used interchangeably:
Parallelism
Concurrency (not as popular these days)
Multithreading
Multiprocessing

Typically, you have to figure out what is meant based
on the context.

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 10

Amdahl’s Law
In 1967, Gene Amdahl came up with an idea so crucial

to our understanding of parallelism that they named
a Law for him:

p

p
p S

F
F

S
+−

=
)1(

1

where S is the overall speedup achieved by
parallelizing a code, Fp is the fraction of the code that’s
parallelizable, and Sp is the speedup achieved in the
parallel part.[1]

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 11

Amdahl’s Law: Huh?
What does Amdahl’s Law tell us? Well, imagine

that you run your code on a zillion processors.
The parallel part of the code could exhibit up to a
factor of a zillion speedup. For sufficiently large
values of a zillion, the parallel part would take
zero time!

But, the serial (non-parallel) part would take the
same amount of time as on a single processor.

So running your code on infinitely many processors
would still take at least as much time as it takes to
run just the serial part.

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 12

Max Speedup by Serial %

1

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

10000000000

1E-101E-091E-081E-071E-060.000010.00010.0010.010.11

Serial Fraction

M
ax

im
um

 S
pe

ed
up

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 13

Amdahl’s Law Example
PROGRAM amdahl_test

IMPLICIT NONE
REAL,DIMENSION(a_lot) :: array
REAL :: scalar
INTEGER :: index

READ *, scalar !! Serial part
DO index = 1, a_lot !! Parallel part

array(index) = scalar * index
END DO !! index = 1, a_lot

END PROGRAM amdahl_test

If we run this program on infinitely many CPUs, then
the total run time will still be at least as much as the
time it takes to perform the READ.

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 14

The Point of Amdahl’s Law
Rule of Thumb: When you write a parallel code, try

to make as much of the code parallel as possible,
because the serial part will be the limiting factor
on parallel speedup.

Note that this rule will not hold when the overhead
cost of parallelizing exceeds the parallel speedup.
More on this presently.

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 15

Speedup
The goal in parallelism is linear speedup: getting the

speed of the job to increase by a factor equal to the
number of processors.

Very few programs actually exhibit linear speedup,
but some come close.

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 16

Scalability

Platinum = NCSA 1024 processor PIII/1GHZ Linux ClusterPlatinum = NCSA 1024 processor PIII/1GHZ Linux Cluster
Note: NCSA Origin timings are scaled from 19x19x53 domains.Note: NCSA Origin timings are scaled from 19x19x53 domains.

Scalable means “performs just as well regardless of
how big the problem is.” A scalable code has near
linear speedup.

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 17

Granularity
Granularity is the size of the subproblem that each

thread or process works on, and in particular the
size that it works on between communicating or
synchronizing with the others.

Some codes are coarse grain (a few very big parallel
parts) and some are fine grain (many little parallel
parts).

Usually, coarse grain codes are more scalable than
fine grain codes, because less time is spent
managing the parallelism, so more is spent getting
the work done.

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 18

Parallel Overhead
Parallelism isn’t free. Behind the scenes, the

compiler and the hardware have to do a lot of
overhead work to make parallelism happen.

The overhead typically includes:
Managing the multiple threads/processes
Communication among threads/processes
Synchronization (described later)

Shared Memory
Parallelism

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 20

The Jigsaw Puzzle Analogy

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 21

Serial Computing
Suppose you want to do a jigsaw puzzle
that has, say, a thousand pieces.

We can imagine that it’ll take you a
certain amount of time. Let’s say
that you can put the puzzle together in
an hour.

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 22

Shared Memory Parallelism
If Julie sits across the table from you,
then she can work on her half of the
puzzle and you can work on yours.
Once in a while, you’ll both reach into
the pile of pieces at the same time
(you’ll contend for the same resource),
which will cause a little bit of
slowdown. And from time to time
you’ll have to work together
(communicate) at the interface
between her half and yours. The
speedup will be nearly 2-to-1: y’all
might take 35 minutes instead of 30.

