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This is an experiment!

It’s the nature of these kinds of videoconferences that 

FAILURES ARE GUARANTEED TO HAPPEN!       

NO PROMISES!

So, please bear with us. Hopefully everything will work out 

well enough.

If you lose your connection, you can retry the same kind of 

connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone 

bridge to fall back on.
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Access Grid

If you aren’t sure whether you have AG, you probably don’t.

Tue Apr 12 Platinum

Tue Apr 19 Mosaic

Tue Apr 26 Monte Carlo

Tue May 3 Helium

Many thanks to 

Patrick Calhoun 

of OU for setting 

these up  for us.
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H.323 (Polycom etc)

From an H.323 device (e.g., Polycom, Tandberg, Lifesize, etc):

 If you ARE already registered with the OneNet gatekeeper:

Dial
2500409

 If you AREN'T registered with the OneNet gatekeeper (probably the case):

1. Dial:
164.58.250.47

2. Bring up the virtual keypad.

On some H.323 devices, you can bring up the virtual keypad by typing:
#

3. When asked for the conference ID, enter:
0409

4. On some H.323 devices, you indicate the end of conference ID with:
#

Many thanks to Roger Holder and OneNet for providing this.

http://www.polycom.com/
http://www.tandberg.com/
http://www.lifesize.com/
http://www.onenet.net/
http://www.onenet.net/


H.323 from Internet Explorer

From a Windows PC running Internet Explorer:

1. You MUST have the ability to install software on the PC (or have someone install it for you).

2. Download and install the latest Java Runtime Environment (JRE) from here: 
http://www.oracle.com/technetwork/java/javase/downloads/

(Click on the Java Download icon, because that install package includes both the JRE and other 

components.)

3. Download and install this video decoder: 
http://164.58.250.47/codian_video_decoder.msi

4. Start Internet Explorer.

5. Copy-and-paste this URL into your IE window:
http://164.58.250.47/

6. When that webpage loads, in the upper left, click on “Streaming.”

7. In the textbox labeled Sign-in Name, type your name.

8. In the textbox labeled Conference ID, type this:
0409

9. Click on “Stream this conference.”

10. When that webpage loads, you may see, at the very top, a bar offering you options.

If so, click on it and choose “Install this add-on.”
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http://www.oracle.com/technetwork/java/javase/downloads/
http://164.58.250.47/codian_video_decoder.msi
http://164.58.250.47/


H.323 from XMeeting (MacOS)

From a Mac running MacOS X:

1. Download XMeeting from
http://xmeeting.sourceforge.net/

2. Install XMeeting as follows:

a. Open the .dmg file.

b. Drag XMeeting into the Applications folder.

3. Open XMeeting from Applications.

4. Skip the setup wizard.

5. In the call box, type

164.58.250.47

6. Click the Call button.

7. From the Remote Control window, when prompted to join the conference, 

enter :
0409#
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http://xmeeting.sourceforge.net/
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EVO

There’s a quick tutorial on the OSCER education webpage.
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QuickTime Broadcaster

If you cannot connect via the Access Grid, H.323 or iLinc, 
then you can connect via QuickTime:

rtsp://129.15.254.141/test_hpc09.sdp

We recommend using QuickTime Player for this, because 
we’ve tested it successfully.

We recommend upgrading to the latest version at:

http://www.apple.com/quicktime/

When you run QuickTime Player, traverse the menus

File -> Open URL

Then paste in the rstp URL into the textbox, and click OK.

Many thanks to Kevin Blake of OU for setting up QuickTime 
Broadcaster for us.

http://www.apple.com/quicktime/


WebEx

We have only a limited number of WebEx connections, so 

please avoid WebEx unless you have NO OTHER WAY 

TO CONNECT.

Instructions are available on the OSCER education webpage.

Thanks to Tim Miller of Wake Forest U.
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Phone Bridge

If all else fails, you can call into our toll free phone bridge:

US: 1-800-832-0736, *6232874#

International: 303-330-0440, *6232874#

Please mute yourself and use the phone to listen.

Don’t worry, we’ll call out slide numbers as we go.

Please use the phone bridge ONLY if you cannot connect any 

other way: the phone bridge is charged per connection per 

minute, so our preference is to minimize the number of 

connections.

Many thanks to Amy Apon and U Arkansas for providing the 

previous toll free phone bridge.
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Please Mute Yourself

No matter how you connect, please mute yourself, so that we 

cannot hear you.

