
Supercomputing
in Plain English

Multicore Madness
Henry Neeman, Director

Director, OU Supercomputing Center for Education & Research (OSCER)
Assistant Vice President, Information Technology – Research Strategy Advisor

Associate Professor, College of Engineering
Adjunct Associate Professor, School of Computer Science

University of Oklahoma
Tuesday March 31 2015

Supercomputing in Plain English: Multicore
Tue March 31 2015 2

This is an experiment!
It’s the nature of these kinds of videoconferences that

FAILURES ARE GUARANTEED TO HAPPEN!
NO PROMISES!

So, please bear with us. Hopefully everything will work out
well enough.

If you lose your connection, you can retry the same kind of
connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone
bridge to fall back on.

Supercomputing in Plain English: Multicore
Tue March 31 2015 3

PLEASE MUTE YOURSELF
No matter how you connect, PLEASE MUTE YOURSELF,

so that we cannot hear you.
At OU, we will turn off the sound on all conferencing

technologies.
That way, we won’t have problems with echo cancellation.
Of course, that means we cannot hear questions.
So for questions, you’ll need to send e-mail.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

PLEASE REGISTER
If you haven’t already registered, please do so.

You can find the registration link on the SiPE webpage:

http://www.oscer.ou.edu/education/

Our ability to continue providing Supercomputing in Plain English
depends on being able to show strong participation.

We use our headcounts, institution counts and state counts
(since 2001, over 2000 served, from every US state except RI and
VT, plus 17 other countries, on every continent except Australia
and Antarctica) to improve grant proposals.

Supercomputing in Plain English: Multicore
Tue March 31 2015 4

http://www.oscer.ou.edu/education/

Download the Slides Beforehand
Before the start of the session, please download the slides from
the Supercomputing in Plain English website:

http://www.oscer.ou.edu/education/

That way, if anything goes wrong, you can still follow along
with just audio.

PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Multicore
Tue March 31 2015 5

http://www.oscer.ou.edu/education/

Supercomputing in Plain English: Multicore
Tue March 31 2015 6

H.323 (Polycom etc) #1
If you want to use H.323 videoconferencing – for example,

Polycom – then:
 If you AREN’T registered with the OneNet gatekeeper (which

is probably the case), then:
 Dial 164.58.250.51

 Bring up the virtual keypad.
On some H.323 devices, you can bring up the virtual keypad by typing:

(You may want to try without first, then with; some devices won't work
with the #, but give cryptic error messages about it.)

 When asked for the conference ID, or if there's no response, enter:
0409

 On most but not all H.323 devices, you indicate the end of the ID with:
#

Supercomputing in Plain English: Multicore
Tue March 31 2015 7

H.323 (Polycom etc) #2
If you want to use H.323 videoconferencing – for example,

Polycom – then:
 If you ARE already registered with the OneNet gatekeeper

(most institutions aren’t), dial:
2500409

Many thanks to James Deaton, Skyler Donahue, Jeremy Wright
and Steven Haldeman of OneNet for providing this.

PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Multicore
Tue March 31 2015 8

Wowza #1
You can watch from a Windows, MacOS or Linux laptop using

Wowza from the following URL:

http://jwplayer.onenet.net/stream6/sipe.html

Wowza behaves a lot like YouTube, except live.

Many thanks to James Deaton, Skyler Donahue, Jeremy Wright
and Steven Haldeman of OneNet for providing this.

PLEASE MUTE YOURSELF.

http://jwplayer.onenet.net/stream6/sipe.html

Wowza #2
Wowza has been tested on multiple browsers on each of:
 Windows (7 and 8): IE, Firefox, Chrome, Opera, Safari
 MacOS X: Safari, Firefox
 Linux: Firefox, Opera
We’ve also successfully tested it on devices with:
Android
iOS
However, we make no representations on the likelihood of it
working on your device, because we don’t know which
versions of Android or iOS it mi
PLEASE MUTE YOURSELF.
ght or might not work with.Supercomputing in Plain English: Multicore

Tue March 31 2015 9

RTMP
If you have a video player that can handle RTMP, you can
watch the Wowza feed that way:
rtmp://stream3.onenet.net/live/mp4:sipe-wowza

Supercomputing in Plain English: Multicore
Tue March 31 2015 10

rtmp://stream3.onenet.net/live/mp4:sipe-wowza

Supercomputing in Plain English: Multicore
Tue March 31 2015 11

Toll Free Phone Bridge
IF ALL ELSE FAILS, you can use our toll free phone bridge:

800-832-0736
* 623 2874 #

Please mute yourself and use the phone to listen.
Don’t worry, we’ll call out slide numbers as we go.
Please use the phone bridge ONLY if you cannot connect any

other way: the phone bridge can handle only 100
simultaneous connections, and we have over 500 participants.

Many thanks to OU CIO Loretta Early for providing the toll free
phone bridge.

PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Multicore
Tue March 31 2015 12

Please Mute Yourself
No matter how you connect, PLEASE MUTE YOURSELF,

so that we cannot hear you.
(For Wowza, you don’t need to do that, because the

information only goes from us to you, not from you to us.)
At OU, we will turn off the sound on all conferencing

technologies.
That way, we won’t have problems with echo cancellation.
Of course, that means we cannot hear questions.
So for questions, you’ll need to send e-mail.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Multicore
Tue March 31 2015 13

Questions via E-mail Only
Ask questions by sending e-mail to:

sipe2015@gmail.com

All questions will be read out loud and then answered out loud.

PLEASE MUTE YOURSELF.

mailto:sipe2015@gmail.com

Onsite: Talent Release Form
If you’re attending onsite, you MUST do one of the following:
 complete and sign the Talent Release Form,
OR
 sit behind the cameras (where you can’t be seen) and don’t

talk at all.