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 23

The More the Merrier?
Now let’s put Lloyd and Jerry on the
other two sides of the table. Each of
you can work on a part of the puzzle,
but there’ll be a lot more contention for
the shared resource (the pile of puzzle
pieces) and a lot more communication
at the interfaces. So y’all will get
noticeably less than a 4-to-1 speedup,
but you’ll still have an improvement,
maybe something like 3-to-1: the four
of you can get it done in 20 minutes
instead of an hour.

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 24

Diminishing Returns
If we now put Dave and Paul and Tom
and Charlie on the corners of the table,
there’s going to be a whole lot of
contention for the shared resource, and
a lot of communication at the many
interfaces. So the speedup y’all get
will be much less than we’d like;
you’ll be lucky to get 5-to-1.

So we can see that adding more and
more workers onto a shared resource is
eventually going to have a diminishing
return.

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 25

Load Balancing

Load balancing means giving everyone roughly the same
amount of work to do.

For example, if the jigsaw puzzle is half grass and half sky,
then you can do the grass and Julie can do the sky, and then
y’all only have to communicate at the horizon – and the
amount of work that each of you does on your own is roughly
equal. So you’ll get pretty good speedup.

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 26

Load Balancing

Load balancing can be easy, if the problem splits up into
chunks of roughly equal size, with one chunk per
processor. Or load balancing can be very hard.

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 27

The Fork/Join Model
Many shared memory parallel systems use a

programming model called Fork/Join. Each
program begins executing on just a single thread,
called the parent.

Fork: When a parallel region is reached, the master
thread spawns additional child threads as needed.

Join: When the parallel region ends, the child threads
shut down, leaving only the parent still running.

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 28

The Fork/Join Model (cont’d)
Parent Thread

Fork

Join

Start

End

Child Threads
C

om
pu

te
 ti

m
e

Overhead

Overhead

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 29

The Fork/Join Model (cont’d)
In principle, as a parallel section completes, the child

threads shut down (join the parent), forking off
again when the parent reaches another parallel
section.

In practice, the child threads often continue to exist
but are idle.

Why?

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 30

Principle vs. Practice

Fork

Join

Start

End

Fork

Join

Start

End

Idle

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 31

Why Idle?
On some shared memory multithreading computers,
the overhead cost of forking and joining is high
compared to the cost of computing, so rather than
waste time on overhead, the children simply sit idle
until the next parallel section.
On some computers, joining threads releases a
program’s control over the child processors, so they
may not be available for more parallel work later in
the run. Gang scheduling is preferable, because
then all of the processors are guaranteed to be
available for the whole run.

OpenMP

Most of this discussion is from [2], with a little bit from [3].

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 33

What Is OpenMP?
OpenMP is a standardized way of expressing shared

memory parallelism.
OpenMP consists of compiler directives, functions

and environment variables.
When you compile a program that has OpenMP in it,

if your compiler knows OpenMP, then you get an
executable that can run in parallel; otherwise, the
compiler ignores the OpenMP stuff and you get a
purely serial executable.

OpenMP can be used in Fortran, C and C++, but only
if your preferred compiler explicitly supports it.

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 34

Compiler Directives
A compiler directive is a line of source code that

gives the compiler special information about the
statement or block of code that immediately
follows.

C++ and C programmers already know about
compiler directives:

#include "MyClass.h"

Many Fortran programmers already have seen at least
one compiler directive:

INCLUDE ‘mycommon.inc’

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 35

OpenMP Compiler Directives
OpenMP compiler directives in Fortran look like this:
!$OMP …stuff…
In C++ and C, OpenMP directives look like:
#pragma omp …stuff…
Both directive forms mean “the rest of this line

contains OpenMP information.”
Aside: “pragma” is the Greek word for “thing.” Go

figure.

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 36

Example OpenMP Directives
Fortran

!$OMP PARALLEL DO
!$OMP CRITICAL
!$OMP MASTER
!$OMP BARRIER
!$OMP SINGLE
!$OMP ATOMIC
!$OMP SECTION
!$OMP FLUSH
!$OMP ORDERED

C++/C
#pragma omp parallel for
#pragma omp critical
#pragma omp master
#pragma omp barrier
#pragma omp single
#pragma omp atomic
#pragma omp section
#pragma omp flush
#pragma omp ordered

Note that we won’t cover all of these.