At OU, we will turn off the sound on all conferencing 

technologies.

That way, we won’t have problems with echo cancellation.

Of course, that means we cannot hear questions.

So for questions, you’ll need to send some kind of text.
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Questions via Text: iLinc or E-mail

Ask questions via e-mail to sipe2011@yahoo.com.

All questions will be read out loud and then answered out loud.

mailto:sipe2011@yahoo.com
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Thanks for helping!

 OSCER operations staff: Brandon George, Dave Akin, Brett 
Zimmerman, Josh Alexander

 Horst Severini, OSCER Associate Director for Remote & 
Heterogeneous Computing

 OU Research Campus staff (Patrick Calhoun, Mark McAvoy)

 Kevin Blake, OU IT (videographer)

 John Chapman, Jeff Pummill and Amy Apon, U Arkansas

 James Deaton and Roger Holder, OneNet

 Tim Miller, Wake Forest U

 Jamie Hegarty Schwettmann, i11 Industries
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This is an experiment!

It’s the nature of these kinds of videoconferences that 

FAILURES ARE GUARANTEED TO HAPPEN!       

NO PROMISES!

So, please bear with us. Hopefully everything will work out 

well enough.

If you lose your connection, you can retry the same kind of 

connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone 

bridge to fall back on.
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Supercomputing Exercises

Want to do the “Supercomputing in Plain English” exercises?

 The first exercise is already posted at:

http://www.oscer.ou.edu/education.php

 If you don’t yet have a supercomputer account, you can get 
a temporary account, just for the “Supercomputing in Plain 
English” exercises, by sending e-mail to:

hneeman@ou.edu

Please note that this account is for doing the exercises only, 
and will be shut down at the end of the series.

 This week’s N-Body exercise will give you experience 
parallelizing using hybrid MPI+OpenMP.

http://www.oscer.ou.edu/education.php
mailto:hneeman@ou.edu


Undergraduate Petascale Internships 
• NSF support for undergraduate internships involving high-performance 

computing in science and engineering.

• Provides a stipend ($5k over the year), a two-week intensive high-performance 
computing workshop at the National Center for Supercomputing Applications, 

and travel to the SC11 supercomputing conference in November.

• This support is intended to allow you to work with a faculty mentor on your 
campus. Have your faculty mentor fill out an intern position description at the 

link below. There are also some open positions listed on our site.

• Student applications and position descriptions from faculty are due by March 
31, 2011. Selections and notifications will be made by April 15.

http://shodor.org/petascale/participation/internships/

http://shodor.org/petascale/participation/internships/


Summer Workshops 2011

 In Summer 2011, there will be several workshops on HPC 

and Computational and Data Enabled Science and 

Engineering (CDESE) across the US.

 These will be weeklong intensives, running from Sunday 

evening through Saturday morning.

 We’re currently working on where and when those 

workshops will be held.

 Once we’ve got that worked out, we’ll announce them and 

open up the registration website.

 One of them will be held at OU.
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OK Supercomputing Symposium 2011

2006 Keynote:

Dan Atkins

Head of NSF’s

Office of

Cyberinfrastructure

2004 Keynote:
Sangtae Kim

NSF Shared 
Cyberinfrastructure
Division Director

2003 Keynote:
Peter Freeman

NSF
Computer & Information
Science & Engineering

Assistant Director

2005 Keynote:
Walt Brooks

NASA Advanced
Supercomputing
Division Director

2007 Keynote:
Jay Boisseau

Director
Texas Advanced

Computing Center
U. Texas Austin

2008 Keynote: 
José Munoz 

Deputy Office 
Director/ Senior 

Scientific Advisor 
NSF Office of 

Cyberinfrastructure

2009 Keynote: 
Douglass Post  
Chief Scientist         

US Dept of Defense       
HPC Modernization 

Program

FREE! Wed Oct 12 2011 @ OU
Over 235 registratons already!

Over 150 in the first day, over 200 in the first week, over 
225 in the first month.

http://symposium2011.oscer.ou.edu/

Parallel Programming Workshop              

FREE! Tue Oct 11 2011 @ OU
FREE! Symposium Wed Oct 12 2011 @ OU2010 Keynote: 

Horst Simon  
Deputy Director         

Lawrence Berkeley 
National Laboratory

?
2011 Keynote 

to be 

announced

http://symposium2011.oscer.ou.edu/


SC11 Education Program

 At the SC11 supercomputing conference, we’ll hold our 

annual Education Program, Sat Nov 12 – Tue Nov 15.