If you aren’t onsite, then PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Multicore
Tue March 31 2015 14

TENTATIVE Schedule
Tue Jan 20: Multicore: What the Heck is Supercomputing?
Tue Jan 27: The Tyranny of the Storage Hierarchy
Tue Feb 3: Instruction Level Parallelism
Tue Feb 10: Stupid Compiler Tricks
Tue Feb 17: Shared Memory Multithreading
Tue March 3: Distributed Multiprocessing
Tue March 10: Applications and Types of Parallelism
Tue March 17: NO SESSION (OU's Spring Break)
Tue March 24: NO SESSION (Henry has a huge grant proposal due)
Tue March 31: Multicore Madness
Tue Apr 7: High Throughput Computing
Tue Apr 14: GPGPU: Number Crunching in Your Graphics Card
Tue Apr 21: Grab Bag: Scientific Libraries, I/O Libraries,
Visualization

Supercomputing in Plain English: Multicore
Tue March 31 2015 15

Supercomputing in Plain English: Multicore
Tue March 31 2015 16

Thanks for helping!
 OU IT

 OSCER operations staff (Brandon George, Dave Akin, Brett
Zimmerman, Josh Alexander, Patrick Calhoun)

 Horst Severini, OSCER Associate Director for Remote &
Heterogeneous Computing

 Debi Gentis, OSCER Coordinator
 Jim Summers
 The OU IT network team

 James Deaton, Skyler Donahue, Jeremy Wright and Steven
Haldeman, OneNet

 Kay Avila, U Iowa
 Stephen Harrell, Purdue U

Supercomputing in Plain English: Multicore
Tue March 31 2015 17

This is an experiment!
It’s the nature of these kinds of videoconferences that

FAILURES ARE GUARANTEED TO HAPPEN!
NO PROMISES!

So, please bear with us. Hopefully everything will work out
well enough.

If you lose your connection, you can retry the same kind of
connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone
bridge to fall back on.

PLEASE MUTE YOURSELF.

Coming in 2015!
 Linux Clusters Institute workshop May 18-22 2015 @ OU

http://www.linuxclustersinstitute.org/workshops/

 Great Plains Network Annual Meeting, May 27-29, Kansas City
 Advanced Cyberinfrastructure Research & Education Facilitators (ACI-REF)

Virtual Residency May 31 - June 6 2015
 XSEDE2015, July 26-30, St. Louis MO

https://conferences.xsede.org/xsede15

 IEEE Cluster 2015, Sep 23-27, Chicago IL
http://www.mcs.anl.gov/ieeecluster2015/

 OKLAHOMA SUPERCOMPUTING SYMPOSIUM 2015, Sep 22-23 2015 @
OU

 SC13, Nov 15-20 2015, Austin TX
http://sc15.supercomputing.org/

PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Multicore
Tue March 31 2015 18

http://www.linuxclustersinstitute.org/workshops/
https://conferences.xsede.org/xsede15
http://www.mcs.anl.gov/ieeecluster2015/
http://sc15.supercomputing.org/

Supercomputing in Plain English: Multicore
Tue March 31 2015 19

Outline
 The March of Progress
 Multicore/Many-core Basics
 Software Strategies for Multicore/Many-core
 A Concrete Example: Weather Forecasting

The March of Progress

Supercomputing in Plain English: Multicore
Tue March 31 2015 21

10 racks @ 1000 lbs per rack
270 Pentium4 Xeon CPUs,

2.0 GHz, 512 KB L2 cache
270 GB RAM, 400 MHz FSB
8 TB disk
Myrinet2000 Interconnect
100 Mbps Ethernet Interconnect
OS: Red Hat Linux
Peak speed: 1.08 TFLOPs
(1.08 trillion calculations per second)

One of the first Pentium4 clusters!

OU’s TeraFLOP Cluster, 2002

boomer.oscer.ou.edu

Supercomputing in Plain English: Multicore
Tue March 31 2015 22

TeraFLOP, Prototype 2006

http://news.com.com/2300-1006_3-6119652.html

4 years from room to
research chip!

http://news.com.com/2300-1006_3-6119652.html

Supercomputing in Plain English: Multicore
Tue March 31 2015 23

What does 1 TFLOPs Look Like?

NVIDIA Kepler K20[15]

Intel MIC Xeon PHI[16]

2012: Card

boomer.oscer.ou.edu
In service 2002-5: 11 racks

2002: Row
1997: Room

ASCI RED[13]

Sandia National Lab

AMD FirePro W9000[14]

Supercomputing in Plain English: Multicore
Tue March 31 2015 24

Moore’s Law
In 1965, Gordon Moore was an engineer at Fairchild

Semiconductor.
He noticed that the number of transistors that could be

squeezed onto a chip was doubling about every 18 months.
It turns out that computer speed is roughly proportional to the

number of transistors per unit area.
Moore wrote a paper about this concept, which became known

as “Moore’s Law.”

Supercomputing in Plain English: Multicore
Tue March 31 2015 25

Moore’s Law in Practice

Year

lo
g(

Sp
ee

d)

Supercomputing in Plain English: Multicore
Tue March 31 2015 26

Moore’s Law in Practice

Year

lo
g(

Sp
ee

d)

Supercomputing in Plain English: Multicore
Tue March 31 2015 27

Moore’s Law in Practice

Year

lo
g(

Sp
ee

d)

Supercomputing in Plain English: Multicore
Tue March 31 2015 28

Moore’s Law in Practice

Year

lo
g(

Sp
ee

d)

Supercomputing in Plain English: Multicore
Tue March 31 2015 29

Moore’s Law in Practice

Year

lo
g(

Sp
ee

d)

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1990 1995 2000 2005 2010 2015 2020

Fastest Supercomputer in the World vs Moore

GFLOPs

Moore

Supercomputing in Plain English: Multicore
Tue March 31 2015 30

Fastest Supercomputer vs. Moore

Year

2014: 3,120,000 CPU cores,
33,862,700 GFLOPs
(HPL benchmark)

GFLOPs:
billions of

calculations per
second1993: 1024 CPU cores, 59.7 GFLOPs

Gap: Supercomputers
beat Moore’s Law by
329x 1993-2014.www.top500.org

http://www.top500.org/

The Tyranny of
the Storage Hierarchy

Supercomputing in Plain English: Multicore
Tue March 31 2015 32

The Storage Hierarchy

 Registers
 Cache memory
 Main memory (RAM)
 Hard disk
 Removable media (CD, DVD etc)
 Internet

Fast, expensive, few

Slow, cheap, a lot
[5]

Supercomputing in Plain English: Multicore
Tue March 31 2015 33

RAM is Slow
CPU 653 GB/sec

15 GB/sec (2.3%)

Bottleneck

The speed of data transfer
between Main Memory and the
CPU is much slower than the
speed of calculating, so the CPU
spends most of its time waiting
for data to come in or go out.