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 37

A First OpenMP Program
PROGRAM hello_world
IMPLICIT NONE
INTEGER :: number_of_threads, this_thread, iteration

number_of_threads = omp_get_max_threads()
WRITE (0,"(I2,A)") number_of_threads, " threads"

!$OMP PARALLEL DO DEFAULT(PRIVATE) &
!$OMP SHARED(number_of_threads)
DO iteration = 0, number_of_threads - 1
this_thread = omp_get_thread_num()
WRITE (0,"(A,I2,A,I2,A) ")"Iteration ", &

& iteration, ", thread ", this_thread, &
& ": Hello, world!"
END DO

END PROGRAM hello_world

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 38

Running hello_world
% setenv OMP_NUM_THREADS 4
% hello_world
4 threads
Iteration 0, thread 0: Hello, world!
Iteration 1, thread 1: Hello, world!
Iteration 3, thread 3: Hello, world!
Iteration 2, thread 2: Hello, world!
% hello_world
4 threads
Iteration 2, thread 2: Hello, world!
Iteration 1, thread 1: Hello, world!
Iteration 0, thread 0: Hello, world!
Iteration 3, thread 3: Hello, world!
% hello_world
4 threads
Iteration 1, thread 1: Hello, world!
Iteration 2, thread 2: Hello, world!
Iteration 0, thread 0: Hello, world!
Iteration 3, thread 3: Hello, world!

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 39

OpenMP Issues Observed
From the hello_world program, we learn that:

at some point before running an OpenMP program,
you must set an environment variable
OMP_NUM_THREADS

that represents the number of threads to use;
the order in which the threads execute is
nondeterministic.

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 40

The PARALLEL DO Directive
The PARALLEL DO directive tells the compiler that

the DO loop immediately after the directive should
be executed in parallel; for example:

!$OMP PARALLEL DO
DO index = 1, length

array(index) = index * index
END DO

The iterations of the loop will be computed in parallel
(note that they are independent of one another).

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 41

A Change to hello_world

% hello_world
4 threads
Iteration 9, thread 3: Hello, world!
Iteration 0, thread 0: Hello, world!
Iteration 10, thread 3: Hello, world!
Iteration 11, thread 3: Hello, world!
Iteration 1, thread 0: Hello, world!
Iteration 2, thread 0: Hello, world!
Iteration 3, thread 1: Hello, world!
Iteration 6, thread 2: Hello, world!
Iteration 7, thread 2: Hello, world!
Iteration 8, thread 2: Hello, world!
Iteration 4, thread 1: Hello, world!
Iteration 5, thread 1: Hello, world!

Suppose we do 3 loop iterations per thread:
DO iteration = 0, number_of_threads * 3 – 1

Notice that the
iterations are split
into contiguous
chunks, and each
thread gets one
chunk of iterations.

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 42

Chunks
By default, OpenMP splits the iterations of a loop into

chunks of equal (or roughly equal) size, assigns
each chunk to a thread, and lets each thread loop
through its subset of the iterations.

So, for example, if you have 4 threads and 12
iterations, then each thread gets three iterations:
Thread 0: iterations 0, 1, 2
Thread 1: iterations 3, 4, 5
Thread 2: iterations 6, 7, 8
Thread 3: iterations 9, 10, 11

Notice that each thread performs its own chunk in
deterministic order, but that the overall order is
nondeterministic.

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 43

Private and Shared Data
Private data are data that are owned by, and only

visible to, a single individual thread.
Shared data are data that are owned by and visible to

all threads.

(Note: in distributed computing, all data are private,
as we’ll see next time.)

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 44

Should All Data Be Shared?
In our example program, we saw this:
!$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(number_of_threads)

What do DEFAULT(PRIVATE) and SHARED mean?
We said that OpenMP uses shared memory

parallelism. So PRIVATE and SHARED refer to
memory.

Would it make sense for all data within a parallel loop
to be shared?

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 45

A Private Variable
Consider this loop:
!$OMP PARALLEL DO …
DO iteration = 0, number_of_threads - 1
this_thread = omp_get_thread_num()
WRITE (0,"(A,I2,A,I2,A) ") "Iteration ", iteration, &

& ", thread ", this_thread, ": Hello, world!"
END DO

Notice that, if the iterations of the loop are executed
concurrently, then the loop index variable named
iteration will be wrong for all but one of the
threads.