 You can apply to attend, either fully funded by SC11 or 

self-funded.

 Henry is the SC11 Education Chair.

 We’ll alert everyone once the registration website opens.
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Outline

 The March of Progress

 Multicore/Many-core Basics

 Software Strategies for Multicore/Many-core

 A Concrete Example: Weather Forecasting



The March of Progress
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10 racks @ 1000 lbs per rack

270 Pentium4 Xeon CPUs,                

2.0 GHz, 512 KB L2 cache

270 GB RAM, 400 MHz FSB

8 TB disk

Myrinet2000 Interconnect

100 Mbps Ethernet Interconnect

OS: Red Hat Linux
Peak speed: 1.08 TFLOPs
(1.08 trillion calculations per second)

One of the first Pentium4 clusters!

OU’s TeraFLOP Cluster, 2002

boomer.oscer.ou.edu
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TeraFLOP, Prototype 2006

http://news.com.com/2300-1006_3-6119652.html

4 years from room to chip!

http://news.com.com/2300-1006_3-6119652.html
http://news.com.com/2300-1006_3-6119652.html
http://news.com.com/2300-1006_3-6119652.html
http://news.com.com/2300-1006_3-6119652.html
http://news.com.com/2300-1006_3-6119652.html
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Moore’s Law

In 1965, Gordon Moore was an engineer at Fairchild 

Semiconductor.

He noticed that the number of transistors that could be 

squeezed onto a chip was doubling about every 18 months.

It turns out that computer speed is roughly proportional to the 

number of transistors per unit area.

Moore wrote a paper about this concept, which became known 

as “Moore’s Law.”
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Moore’s Law in Practice
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Fastest Supercomputer vs. Moore
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The Tyranny of

the Storage Hierarchy
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The Storage Hierarchy

 Registers
 Cache memory
 Main memory (RAM)
 Hard disk
 Removable media (CD, DVD etc)
 Internet

Fast, expensive, few

Slow, cheap, a lot

[5]
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RAM is Slow

CPU 307 GB/sec[6]

4.4 GB/sec[7] (1.4%)

Bottleneck

The speed of data transfer

between Main Memory and the

CPU is much slower than the

speed of calculating, so the CPU

spends most of its time waiting

for data to come in or go out.
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Why Have Cache?

CPU
Cache is much closer to the speed

of the CPU, so the CPU doesn’t

have to wait nearly as long for

stuff that’s already in cache:

it can do more

operations per second! 4.4 GB/sec[7] (1%)

27 GB/sec (9%)[7]
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A Laptop

 Intel Core2 Duo SU9600                  

1.6 GHz w/3 MB L2 Cache

 4 GB 1066 MHz DDR3 SDRAM

 256 GB SSD Hard Drive

 DVD+RW/CD-RW Drive (8x)

 1 Gbps Ethernet Adapter

Dell Latitude Z600[4]
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Storage Speed, Size, Cost

Laptop

Registers

(Intel  

Core2 Duo

1.6 GHz)

Cache

Memory

(L2)

Main

Memory

(1066MHz 

DDR3 

SDRAM)

Hard 

Drive

(SSD)

Ethernet

(1000 

Mbps)

DVD+R

(16x)

Phone 

Modem

(56 Kbps)

Speed

(MB/sec)

[peak]

314,573[6]

(12,800 

MFLOP/s*)

27,276 [7] 4500 [7] 250      
[9]

125 22             
[10]

0.007

Size

(MB)

464 bytes**
[11]

3 4096 256,000 unlimited unlimited unlimited

Cost

($/MB) –

$285 [13] $0.03     
[12]

$0.002
[12]

charged

per month

(typically)

$0.00005 
[12]

charged 

per month 

(typically)

*   MFLOP/s: millions of floating point operations per second

** 16 64-bit general purpose registers, 8 80-bit floating point registers,

16 128-bit floating point vector registers
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Storage Use Strategies

 Register reuse: Do a lot of work on the same data before 
working on new data.

 Cache reuse: The program is much more efficient if all of 
the data and instructions fit in cache; if not, try to use 
what’s in cache a lot before using anything that isn’t in 
cache.

 Data locality: Try to access data that are near each other 
in memory before data that are far.