Supercomputing in Plain English: Multicore
Tue March 31 2015 34

Why Have Cache?
CPUCache is much closer to the speed

of the CPU, so the CPU doesn’t
have to wait nearly as long for
stuff that’s already in cache:
it can do more
operations per second! 15 GB/sec (2.3%)(1%)

46 GB/sec (7%)

Supercomputing in Plain English: Multicore
Tue March 31 2015 35

Henry’s Laptop

 Intel Core i3-4010U
dual core, 1.7 GHz, 3 MB L3 Cache

 12 GB 1600 MHz DDR3L SDRAM
 340 GB SATA 5400 RPM Hard Drive
 DVD+RW/CD-RW Drive
 1 Gbps Ethernet Adapter

Dell Latitude E5540[4]

http://content.hwigroup.net/images
/products/xl/204419/dell_latitude_

e5540_55405115.jpg

http://content.hwigroup.net/images/products/xl/204419/dell_latitude_e5540_55405115.jpg

Supercomputing in Plain English: Multicore
Tue March 31 2015 36

Storage Speed, Size, Cost

Henry’s
Laptop

Registers
(Intel

Core2 Duo
1.6 GHz)

Cache
Memory

(L3)

Main
Memory

(1600MHz
DDR3L

SDRAM)

Hard
Drive

Ethernet
(1000
Mbps)

DVD+R
(16x)

Phone
Modem

(56 Kbps)

Speed
(MB/sec)

[peak]

668,672[6]

(16
GFLOP/s*)

46,000 15,000 [7] 100[9] 125 32
[10]

0.007

Size
(MB)

464 bytes**
[11]

3 12,288
4096 times as
much as cache

340,000 unlimited unlimited unlimited

Cost
($/MB) –

$38 [12] $0.0084
[12]

~1/4500 as
much as cache

$0.00003
[12]

charged
per month
(typically)

$0.000045
[12]

charged
per month
(typically)

* GFLOP/s: billions of floating point operations per second
** 16 64-bit general purpose registers, 8 80-bit floating point registers,

16 128-bit floating point vector registers

Supercomputing in Plain English: Multicore
Tue March 31 2015 37

Storage Use Strategies
 Register reuse: Do a lot of work on the same data before

working on new data.
 Cache reuse: The program is much more efficient if all of

the data and instructions fit in cache; if not, try to use
what’s in cache a lot before using anything that isn’t in
cache.

 Data locality: Try to access data that are near each other
in memory before data that are far.

 I/O efficiency: Do a bunch of I/O all at once rather than a
little bit at a time; don’t mix calculations and I/O.

Supercomputing in Plain English: Multicore
Tue March 31 2015 38

A Concrete Example
 Consider a cluster with Sandy Bridge CPUs:

oct core, 2.0 GHz, 1333 MHz quad channel QPI.
 The theoretical peak CPU speed is 128 GFLOPs (double

precision) per CPU chip, and in practice the benchmark per
core as 89% of that (100+% for a single core due to automatic
overclocking). For a dual chip node, the peak is 256 GFLOPs.

 Each double precision calculation is 2 8-byte operands and one
8-byte result, so 24 bytes get moved between RAM and CPU.

 So, in theory each node could consume up to 5722 GB/sec.
 The sustained RAM bandwidth is around 60-70 GB/sec.
 So, even at theoretical peak, any code that does less than

around 80 calculations per byte transferred between RAM and
cache has speed limited by RAM bandwidth.

Good Cache Reuse
Example

Supercomputing in Plain English: Multicore
Tue March 31 2015 40

A Sample Application
Matrix-Matrix Multiply
Let A, B and C be matrices of sizes
nr × nc, nr × nk and nk × nc, respectively:

=

ncnrnrnrnr

nc

nc

nc

aaaa

aaaa
aaaa
aaaa

,3,2,1,

,33,32,31,3

,23,22,21,2

,13,12,11,1

A

=

nknrnrnrnr

nk

nk

nk

bbbb

bbbb
bbbb
bbbb

,3,2,1,

,33,32,31,3

,23,22,21,2

,13,12,11,1

B

=

ncnknknknk

nc

nc

nc

cccc

cccc
cccc
cccc

,3,2,1,

,33,32,31,3

,23,22,21,2

,13,12,11,1

C

∑
=

⋅++⋅+⋅+⋅=⋅=
nk

k
cnknkrcrcrcrckkrcr cbcbcbcbcba

1
,,,33,,22,,11,,,,

The definition of A = B • C is

for r ∈ {1, nr}, c ∈ {1, nc}.

Supercomputing in Plain English: Multicore
Tue March 31 2015 41

Matrix Multiply: Naïve Version
SUBROUTINE matrix_matrix_mult_naive (dst, src1, src2, &
& nr, nc, nq)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN) :: src1
REAL,DIMENSION(nq,nc),INTENT(IN) :: src2

INTEGER :: r, c, q

DO c = 1, nc
DO r = 1, nr
dst(r,c) = 0.0
DO q = 1, nq
dst(r,c) = dst(r,c) + src1(r,q) * src2(q,c)

END DO
END DO

END DO
END SUBROUTINE matrix_matrix_mult_naive

Supercomputing in Plain English: Multicore
Tue March 31 2015 42

Performance of Matrix Multiply
Matrix-Matrix Multiply

0

100

200

300

400

500

600

700

800

0 10000000 20000000 30000000 40000000 50000000 60000000

Total Problem Size in bytes (nr*nc+nr*nq+nq*nc)

C
PU

 se
c

Init

Better

Supercomputing in Plain English: Multicore
Tue March 31 2015 43

Tiling

44

Tiling
 Tile: a small rectangular subdomain of a problem domain.

Sometimes called a block or a chunk.
 Tiling: breaking the domain into tiles.
 Tiling strategy: operate on each tile to completion, then

move to the next tile.
 Tile size can be set at runtime, according to what’s best for

the machine that you’re running on.