Each thread should get its own copy of the variable
named iteration.

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 46

Another Private Variable

!$OMP PARALLEL DO …
DO iteration = 0, number_of_threads - 1
this_thread = omp_get_thread_num()
WRITE (0,"(A,I2,A,I2,A)") "Iteration ", iteration, &

& ", thread ", this_thread, ": Hello, world!"
END DO

Notice that, if the iterations of the loop are executed
concurrently, then this_thread will be wrong
for all but one of the threads.

Each thread should get its own copy of the variable
named this_thread.

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 47

A Shared Variable

!$OMP PARALLEL DO …
DO iteration = 0, number_of_threads - 1
this_thread = omp_get_thread_num()
WRITE (0,"(A,I2,A,I2,A)"“) "Iteration ", iteration, &

& ", thread ", this_thread, ": Hello, world!"
END DO

Notice that, regardless of whether the iterations of the
loop are executed serially or in parallel,
number_of_threads will be correct for all of
the threads.

All threads should share a single instance of
number_of_threads.

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 48

SHARED & PRIVATE Clauses
The PARALLEL DO directive allows extra clauses to

be appended that tell the compiler which variables
are shared and which are private:

!$OMP PARALLEL DO PRIVATE(iteration,this_thread) &
!$OMP SHARED (number_of_threads)

This tells that compiler that iteration and
this_thread are private but that
number_of_threads is shared.

(Note the syntax for continuing a directive.)

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 49

DEFAULT Clause
If your loop has lots of variables, it may be

cumbersome to put all of them into SHARED and
PRIVATE clauses.

So, OpenMP allows you to declare one kind of data
to be the default, and then you only need to
explicitly declare variables of the other kind:

!$OMP PARALLEL DO DEFAULT(PRIVATE) &
!$OMP SHARED(number_of_threads)

The default DEFAULT (so to speak) is
SHARED,except for the loop index variable, which
by default is PRIVATE.

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 50

Different Workloads
What happens if the threads have different amounts

of work to do?
!$OMP PARALLEL DO
DO index = 1, length
x(index) = index / 3.0
IF ((index / 1000) < 1) THEN
y(index) = LOG(x(index))

ELSE
y(index) = x(index) + 2

END IF
END DO

The threads that finish early have to wait.

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 51

Chunks
By default, OpenMP splits the iterations of a loop into

chunks of equal (or roughly equal) size, assigns
each chunk to a thread, and lets each thread loop
through its subset of the iterations.

So, for example, if you have 4 threads and 12
iterations, then each thread gets three iterations:
Thread 0: iterations 0, 1, 2
Thread 1: iterations 3, 4, 5
Thread 2: iterations 6, 7, 8
Thread 3: iterations 9, 10, 11

Notice that each thread performs its own chunk in
deterministic order, but that the overall order is
nondeterministic.

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 52

Scheduling Strategies
OpenMP supports three scheduling strategies:

Static: the default, as described in the previous
slides – good for iterations that are inherently load
balanced
Dynamic: each thread gets a chunk of a few
iterations, and when it finishes that chunk it goes
back for more, and so on until all of the iterations
are done – good when iterations aren’t load
balanced at all
Guided: each thread gets smaller and smaller
chunks over time – a compromise

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 53

Static Scheduling
For Ni iterations and Nt threads, each thread gets one

chunk of Ni/Nt loop iterations:

Thread #0: iterations 0 through Ni/Nt-1
Thread #1: iterations Ni/Nt through 2Ni/Nt-1
Thread #2: iterations 2Ni/Nt through 3Ni/Nt-1

…
Thread #Nt-1: iterations (Nt-1)Ni/Nt through Ni-1

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 54

Dynamic Scheduling
For Ni iterations and Nt threads, each thread gets a

fixed-size chunk of k loop iterations:

When a particular thread finishes its chunk of
iterations, it gets assigned a new chunk. So, the
relationship between iterations and threads is
nondeterministic.
Advantage: very flexible
Disadvantage: high overhead – lots of decision
making about which thread gets each chunk

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 55

Guided Scheduling
For Ni iterations and Nt threads, initially each thread

gets a fixed-size chunk of k < Ni/Nt loop iterations:

After each thread finishes its chunk of k iterations, it
gets a chunk of k/2 iterations, then k/4, etc. Chunks
are assigned dynamically, as threads finish their
previous chunks.
Advantage over static: can handle imbalanced load
Advantage over dynamic: fewer decisions, so less
overhead

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 56

How to Know Which Schedule?
Test all three using a typical case as a benchmark.
Whichever wins is probably the one you want to use

most of the time on that particular platform.
This may vary depending on problem size, new

versions of the compiler, who’s on the machine,
what day of the week it is, etc, so you may want to
benchmark the three schedules from time to time.