 I/O efficiency: Do a bunch of I/O all at once rather than a 
little bit at a time; don’t mix calculations and I/O.
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A Concrete Example

 Consider a cluster with Harpertown CPUs: 
quad core, 2.0 GHz, 1333 MHz Front Side Bus.

 The theoretical peak CPU speed is 32 GFLOPs (double 

precision) per CPU chip, and in practice the benchmark per 

core as 87% of that (93% for a single core). For a dual chip 

node, the peak is 64 GFLOPs.
 Each double precision calculation is 2 8-byte operands and one 

8-byte result, so 24 bytes get moved between RAM and CPU.
 So, in theory each node could transfer up to 1536 GB/sec.
 The theoretical peak RAM bandwidth is 21 GB/sec (but in 

practice benchmarks have shown 3.4 GB/sec).

 So, even at theoretical peak, any code that does less than 73 
calculations per byte transferred between RAM and cache has 
speed limited by RAM bandwidth.



Good Cache Reuse 

Example
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A Sample Application

Matrix-Matrix Multiply

Let A, B and C be matrices of sizes
nr  nc, nr  nk and nk  nc, respectively:
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The definition of A = B • C  is

for r  {1, nr}, c  {1, nc}.
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Matrix Multiply: Naïve Version

SUBROUTINE matrix_matrix_mult_naive (dst, src1, src2, &

&                                   nr, nc, nq)

IMPLICIT NONE

INTEGER,INTENT(IN) :: nr, nc, nq

REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst

REAL,DIMENSION(nr,nq),INTENT(IN)  :: src1

REAL,DIMENSION(nq,nc),INTENT(IN)  :: src2

INTEGER :: r, c, q

DO c = 1, nc

DO r = 1, nr

dst(r,c) = 0.0

DO q = 1, nq

dst(r,c) = dst(r,c) + src1(r,q) * src2(q,c)

END DO

END DO

END DO

END SUBROUTINE matrix_matrix_mult_naive
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Performance of Matrix Multiply

Matrix-Matrix Multiply
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Tiling
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Tiling

 Tile: A small rectangular subdomain of a problem domain.  

Sometimes called a block or a chunk.

 Tiling: Breaking the domain into tiles.

 Tiling strategy: Operate on each tile to completion, then 

move to the next tile.

 Tile size can be set at runtime, according to what’s best for 

the machine that you’re running on.
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Tiling Code

SUBROUTINE matrix_matrix_mult_by_tiling (dst, src1, src2, nr, nc, nq, &

&           rtilesize, ctilesize, qtilesize)

IMPLICIT NONE

INTEGER,INTENT(IN) :: nr, nc, nq

REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst

REAL,DIMENSION(nr,nq),INTENT(IN)  :: src1

REAL,DIMENSION(nq,nc),INTENT(IN)  :: src2

INTEGER,INTENT(IN) :: rtilesize, ctilesize, qtilesize

INTEGER :: rstart, rend, cstart, cend, qstart, qend

DO cstart = 1, nc, ctilesize

cend = cstart + ctilesize - 1

IF (cend > nc) cend = nc

DO rstart = 1, nr, rtilesize

rend = rstart + rtilesize - 1

IF (rend > nr) rend = nr

DO qstart = 1, nq, qtilesize

qend = qstart + qtilesize - 1

IF (qend > nq) qend = nq

CALL matrix_matrix_mult_tile(dst, src1, src2, nr, nc, nq, &

&                                   rstart, rend, cstart, cend, qstart, qend)

END DO

END DO

END DO

END SUBROUTINE matrix_matrix_mult_by_tiling
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Multiplying Within a Tile

SUBROUTINE matrix_matrix_mult_tile (dst, src1, src2, nr, nc, nq, &

&             rstart, rend, cstart, cend, qstart, qend)

IMPLICIT NONE

INTEGER,INTENT(IN) :: nr, nc, nq

REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst

REAL,DIMENSION(nr,nq),INTENT(IN)  :: src1

REAL,DIMENSION(nq,nc),INTENT(IN)  :: src2

INTEGER,INTENT(IN) :: rstart, rend, cstart, cend, qstart, qend

INTEGER :: r, c, q

DO c = cstart, cend

DO r = rstart, rend

IF (qstart == 1) dst(r,c) = 0.0

DO q = qstart, qend

dst(r,c) = dst(r,c) + src1(r,q) * src2(q,c)