Supercomputing in Plain English: Multicore
Tue March 31 2015

45

Tiling Code: F90
SUBROUTINE matrix_matrix_mult_by_tiling (dst, src1, src2, nr, nc, nq, &
& rtilesize, ctilesize, qtilesize)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN) :: src1
REAL,DIMENSION(nq,nc),INTENT(IN) :: src2
INTEGER,INTENT(IN) :: rtilesize, ctilesize, qtilesize

INTEGER :: rstart, rend, cstart, cend, qstart, qend

DO cstart = 1, nc, ctilesize
cend = cstart + ctilesize - 1
IF (cend > nc) cend = nc
DO rstart = 1, nr, rtilesize

rend = rstart + rtilesize - 1
IF (rend > nr) rend = nr
DO qstart = 1, nq, qtilesize

qend = qstart + qtilesize - 1
IF (qend > nq) qend = nq
CALL matrix_matrix_mult_tile(dst, src1, src2, nr, nc, nq, &

& rstart, rend, cstart, cend, qstart, qend)
END DO !! qstart

END DO !! rstart
END DO !! cstart

END SUBROUTINE matrix_matrix_mult_by_tiling

Supercomputing in Plain English: Multicore
Tue March 31 2015

46

Tiling Code: C
void matrix_matrix_mult_by_tiling (

float** dst, float** src1, float** src2,
int nr, int nc, int nq,
int rtilesize, int ctilesize, int qtilesize)

{ /* matrix_matrix_mult_by_tiling */
int rstart, rend, cstart, cend, qstart, qend;

for (rstart = 0; rstart < nr; rstart += rtilesize) {
rend = rstart + rtilesize – 1;
if (rend >= nr) rend = nr - 1;
for (cstart = 0; cstart < nc; cstart += ctilesize) {
cend = cstart + ctilesize – 1;
if (cend >= nc) cend = nc - 1;
for (qstart = 0; qstart < nq; qstart += qtilesize) {
qend = qstart + qtilesize – 1;
if (qend >= nq) qend = nq - 1;
matrix_matrix_mult_tile(dst, src1, src2, nr, nc, nq,

rstart, rend, cstart, cend, qstart, qend);
} /* for qstart */

} /* for cstart */
} /* for rstart */

} /* matrix_matrix_mult_by_tiling */

Supercomputing in Plain English: Multicore
Tue March 31 2015

47

Multiplying Within a Tile: F90
SUBROUTINE matrix_matrix_mult_tile (dst, src1, src2, nr, nc, nq, &
& rstart, rend, cstart, cend, qstart, qend)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN) :: src1
REAL,DIMENSION(nq,nc),INTENT(IN) :: src2
INTEGER,INTENT(IN) :: rstart, rend, cstart, cend, qstart, qend

INTEGER :: r, c, q

DO c = cstart, cend
DO r = rstart, rend
IF (qstart == 1) dst(r,c) = 0.0
DO q = qstart, qend
dst(r,c) = dst(r,c) + src1(r,q) * src2(q,c)

END DO !! q
END DO !! r

END DO !! c
END SUBROUTINE matrix_matrix_mult_tile

Supercomputing in Plain English: Multicore
Tue March 31 2015

48

Multiplying Within a Tile: C
void matrix_matrix_mult_tile (

float** dst, float** src1, float** src2,
int nr, int nc, int nq,
int rstart, int rend, int cstart, int cend,
int qstart, int qend)

{ /* matrix_matrix_mult_tile */
int r, c, q;

for (r = rstart; r <= rend; r++) {
for (c = cstart; c <= cend; c++) {

if (qstart == 0) dst[r][c] = 0.0;
for (q = qstart; q <= qend; q++) {

dst[r][c] = dst[r][c] + src1[r][q] * src2[q][c];
} /* for q */

} /* for c */
} /* for r */

} /* matrix_matrix_mult_tile */

Supercomputing in Plain English: Multicore
Tue March 31 2015

Supercomputing in Plain English: Multicore
Tue March 31 2015 49

Performance with Tiling

Matrix-Matrix Mutiply Via Tiling (log-log)

0.1

1

10

100

1000

101001000100001000001000000100000001E+08

Tile Size (bytes)

C
PU

 se
c

512x256

512x512

1024x512

1024x1024

2048x1024

Matrix-Matrix Mutiply Via Tiling

0

50

100

150

200

250

10100100010000100000100000010000000100000000

Tile Size (bytes)

Better

50

The Advantages of Tiling
 It allows your code to exploit data locality better, to get

much more cache reuse: your code runs faster!
 It’s a relatively modest amount of extra coding (typically a

few wrapper functions and some changes to loop bounds).
 If you don’t need tiling – because of the hardware, the

compiler or the problem size – then you can turn it off by
simply setting the tile size equal to the problem size.

Supercomputing in Plain English: Multicore
Tue March 31 2015

51

Will Tiling Always Work?
Tiling WON’T always work. Why?
Well, tiling works well when:
 the order in which calculations occur doesn’t matter much,

AND
 there are lots and lots of calculations to do for each memory

movement.
If either condition is absent, then tiling won’t help.

Supercomputing in Plain English: Multicore
Tue March 31 2015

Multicore/Many-core
Basics

Supercomputing in Plain English: Multicore
Tue March 31 2015 53

What is Multicore?
 In the olden days (that is, the first half of 2005), each CPU

chip had one “brain” in it.
 Starting the second half of 2005, each CPU chip could have

up to 2 cores (brains); starting in late 2006, 4 cores; starting
in late 2008, 6 cores; in early 2010, 8 cores; in mid 2010, 12
cores; in 2011, 16 cores (AMD).

 Jargon: Each CPU chip plugs into a socket, so these days,
to avoid confusion, people refer to sockets and cores, rather
than CPUs or processors.

 Each core is just like a full blown CPU, except that it shares
its socket (and maybe some of its cache) with one or more
other cores – and therefore shares its bandwidth to RAM
with them.