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 57

SCHEDULE Clause
The PARALLEL DO directive allows a SCHEDULE

clause to be appended that tell the compiler which
variables are shared and which are private:

!$OMP PARALLEL DO … SCHEDULE(STATIC)

This tells that compiler that the schedule will be static.
Likewise, the schedule could be GUIDED or DYNAMIC.
However, the very best schedule to put in the
SCHEDULE clause is RUNTIME.

You can then set the environment variable
OMP_SCHEDULE to STATIC or GUIDED or
DYNAMIC at runtime – great for benchmarking!

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 58

Synchronization
Jargon: waiting for other threads to finish a parallel

loop (or other parallel section) before going on to
the work after the parallel section is called
synchronization.

Synchronization is bad, because when a thread is
waiting for the others to finish, it isn’t getting any
work done, so it isn’t contributing to speedup.

So why would anyone ever synchronize?

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 59

Why Synchronize?
Synchronizing is necessary when the code that follows

a parallel section needs all threads to have their final
answers.

!$OMP PARALLEL DO
DO index = 1, length
x(index) = index / 1024.0
IF ((index / 1000) < 1) THEN
y(index) = LOG(x(index))

ELSE
y(index) = x(index) + 2

END IF
END DO

! Need to synchronize here!
DO index = 1, length
z(index) = y(index) + y(length – index + 1)

END DO

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 60

Barriers
A barrier is a place where synchronization is forced to

occur; that is, where faster threads have to wait for
slower ones.

The PARALLEL DO directive automatically puts an
invisible, implied barrier at the end of its DO loop:

!$OMP PARALLEL DO
DO index = 1, length

… parallel stuff …
END DO

! Implied barrier
… serial stuff …

OpenMP also has an explicit BARRIER directive, but
most people don’t need it.

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 61

Critical Sections
A critical section is a piece of code that any thread

can execute, but that only one thread can execute at
a time.

!$OMP PARALLEL DO
DO index = 1, length

… parallel stuff …
!$OMP CRITICAL(summing)

sum = sum + x(index) * y(index)
!$OMP END CRITICAL(summing)

… more parallel stuff …
END DO

What’s the point?

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 62

Why Have Critical Sections?
If only one thread at a time can execute a critical

section, that slows the code down, because the other
threads may be waiting to enter the critical section.

But, for certain statements, if you don’t ensure mutual
exclusion, then you can get nondeterministic results.

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 63

If No Critical Section
!$OMP CRITICAL(summing)

sum = sum + x(index) * y(index)
!$OMP END CRITICAL(summing)

Suppose for thread #0, index is 27, and for thread #1,
index is 92.

If the two threads execute the above statement at the
same time, sum could be
the value after adding x(27)*y(27), or
the value after adding x(92)*y(92), or
garbage!

This is called a race condition: the result depends on
who wins the race.

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 64

Reductions
A reduction converts an array to a scalar: sum,

product, minimum value, maximum value, location
of minimum value, location of maximum value,
Boolean AND, Boolean OR, number of occurrences,
etc.

Reductions are so common, and so important, that
OpenMP has a specific construct to handle them:
the REDUCTION clause in a PARALLEL DO
directive.