END DO

END DO

END DO

END SUBROUTINE matrix_matrix_mult_tile
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Reminder: Naïve Version, Again

SUBROUTINE matrix_matrix_mult_naive (dst, src1, src2, &

&                                   nr, nc, nq)

IMPLICIT NONE

INTEGER,INTENT(IN) :: nr, nc, nq

REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst

REAL,DIMENSION(nr,nq),INTENT(IN)  :: src1

REAL,DIMENSION(nq,nc),INTENT(IN)  :: src2

INTEGER :: r, c, q

DO c = 1, nc

DO r = 1, nr

dst(r,c) = 0.0

DO q = 1, nq

dst(r,c) = dst(r,c) + src1(r,q) * src2(q,c)

END DO

END DO

END DO

END SUBROUTINE matrix_matrix_mult_naive
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Performance with Tiling

Matrix-Matrix Mutiply Via Tiling (log-log)
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The Advantages of Tiling

 It allows your code to exploit data locality better, to get 

much more cache reuse: your code runs faster!

 It’s a relatively modest amount of extra coding (typically a 

few wrapper functions and some changes to loop bounds).

 If you don’t need tiling – because of the hardware, the 

compiler or the problem size – then you can  turn it off by 

simply setting the tile size equal to the problem size.
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Why Does Tiling Work Here?

Cache optimization works best when the number of 

calculations per byte is large.

For example, with matrix-matrix multiply on an n × n matrix, 

there are O(n3) calculations (on the order of n3), but only 

O(n2) bytes of data.

So, for large n, there are a huge number of calculations per 

byte transferred between RAM and cache.
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Will Tiling Always Work?

Tiling WON’T always work. Why?

Well, tiling works well when:

 the order in which calculations occur doesn’t matter much, 

AND

 there are lots and lots of calculations to do for each memory 

movement.

If either condition is absent, then tiling won’t help.



Multicore/Many-core 

Basics
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What is Multicore?

 In the olden days (that is, the first half of 2005), each CPU 

chip had one “brain” in it.

 Starting the second half of 2005, each CPU chip can have 

up to 2 cores (brains); starting in late 2006, 4 cores; starting 

in late 2008, 6 cores; in early 2010, 8 cores; in mid 2010, 12 

cores.

 Jargon: Each CPU chip plugs into a socket, so these days, 

to avoid confusion, people refer to sockets and cores, rather 

than CPUs or processors.

 Each core is just like a full blown CPU, except that it shares 

its socket (and maybe some of its cache) with one or more 

other cores – and therefore shares its bandwidth to RAM 

with them.
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Dual Core

Core Core
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Quad Core
Core   Core

Core   Core
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Oct Core
Core   Core   Core   Core

Core   Core   Core   Core



Supercomputing in Plain English: Multicore

Tue Apr 12 2011 57

The Challenge of Multicore: RAM

 Each socket has access to a certain amount of RAM, at a       

fixed RAM bandwidth per SOCKET – or even per node.

 As the number of cores per socket increases, the          

contention for RAM bandwidth increases too.

 At 2 or even 4 cores in a socket, this problem isn’t too bad. But 

at 16 or 32 or 80 cores, it’s a huge problem.

 So, applications that are cache optimized will get big speedups.

 But, applications whose performance is limited by RAM 

bandwidth are going to speed up only as fast as RAM 

bandwidth speeds up.

 RAM bandwidth speeds up much slower than CPU speeds up.
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The Challenge of Multicore: Network

 Each node has access to a certain number of network ports, 

at a fixed number of network ports per NODE.

 As the number of cores per node increases, the contention 

for network ports increases too.

 At 2 or 4 cores in a socket, this problem isn’t too bad. But at 

16 or 32 or 80 cores, it’s a huge problem.

 So, applications that do minimal communication will get 

big speedups.

 But, applications whose performance is limited by the 

number of MPI messages are going to speed up very very

little – and may even crash the node.



A Concrete Example:

Weather Forecasting
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Weather Forecasting

http://www.caps.ou.edu/wx/p/r/conus/fcst/

http://www.caps.ou.edu/wx/p/r/conus/fcst/
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Weather Forecasting

 Weather forecasting is a transport problem.

 The goal is to predict future weather conditions by 

simulating the movement of fluids in Earth’s atmosphere.

 The physics is the Navier-Stokes Equations.