Supercomputing in Plain English: Multicore
Tue March 31 2015 54

Dual Core
Core Core

Supercomputing in Plain English: Multicore
Tue March 31 2015 55

Quad Core
Core Core
Core Core

Supercomputing in Plain English: Multicore
Tue March 31 2015 56

Oct Core
Core Core Core Core
Core Core Core Core

Supercomputing in Plain English: Multicore
Tue March 31 2015 57

16-Core
Core Core Core Core
Core Core Core Core

Supercomputing in Plain English: Multicore
Tue March 31 2015 58

The Challenge of Multicore: RAM
 Each socket has access to a certain amount of RAM, at a

fixed RAM bandwidth per SOCKET – or even per node.
 As the number of cores per socket increases, the

contention for RAM bandwidth increases too.
 At 2 or even 4 cores in a socket, this problem isn’t too bad. But

at 16 or 32 or 80 cores, it can become a huge problem.
 So, applications that are cache optimized will get big speedups.
 But, applications whose performance is limited by RAM

bandwidth are going to speed up only as fast as RAM
bandwidth speeds up.

 RAM bandwidth speeds up much slower than CPU speeds up.

Supercomputing in Plain English: Multicore
Tue March 31 2015 59

The Challenge of Multicore: Network
 Each node has access to a certain number of network ports,

at a fixed number of network ports per NODE.
 As the number of cores per node increases, the contention

for network ports increases too.
 At 2 or 4 cores in a socket, this problem isn’t too bad. But at

16 or 32 or 80 cores, it can be a huge problem.
 So, applications that do minimal communication will get

big speedups.
 But, applications whose performance is limited by the

number of MPI messages are going to speed up very very
little – and may even crash the node.

A Concrete Example:
Weather Forecasting

Supercomputing in Plain English: Multicore
Tue March 31 2015 61

Weather Forecasting

http://www.caps.ou.edu/wx/p/r/conus/fcst/

http://www.caps.ou.edu/wx/p/r/conus/fcst/

Supercomputing in Plain English: Multicore
Tue March 31 2015 62

Weather Forecasting
 Weather forecasting is a transport problem.
 The goal is to predict future weather conditions by

simulating the movement of fluids in Earth’s atmosphere.
 The physics is the Navier-Stokes Equations.
 The numerical method is Finite Difference.

Supercomputing in Plain English: Multicore
Tue March 31 2015 63

Cartesian Mesh

Supercomputing in Plain English: Multicore
Tue March 31 2015 64

Finite Difference
unew(i,j,k) = F(uold, i, j, k, Δt) =

F(uold(i,j,k),
uold(i-1,j,k), uold(i+1,j,k),
uold(i,j-1,k), uold(i,j+1,k),
uold(i,j,k-1), uold(i,j,k+1), Δt)

Supercomputing in Plain English: Multicore
Tue March 31 2015 65

Ghost Boundary Zones

Virtual Memory

Virtual Memory
 Typically, the amount of main memory (RAM) that a CPU

can address is larger than the amount of data physically
present in the computer.

 For example, consider a laptop that can address 16 GB of
main memory (roughly 16 billion bytes), but only contains
2 GB (roughly 2 billion bytes).

Supercomputing in Plain English: Multicore
Tue March 31 2015 67

Supercomputing in Plain English: Multicore
Tue March 31 2015

Virtual Memory (cont’d)
 Locality: Most programs don’t jump all over the memory

that they use; instead, they work in a particular area of
memory for a while, then move to another area.

 So, you can offload onto hard disk much of the memory
image of a program that’s running.

68

Virtual Memory (cont’d)
 Memory is chopped up into many pages of modest size (e.g.,

1 KB – 32 KB; typically 4 KB).
 Only pages that have been recently used actually reside in

memory; the rest are stored on hard disk.
 Hard disk is typically 0.1% as fast as main memory, so you

get better performance if you rarely get a page fault, which
forces a read from (and maybe a write to) hard disk:
exploit data locality!

Supercomputing in Plain English: Multicore
Tue March 31 2015 69

Cache vs. Virtual Memory
 Lines (cache) vs. pages (VM)
 Cache faster than RAM (cache) vs.

RAM faster than disk (VM)

Supercomputing in Plain English: Multicore
Tue March 31 2015 70

Supercomputing in Plain English: Multicore
Tue March 31 2015 71

Virtual Memory
 Every CPU family today uses virtual memory, in which disk

pretends to be a bigger RAM.
 Virtual memory capability can’t be turned off (though you

can turn off the ability to swap to disk).
 RAM is split up into pages, typically 4 KB each.
 Each page is either in RAM or out on disk.
 To keep track of the pages, a page table notes whether each

table is in RAM, where it is in RAM (that is, physical address
and virtual address are different), and some other
information.

 So, a 4 GB physical RAM would need over a million page
table entries – and a 32 GB physical RAM as on Boomer
would need over 32M page table entries.

Supercomputing in Plain English: Multicore
Tue March 31 2015 72

Why Virtual Memory is Slow
 When you want to access a byte of memory, you have to

find out whether it’s in physical memory (RAM) or virtual
disk (disk) – and the page table is in RAM!

 A page table of a 32 million entries can’t fit in, for example,
the 20 MB cache L3 cache on Boomer CPU chips – and
even if it could, that wouldn’t leave much cache for actual
data.

 So, each memory access (load or store) is actually 2
memory accesses: the first for the page table entry, and the
second for the data itself.

 This is slow!
 And notice, this is assuming that you don’t need more

memory than your physical RAM.

Supercomputing in Plain English: Multicore
Tue March 31 2015 73

The Notorious T.L.B.
 To speed up memory accesses, CPUs today have a special

cache just for page table entries, known as the Translation
Lookaside Buffer (TLB).

 The size of TLBs varies from 64 entries to 1024 entries,
depending on chip families. At 4 KB pages, this means that
the size of cache covered by the TLB varies from 256 KB to
4 MB.

 Some TLBs allow large pages (1 MB to a few GB) – but the
operating systems often provide poor or no support.

Supercomputing in Plain English: Multicore
Tue March 31 2015 74

The T.L.B. on a Current Chip
On Intel Sandy Bridge, specifically E5-2650 (e.g., on Boomer):
 L3 cache size is 20 MB, shared among 8 cores.
 L2 cache size is 256 KB per core (dedicated to that core).
 Page size can be 4 KB or 2 MB/4 MB or 1 GB.
 Data TLB (DTLB) per core is:

 64 entries for 4 KB pages, covering 256 KB per core, OR
 32 entries for 2 MB/4 MB pages, covering 128 MB per core, OR
 4 entries for 1 GB pages, covering 4 GB per core.