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 65

Reduction Clause
total_mass = 0

!$OMP PARALLEL DO REDUCTION(+:total_mass)
DO index = 1, length

total_mass = total_mass + mass(index)
END DO !! index = 1, length

This is equivalent to:
total_mass = 0
DO thread = 0, number_of_threads – 1

thread_mass(thread) = 0
END DO

$OMP PARALLEL DO
DO index = 1, length

thread = omp_get_thread_num()
thread_mass(thread) = thread_mass(thread) + mass(index)

END DO !! index = 1, length
DO thread = 0, number_of_threads – 1

total_mass = total_mass + thread_mass(thread)
END DO

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 66

Parallelizing a Serial Code #1
PROGRAM big_science
… declarations …

DO …
… parallelizable work …
END DO

… serial work …

DO …
… more parallelizable work …
END DO

… serial work …
… etc …
END PROGRAM big_science

PROGRAM big_science
… declarations …
!$OMP PARALLEL DO …
DO …
… parallelizable work …
END DO

… serial work …
!$OMP PARALLEL DO …
DO …
… more parallelizable work …
END DO

… serial work …
… etc …
END PROGRAM big_science

This way may have lots of synchronization overhead.

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 67

Parallelizing a Serial Code #2
PROGRAM big_science
… declarations …

DO task = 1, numtasks
CALL science_task(…)

END DO
END PROGRAM big_science
SUBROUTINE science_task (…)
… parallelizable work …

… serial work …

… more parallelizable work …

… serial work …

… etc …
END PROGRAM big_science

PROGRAM big_science
… declarations …
!$OMP PARALLEL DO …
DO task = 1, numtasks
CALL science_task(…)

END DO
END PROGRAM big_science
SUBROUTINE science_task (…)
… parallelizable work …
!$OMP MASTER
… serial work …
!$OMP END MASTER
… more parallelizable work …
!$OMP MASTER
… serial work …
!$OMP END MASTER
… etc …
END PROGRAM big_science

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 68

Next Time

Part VI:
Distributed Multiprocessing

Supercomputing in Plain English: Shared Memory Parallel
OU Supercomputing Center for Education & Research 69

References
[1] Amdahl, G.M. “Validity of the single-processor approach to achieving

large scale computing capabilities.” In AFIPS Conference Proceedings
vol. 30 (Atlantic City, N.J., Apr. 18-20). AFIPS Press, Reston, Va.,
1967, pp. 483-485. Cited in
http://www.scl.ameslab.gov/Publications/AmdahlsLaw/Amdahls.html

[2] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald and R.
Menon, Parallel Programming in OpenMP. Morgan Kaufmann, 2001.

[3] Kevin Dowd and Charles Severance, High Performance Computing,
2nd ed. O’Reilly, 1998.

http://www.scl.ameslab.gov/Publications/AmdahlsLaw/Amdahls.html

	Supercomputing�in Plain English� Shared Memory Multithreading
	Outline
	Parallelism
	Parallelism
	What Is Parallelism?
	Kinds of Parallelism
	Why Parallelism Is Good
	Parallelism Jargon
	Jargon Alert
	Amdahl’s Law
	Amdahl’s Law: Huh?
	Max Speedup by Serial %
	Amdahl’s Law Example
	The Point of Amdahl’s Law
	Speedup
	Scalability
	Granularity
	Parallel Overhead
	Shared Memory Parallelism
	The Jigsaw Puzzle Analogy
	Serial Computing
	Shared Memory Parallelism
	The More the Merrier?
	Diminishing Returns
	Load Balancing
	Load Balancing
	The Fork/Join Model
	The Fork/Join Model (cont’d)
	The Fork/Join Model (cont’d)
	Principle vs. Practice
	Why Idle?
	OpenMP
	What Is OpenMP?
	Compiler Directives
	OpenMP Compiler Directives
	Example OpenMP Directives
	A First OpenMP Program
	Running hello_world
	OpenMP Issues Observed
	The PARALLEL DO Directive
	A Change to hello_world
	Chunks
	Private and Shared Data
	Should All Data Be Shared?
	A Private Variable
	Another Private Variable
	A Shared Variable
	SHARED & PRIVATE Clauses
	DEFAULT Clause
	Different Workloads
	Chunks
	Scheduling Strategies
	Static Scheduling
	Dynamic Scheduling
	Guided Scheduling
	How to Know Which Schedule?
	SCHEDULE Clause
	Synchronization
	Why Synchronize?
	Barriers
	Critical Sections
	Why Have Critical Sections?
	If No Critical Section
	Reductions
	Reduction Clause
	Parallelizing a Serial Code #1
	Parallelizing a Serial Code #2
	Next Time
	References