 The numerical method is Finite Difference.
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Cartesian Mesh
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Finite Difference

unew(i,j,k) = F(uold, i, j, k, Δt) =

F(uold(i,j,k),

uold(i-1,j,k), uold(i+1,j,k),

uold(i,j-1,k), uold(i,j+1,k),

uold(i,j,k-1), uold(i,j,k+1), Δt)
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Ghost Boundary Zones



Virtual Memory
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Virtual Memory

 Typically, the amount of main memory (RAM) that a CPU 

can address is larger than the amount of data physically 

present in the computer.

 For example, consider a laptop that can address 16 GB of 

main memory (roughly 16 billion bytes), but only contains        

2 GB (roughly 2 billion bytes).
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Virtual Memory (cont’d)

 Locality:  Most programs don’t jump all over the memory 

that they use; instead, they work in a particular area of 

memory for a while, then move to another area.

 So, you can offload onto hard disk much of the memory 

image of a program that’s running.
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Virtual Memory (cont’d)

 Memory is chopped up into many pages of modest size (e.g., 

1 KB – 32 KB; typically 4 KB).

 Only pages that have been recently used actually reside in 

memory; the rest are stored on hard disk.

 Hard disk is typically 0.1% as fast as main memory, so you 

get better performance if you rarely get a page fault, which 

forces a read from (and maybe a write to) hard disk: 

exploit data locality!
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Cache vs. Virtual Memory

 Lines (cache) vs. pages (VM)

 Cache faster than RAM (cache) vs. RAM faster than disk 

(VM)
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Virtual Memory

 Every CPU family today uses virtual memory, in which disk 
pretends to be a bigger RAM.

 Virtual memory capability can’t be turned off.
 RAM is split up into pages, typically 4 KB each.

 Each page is either in RAM or out on disk.

 To keep track of the pages, a page table notes whether each 
table is in RAM, where it is in RAM (that is, physical address 
and virtual address are different), and some other 
information.

 So, a 4 GB physical RAM would need over a million page 
table entries.
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Why Virtual Memory is Slow

 When you want to access a byte of memory, you have to 
find out whether it’s in physical memory (RAM) or virtual 
disk (disk) – and the page table is in RAM!

 A page table of a million entries can’t fit in a 2 MB cache.

 So, each memory access (load or store) is actually 2 
memory accesses: the first for the page table entry, and the 
second for the data itself.

 This is slow!

 And notice, this is assuming that you don’t need more 
memory than your physical RAM.
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The Notorious T.L.B.

 To speed up memory accesses, CPUs today have a special 

cache just for page table entries, known as the Translation 

Lookaside Buffer (TLB).

 The size of TLBs varies from 64 entries to 1024 entries, 

depending on chip families.

 At 4 KB pages, this means that the size of cache covered by 

the TLB varies from 256 KB to 4 MB.
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The T.L.B. on a Recent Chip

On Intel Core Duo (“Yonah”):
 Cache size is 2 MB per core.
 Page size is 4 KB.
 A core’s data TLB size is 128 page table entries.

 Therefore, D-TLB only covers 512 KB of cache.
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The T.L.B. on a Recent Chip

On Intel Core Duo (“Yonah”):
 Cache size is 2 MB per core.
 Page size is 4 KB.
 A core’s data TLB size is 128 page table entries.

 Therefore, D-TLB only covers 512 KB of cache.

 Mesh: At 100 vertical levels of 150 single precision 
variables, 512 KB is a 3 x 3 vertical domain – nothing but 
ghost zones!

 The cost of a TLB miss is 49 cycles, equivalent to as many 
as 196 calculations! (4 FLOPs per cycle)

http://www.digit-life.com/articles2/cpu/rmma-via-c7.html

http://www.digit-life.com/articles2/cpu/rmma-via-c7.html
http://www.digit-life.com/articles2/cpu/rmma-via-c7.html
http://www.digit-life.com/articles2/cpu/rmma-via-c7.html
http://www.digit-life.com/articles2/cpu/rmma-via-c7.html
http://www.digit-life.com/articles2/cpu/rmma-via-c7.html
http://www.digit-life.com/articles2/cpu/rmma-via-c7.html
http://www.digit-life.com/articles2/cpu/rmma-via-c7.html


Software Strategies

for Weather Forecasting

on Multicore/Many-core
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Tiling NOT Good for Weather Codes

 Weather codes typically have on the order of 150 3D arrays 
used in each timestep (some transferred multiple times in the 
same timestep, but let’s ignore that for simplicity).