 DTLB is 4-way set associative.
 Shared TLB (STLB), containing a second level of both

instruction and data TLB, for the whole chip is:
 512 entries for 4 KB pages, covering 2 MB.

 A page table failure can cause a delay of hundreds of cycles.
(This information is from [13].)

Supercomputing in Plain English: Multicore
Tue March 31 2015 75

The T.L.B. on a Recent Chip
On Intel Sandy Bridge, specifically E5-2650 (e.g., on Boomer):
 L3 cache size is 20 MB.
 Page size is 4 KB or 2 MB/4 MB or 1 GB.
 DTLB in 4 KB mode only covers up to 256 KB cache per

core (2 MB total over 8 cores).
 Mesh: At 100 vertical levels of 150 single precision

variables, 2 MB is a 5 x 5 horizontal domain – almost
nothing but ghost zones!

 The cost of a TLB miss can be hundreds of cycles,
equivalent to hundreds or thousands of calculations!

Software Strategies
for Weather Forecasting
on Multicore/Many-core

Supercomputing in Plain English: Multicore
Tue March 31 2015 77

Tiling NOT Good for Weather Codes
 Weather codes typically have on the order of 150 3D arrays

used in each timestep (some transferred multiple times in the
same timestep, but let’s ignore that for simplicity).

 These arrays typically are single precision (4 bytes per
floating point value).

 So, a typical weather code uses about 600 bytes per mesh
zone per timestep.

 Weather codes typically do 5,000 to 10,000 calculations per
mesh zone per timestep.

 So, the ratio of calculations to data is less than 20 to 1 –
much less than the ~80 to 1 needed (on 2012 hardware).

Supercomputing in Plain English: Multicore
Tue March 31 2015 78

Weather Forecasting and Cache
 On current weather codes, data decomposition is per

process. That is, each process gets one subdomain.
 As CPUs speed up and RAM sizes grow, the size of each

processor’s subdomain grows too.
 However, given RAM bandwidth limitations, this means

that performance can only grow with RAM speed – which
increases slower than CPU speed.

 If the codes were optimized for cache, would they speed up
more?

 First: How to optimize for cache?

Supercomputing in Plain English: Multicore
Tue March 31 2015 79

How to Get Good Cache Reuse?
 Multiple independent subdomains per processor.
 Each subdomain fits entirely in L3 cache.
 Each subdomain’s page table entries fit entirely in the

TLB.
 Expanded ghost zone stencil (ghost zones on each side)

allows multiple timesteps before communicating with
neighboring subdomains.

 Parallelize along the Z-axis as well as X and Y.
 Use higher order numerical schemes.
 Reduce the memory footprint as much as possible.
Coincidentally, this also reduces communication cost.

Supercomputing in Plain English: Multicore
Tue March 31 2015 80

Cache Optimization Strategy: Tiling?
Would tiling work as a cache optimization strategy for weather

forecasting codes?

Supercomputing in Plain English: Multicore
Tue March 31 2015 81

Multiple Subdomains Per Core

Core 0

Core 1

Core 2

Core 3

Supercomputing in Plain English: Multicore
Tue March 31 2015 82

Why Multiple Subdomains?
 If each subdomain fits in cache, then the CPU can bring all

the data of a subdomain into cache, chew on it for a while,
then move on to the next subdomain: lots of cache reuse!

 Oh, wait, what about the TLB? Better make the subdomains
smaller! (So more of them.)

 But, doesn’t tiling have the same effect?

Supercomputing in Plain English: Multicore
Tue March 31 2015 83

Why Independent Subdomains?
 Originally, the point of this strategy was to hide the cost of

communication.
 When you finish chewing up a subdomain, send its data to

its neighbors non-blocking (MPI_Isend).
 While the subdomain’s data is flying through the

interconnect, work on other subdomains, which hides the
communication cost.

 When it’s time to work on this subdomain again, collect its
data (MPI_Waitall).

 If you’ve done enough work, then the communication cost
is zero.

Supercomputing in Plain English: Multicore
Tue March 31 2015 84

Expand the Array Stencil
 If you expand the array stencil of each subdomain beyond

the numerical stencil, then you don’t have to communicate
as often.

 When you communicate, instead of sending a slice along
each face, send a slab, with extra stencil levels.

 In the first timestep after communicating, do extra
calculations out to just inside the numerical stencil.

 In subsequent timesteps, calculate fewer and fewer stencil
levels, until it’s time to communicate again – less total
communication, and more calculations to hide the
communication cost underneath!

Supercomputing in Plain English: Multicore
Tue March 31 2015 85

An Extra Win!
 If you do all this, there’s an amazing side effect: you get

better cache reuse, because you stick with the same
subdomain for a longer period of time.

 So, instead of doing, say, 5000 calculations per zone per
timestep, you can do 15000 or 20000.

 So, you can better amortize the cost of transferring the data
between RAM and cache.

 Downside: ratio of ghost zone RAM use to computed zone
RAM use gets worse.
 But RAM is cheap.

Supercomputing in Plain English: Multicore
Tue March 31 2015 86

Old Algorithm (F90)
DO timestep = 1, number_of_timesteps

CALL receive_messages_nonblocking(subdomain, timestep)
CALL calculate_entire_timestep(subdomain, timestep)
CALL send_messages_nonblocking(subdomain, timestep)

END DO

Supercomputing in Plain English: Multicore
Tue March 31 2015 87

Old Algorithm (C)
for (timestep = 0;

timestep < number_of_timesteps; timestep++) {
receive_messages_nonblocking(subdomain, timestep);
calculate_entire_timestep(subdomain, timestep);
send_messages_nonblocking(subdomain, timestep);

} /* for timestep */

Supercomputing in Plain English: Multicore
Tue March 31 2015 88

New Algorithm (F90)
DO timestep = 1, number_of_timesteps, extra_stencil_levels
DO subdomain = 1, number_of_local_subdomains
CALL receive_messages_nonblocking(subdomain, timestep)
DO extra_stencil_level = 0, extra_stencil_levels - 1
CALL calculate_entire_timestep(subdomain,

timestep + extra_stencil_level)
END DO
CALL send_messages_nonblocking(subdomain,

timestep + extra_stencil_levels)
` END DO
END DO

Supercomputing in Plain English: Multicore
Tue March 31 2015 89

New Algorithm (C)
for (timestep = 0;

timestep < number_of_timesteps;
timestep += extra_stencil_levels) {

for (subdomain = 0;
subdomain < number_of_local_subdomains; subdomain++) {

receive_messages_nonblocking(subdomain, timestep);
for (extra_stencil_level = 0;

extra_stencil_level < extra_stencil_levels;
extra_stencil_level++) {

calculate_entire_timestep(subdomain,
timestep + extra_stencil_level);

} /* for extra_stencil_level */
send_messages_nonblocking(subdomain,
timestep + extra_stencil_levels);

} /* for subdomain */
} /* for timestep */

Supercomputing in Plain English: Multicore
Tue March 31 2015 90

Higher Order Numerical Schemes
 Higher order numerical schemes are great, because they

require more calculations per mesh zone per timestep, which
you need to amortize the cost of transferring data between
RAM and cache. Might as well!

 Plus, they allow you to use a larger time interval per
timestep (dt), so you can do fewer total timesteps for the
same accuracy – or you can get higher accuracy for the
same number of timesteps.

Supercomputing in Plain English: Multicore
Tue March 31 2015 91

Parallelize in Z
 Most weather forecast codes parallelize in X and Y, but not

in Z, because gravity makes the calculations along Z more
complicated than X and Y.

 But, that means that each subdomain has a high number of
zones in Z, compared to X and Y.

 For example, a 1 km CONUS run will probably have 100
zones in Z (25 km at 0.25 km resolution).

Supercomputing in Plain English: Multicore
Tue March 31 2015 92

Multicore/Many-core Problem
 Most multicore chip families have relatively small cache per

core (for example, 1 - 4 MB per core at the highest/slowest
cache level) – and this problem seems likely to remain.

 Small TLBs make the problem worse: a few MB per core
rather than 10-30 MB, for small page size VM.

 So, to get good cache reuse, you need subdomains of no
more than a few MB.

 If you have 150 3D variables at single precision, and 100
zones in Z, then your horizontal size will be 5 x 5 zones –
just enough for your stencil!

Supercomputing in Plain English: Multicore
Tue March 31 2015 93

What Do We Need?
 We need much bigger caches!

 16 MB cache 16 x 16 horizontal including stencil
 32 MB cache 23 x 23 horizontal including stencil

 TLB must be big enough to cover the entire cache.
 It’d be nice to have RAM speed increase as fast as core

counts increase, but let’s not kid ourselves.

Keep this in mind when we get to GPGPU!

TENTATIVE Schedule
Tue Jan 20: Multicore: What the Heck is Supercomputing?
Tue Jan 27: The Tyranny of the Storage Hierarchy
Tue Feb 3: Instruction Level Parallelism
Tue Feb 10: Stupid Compiler Tricks
Tue Feb 17: Shared Memory Multithreading
Tue March 3: Distributed Multiprocessing
Tue March 10: Applications and Types of Parallelism
Tue March 17: NO SESSION (OU's Spring Break)
Tue March 24: NO SESSION (Henry has a huge grant proposal due)
Tue March 31: Multicore Madness
Tue Apr 7: High Throughput Computing
Tue Apr 14: GPGPU: Number Crunching in Your Graphics Card
Tue Apr 21: Grab Bag: Scientific Libraries, I/O Libraries,
Visualization

Supercomputing in Plain English: Multicore
Tue March 31 2015 94

Supercomputing in Plain English: Multicore
Tue March 31 2015 95

Thanks for helping!
 OU IT

 OSCER operations staff (Brandon George, Dave Akin, Brett
Zimmerman, Josh Alexander, Patrick Calhoun)

 Horst Severini, OSCER Associate Director for Remote &
Heterogeneous Computing

 Debi Gentis, OSCER Coordinator
 Jim Summers
 The OU IT network team

 James Deaton, Skyler Donahue, Jeremy Wright and Steven
Haldeman, OneNet

 Kay Avila, U Iowa
 Stephen Harrell, Purdue U

Coming in 2015!
Linux Clusters Institute workshop May 18-22 2015 @ OU

http://www.linuxclustersinstitute.org/workshops/

Great Plains Network Annual Meeting, May 27-29, Kansas City
Advanced Cyberinfrastructure Research & Education Facilitators (ACI-REF) Virtual

Residency May 31 - June 6 2015
XSEDE2015, July 26-30, St. Louis MO

https://conferences.xsede.org/xsede15

IEEE Cluster 2015, Sep 23-27, Chicago IL
http://www.mcs.anl.gov/ieeecluster2015/

OKLAHOMA SUPERCOMPUTING SYMPOSIUM 2015, Sep 22-23 2015 @ OU
SC13, Nov 15-20 2015, Austin TX

http://sc15.supercomputing.org/

Supercomputing in Plain English: Multicore
Tue March 31 2015 96

http://www.linuxclustersinstitute.org/workshops/
https://conferences.xsede.org/xsede15
http://www.mcs.anl.gov/ieeecluster2015/
http://sc15.supercomputing.org/

97

OK Supercomputing Symposium 2015

2006 Keynote:
Dan Atkins

Head of NSF’s
Office of

Cyberinfrastructure

2004 Keynote:
Sangtae Kim
NSF Shared

Cyberinfrastructure
Division Director

2003 Keynote:
Peter Freeman

NSF
Computer & Information
Science & Engineering

Assistant Director

2005 Keynote:
Walt Brooks

NASA Advanced
Supercomputing
Division Director

2007 Keynote:
Jay Boisseau

Director
Texas Advanced

Computing Center
U. Texas Austin

2008 Keynote:
José Munoz

Deputy Office
Director/Senior

Scientific Advisor
NSF Office of

Cyberinfrastructure

2009 Keynote:
Douglass Post
Chief Scientist

US Dept of Defense
HPC Modernization

Program

FREE!
Wed Sep 23 2015

@ OU
Over 235 registra2ons already!
Over 152 inhe first day, over

200 in the first week, over 225
in the first month.