 These arrays typically are single precision (4 bytes per 
floating point value).

 So, a typical weather code uses about 600 bytes per mesh 
zone per timestep.

 Weather codes typically do 5,000 to 10,000 calculations per 
mesh zone per timestep.

 So, the ratio of calculations to data is less than 20 to 1 –
much less than the 73 to 1 needed (on  mid-2008 hardware).
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Weather Forecasting and Cache

 On current weather codes, data decomposition is per 
process. That is, each process gets one subdomain.

 As CPUs speed up and RAM sizes grow, the size of each 
processor’s subdomain grows too.

 However, given RAM bandwidth limitations, this means 
that performance can only grow with RAM speed – which 
increases slower than CPU speed.

 If the codes were optimized for cache, would they speed up 
more?

 First: How to optimize for cache?
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How to Get Good Cache Reuse?

 Multiple independent subdomains per processor.

 Each subdomain fits entirely in L2 cache.

 Each subdomain’s page table entries fit entirely in the 

TLB.

 Expanded ghost zone stencil allows multiple timesteps

before communicating with neighboring subdomains.

 Parallelize along the Z-axis as well as X and Y.

 Use higher order numerical schemes.

 Reduce the memory footprint as much as possible.

Coincidentally, this also reduces communication cost.
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Cache Optimization Strategy: Tiling?

Would tiling work as a cache optimization strategy for weather 

forecasting codes?
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Multiple Subdomains Per Core

Core 0

Core 1

Core 2

Core 3
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Why Multiple Subdomains?

 If each subdomain fits in cache, then the CPU can bring all 

the data of a subdomain into cache, chew on it for a while, 

then move on to the next subdomain: lots of cache reuse!

 Oh, wait, what about the TLB? Better make the subdomains 

smaller! (So more of them.)

 But, doesn’t tiling have the same effect?
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Why Independent Subdomains?

 Originally, the point of this strategy was to hide the cost of 
communication.

 When you finish chewing up a subdomain, send its data to 
its neighbors non-blocking (MPI_Isend).

 While the subdomain’s data is flying through the 
interconnect, work on other subdomains, which hides the 
communication cost.

 When it’s time to work on this subdomain again, collect its 
data (MPI_Waitall).

 If you’ve done enough work, then the communication cost 
is zero.
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Expand the Array Stencil

 If you expand the array stencil of each subdomain beyond 
the numerical stencil, then you don’t have to communicate 
as often.

 When you communicate, instead of sending a slice along 
each face, send a slab, with extra stencil levels.

 In the first timestep after communicating, do extra 
calculations out to just inside the numerical stencil.

 In subsequent timesteps, calculate fewer and fewer stencil 
levels, until it’s time to communicate again – less total 
communication, and more calculations to hide the 
communication cost underneath!
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An Extra Win!

 If you do all this, there’s an amazing side effect: you get 

better cache reuse, because you stick with the same 

subdomain for a longer period of time.

 So, instead of doing, say, 5000 calculations per zone per 

timestep, you can do 15000 or 20000.

 So, you can better amortize the cost of transferring the data 

between RAM and cache.
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New Algorithm (F90)

DO timestep = 1, number_of_timesteps, extra_stencil_levels

DO subdomain = 1, number_of_local_subdomains

CALL receive_messages_nonblocking(subdomain,

timestep)

DO extra_stencil_level=0, extra_stencil_levels - 1

CALL calculate_entire_timestep(subdomain,

timestep + extra_stencil_level)

END DO

CALL send_messages_nonblocking(subdomain,

timestep + extra_stencil_levels)

END DO

END DO
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New Algorithm (C)

for (timestep = 0;

timestep < number_of_timesteps;

timestep += extra_stencil_levels) {

for (subdomain = 0;

subdomain < number_of_local_subdomains;

subdomain++) {

receive_messages_nonblocking(subdomain, timestep);

for (extra_stencil_level = 0;

extra_stencil_level < extra_stencil_levels;

extra_stencil_level++) {

calculate_entire_timestep(subdomain,

timestep + extra_stencil_level);

} /* for extra_stencil_level */

send_messages_nonblocking(subdomain,

timestep + extra_stencil_levels);

} /* for subdomain */

} /* for timestep */
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Higher Order Numerical Schemes

 Higher order numerical schemes are great, because they 

require more calculations per mesh zone per timestep, which 

you need to amortize the cost of transferring data between 

RAM and cache. Might as well!

 Plus, they allow you to use a larger time interval per 

timestep (dt), so you can do fewer total timesteps for the 

same accuracy – or you can get higher accuracy for the 

same number of timesteps.
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Parallelize in Z

 Most weather forecast codes parallelize in X and Y, but not 

in Z, because gravity makes the calculations along Z more 

complicated than X and Y.

 But, that means that each subdomain has a high number of 

zones in Z, compared to X and Y.

 For example, a 1 km CONUS run will probably have 100 

zones in Z (25 km at 0.25 km resolution).
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Multicore/Many-core Problem

 Most multicore chip families have relatively small cache per 

core (for example, 1 - 4 MB per core at the highest/slowest 

cache level) – and this problem seems likely to remain.

 Small TLBs make the problem worse: 512 KB per core 

rather than 1 - 4 MB.

 So, to get good cache reuse, you need subdomains of no 

more than 512 KB.

 If you have 150 3D variables at single precision, and 100 

zones in Z, then your horizontal size will be 3 x 3 zones –

just enough for your stencil!
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What Do We Need?

 We need much bigger caches!

 16 MB cache  16 x 16 horizontal including stencil

 32 MB cache  23 x 23 horizontal including stencil

 TLB must be big enough to cover the entire cache.

 It’d be nice to have RAM speed increase as fast as core 

counts increase, but let’s not kid ourselves.

Keep this in mind when we get to GPGPU!



Undergraduate Petascale Internships 
• NSF support for undergraduate internships involving high-performance 

computing in science and engineering.

• Provides a stipend ($5k over the year), a two-week intensive high-performance 
computing workshop at the National Center for Supercomputing Applications, 

and travel to the SC11 supercomputing conference in November.

• This support is intended to allow you to work with a faculty mentor on your 
campus. Have your faculty mentor fill out an intern position description at the 

link below. There are also some open positions listed on our site.

• Student applications and position descriptions from faculty are due by March 
31, 2011. Selections and notifications will be made by April 15.

http://shodor.org/petascale/participation/internships/

http://shodor.org/petascale/participation/internships/


Summer Workshops 2011

 In Summer 2011, there will be several workshops on HPC 

and Computational and Data Enabled Science and 

Engineering (CDESE) across the US.

 These will be weeklong intensives, running from Sunday 

evening through Saturday morning.

 We’re currently working on where and when those 

workshops will be held.

 Once we’ve got that worked out, we’ll announce them and 

open up the registration website.

 One of them will be held at OU.
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OK Supercomputing Symposium 2011

2006 Keynote:

Dan Atkins

Head of NSF’s

Office of

Cyberinfrastructure

2004 Keynote:
Sangtae Kim

NSF Shared 
Cyberinfrastructure
Division Director

2003 Keynote:
Peter Freeman

NSF
Computer & Information
Science & Engineering

Assistant Director

2005 Keynote:
Walt Brooks

NASA Advanced
Supercomputing
Division Director

2007 Keynote:
Jay Boisseau

Director
Texas Advanced

Computing Center
U. Texas Austin

2008 Keynote: 
José Munoz 

Deputy Office 
Director/ Senior 

Scientific Advisor 
NSF Office of 

Cyberinfrastructure

2009 Keynote: 
Douglass Post  
Chief Scientist         

US Dept of Defense       
HPC Modernization 

Program

FREE! Wed Oct 12 2011 @ OU
Over 235 registratons already!

Over 150 in the first day, over 200 in the first week, over 
225 in the first month.

http://symposium2011.oscer.ou.edu/

Parallel Programming Workshop              

FREE! Tue Oct 11 2011 @ OU
FREE! Symposium Wed Oct 12 2011 @ OU2010 Keynote: 

Horst Simon  
Deputy Director         

Lawrence Berkeley 
National Laboratory

?
2011 Keynote 

to be 

announced

http://symposium2011.oscer.ou.edu/


SC11 Education Program

 At the SC11 supercomputing conference, we’ll hold our 

annual Education Program, Sat Nov 12 – Tue Nov 15.

 You can apply to attend, either fully funded by SC11 or 

self-funded.

 Henry is the SC11 Education Chair.

 We’ll alert everyone once the registration website opens.
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Thanks for your 
attention!

Questions?
www.oscer.ou.edu

http://www.oscer.ou.edu/
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