Reception/Poster Session
Tue Sep 22 2015 @ OU

Symposium
Wed Sep 23 2015 @ OU

2010 Keynote:
Horst Simon

Deputy Director
Lawrence Berkeley
National Laboratory

Supercomputing in Plain English: Multicore
Tue March 31 2015

2011 Keynote:
Barry Schneider

Program Manager
National Science

Foundation

2012 Keynote:
Thom Dunning

Director
National Center for

Supercomputing
Applications

2015 Keynote:
John Shalf

Dept Head CS
Lawrence

Berkeley Lab
CTO, NERSC

2014 Keynote:
Irene Qualters

Division Director
Advanced

Cyberinfarstructure
Division, NSF

Thanks for your
attention!

Questions?
www.oscer.ou.edu

http://www.oscer.ou.edu/

Supercomputing in Plain English: Multicore
Tue March 31 2015 99

References
[1] Image by Greg Bryan, Columbia U.
[2] “Update on the Collaborative Radar Acquisition Field Test (CRAFT): Planning for the Next Steps.”

Presented to NWS Headquarters August 30 2001.
[3] See http://hneeman.oscer.ou.edu/hamr.html for details.
[4] http://www.dell.com/
[5] http://www.vw.com/newbeetle/
[6] Richard Gerber, The Software Optimization Cookbook: High-performance Recipes for the Intel
Architecture. Intel Press, 2002, pp. 161-168.
[7] RightMark Memory Analyzer. http://cpu.rightmark.org/
[8] ftp://download.intel.com/design/Pentium4/papers/24943801.pdf
[9] http://www.seagate.com/cda/products/discsales/personal/family/0,1085,621,00.html
[10] http://www.samsung.com/Products/OpticalDiscDrive/SlimDrive/OpticalDiscDrive_SlimDrive_SN_S082D.asp?page=Specifications

[11] ftp://download.intel.com/design/Pentium4/manuals/24896606.pdf
[12] http://www.pricewatch.com/
[13] http://www.intel.com/Assets/en_US/PDF/manual/248966.pdf

http://www.caps.ou.edu/present/Jack%20Hayes%20FINAL.ppt
http://hneeman.oscer.ou.edu/hamr.html
http://www.dell.com/
http://www.vw.com/newbeetle/
http://cpu.rightmark.org/
ftp://download.intel.com/design/Pentium4/papers/24943801.pdf
http://www.seagate.com/cda/products/discsales/personal/family/0,1085,621,00.html
http://www.samsung.com/Products/OpticalDiscDrive/SlimDrive/OpticalDiscDrive_SlimDrive_SN_S082D.asp?page=Specifications
ftp://download.intel.com/design/Pentium4/manuals/24896606.pdf
http://www.pricewatch.com/
http://www.intel.com/Assets/en_US/PDF/manual/248966.pdf

	Supercomputing�in Plain English�Multicore Madness
	This is an experiment!
	PLEASE MUTE YOURSELF
	PLEASE REGISTER
	Download the Slides Beforehand
	H.323 (Polycom etc) #1
	H.323 (Polycom etc) #2
	Wowza #1
	Wowza #2
	RTMP
	Toll Free Phone Bridge
	Please Mute Yourself
	Questions via E-mail Only
	Onsite: Talent Release Form
	TENTATIVE Schedule
	Thanks for helping!
	This is an experiment!
	Coming in 2015!
	Outline
	The March of Progress
	OU’s TeraFLOP Cluster, 2002
	TeraFLOP, Prototype 2006
	What does 1 TFLOPs Look Like?
	Moore’s Law
	Moore’s Law in Practice
	Moore’s Law in Practice
	Moore’s Law in Practice
	Moore’s Law in Practice
	Moore’s Law in Practice
	Fastest Supercomputer vs. Moore
	The Tyranny of�the Storage Hierarchy
	The Storage Hierarchy
	RAM is Slow
	Why Have Cache?
	Henry’s Laptop
	Storage Speed, Size, Cost
	Storage Use Strategies
	A Concrete Example
	Good Cache Reuse Example
	A Sample Application
	Matrix Multiply: Naïve Version
	Performance of Matrix Multiply
	Tiling
	Tiling
	Tiling Code: F90
	Tiling Code: C
	Multiplying Within a Tile: F90
	Multiplying Within a Tile: C
	Performance with Tiling
	The Advantages of Tiling
	Will Tiling Always Work?
	Multicore/Many-core Basics
	What is Multicore?
	Dual Core
	Quad Core
	Oct Core
	16-Core
	The Challenge of Multicore: RAM
	The Challenge of Multicore: Network
	A Concrete Example:�Weather Forecasting
	Weather Forecasting
	Weather Forecasting
	Cartesian Mesh
	Finite Difference
	Ghost Boundary Zones
	Virtual Memory
	Virtual Memory
	Virtual Memory (cont’d)
	Virtual Memory (cont’d)
	Cache vs. Virtual Memory
	Virtual Memory
	Why Virtual Memory is Slow
	The Notorious T.L.B.
	The T.L.B. on a Current Chip
	The T.L.B. on a Recent Chip
	Software Strategies�for Weather Forecasting�on Multicore/Many-core
	Tiling NOT Good for Weather Codes
	Weather Forecasting and Cache
	How to Get Good Cache Reuse?
	Cache Optimization Strategy: Tiling?
	Multiple Subdomains Per Core
	Why Multiple Subdomains?
	Why Independent Subdomains?
	Expand the Array Stencil
	An Extra Win!
	Old Algorithm (F90)
	Old Algorithm (C)
	New Algorithm (F90)
	New Algorithm (C)
	Higher Order Numerical Schemes
	Parallelize in Z
	Multicore/Many-core Problem
	What Do We Need?
	TENTATIVE Schedule
	Thanks for helping!
	Coming in 2015!
	OK Supercomputing Symposium 2015
	Thanks for your attention!���Questions?�www.oscer.ou.edu
	References

