
SupercomputingSupercomputing
in Plain Englishin Plain English
Part VIII: Multicore MadnessPart VIII: Multicore Madness

Henry Neeman, Director
OU Supercomputing Center for Education & Research

University of Oklahoma Information Technology
Tuesday April 14 2009

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 2

This is an experiment!
It’s the nature of these kinds of videoconferences that

FAILURES ARE GUARANTEED TO HAPPEN!
NO PROMISES!

So, please bear with us. Hopefully everything will work out
well enough.

If you lose your connection, you can retry the same kind of
connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone
bridge to fall back on.

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 3

Access Grid
This week’s Access Grid (AG) venue: Cactus.

If you aren’t sure whether you have AG, you probably don’t.
Tue Apr 14 Cactus

Tue Apr 21 Verlet

Tue Apr 28 Cactus

Tue May 5 Titan

Many thanks to
John Chapman of
U Arkansas for
setting these up

for us.

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 4

H.323 (Polycom etc)
If you want to use H.323 videoconferencing – for example,

Polycom – then dial
69.77.7.203##12345

any time after 2:00pm. Please connect early, at least today.
For assistance, contact Andy Fleming of KanREN/Kan-ed

(afleming@kanren.net or 785-230-2513).
KanREN/Kan-ed’s H.323 system can handle up to 40

simultaneous H.323 connections. If you cannot connect, it
may be that all 40 are already in use.

Many thanks to Andy and KanREN/Kan-ed for providing
H.323 access.

http://www.kanren.net/
mailto:afleming@kanren.net

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 5

iLinc
We have unlimited simultaneous iLinc connections available.
If you’re already on the SiPE e-mail list, then you should

receive an e-mail about iLinc before each session begins.
If you want to use iLinc, please follow the directions in the

iLinc e-mail.
For iLinc, you MUST use either Windows (XP strongly

preferred) or MacOS X with Internet Explorer.
To use iLinc, you’ll need to download a client program to your

PC. It’s free, and setup should take only a few minutes.
Many thanks to Katherine Kantardjieff of California State U

Fullerton for providing the iLinc licenses.

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 6

QuickTime Broadcaster
If you cannot connect via the Access Grid, H.323 or iLinc,

then you can connect via QuickTime:
rtsp://129.15.254.141/test_hpc09.sdp

We recommend using QuickTime Player for this, because
we’ve tested it successfully.

We recommend upgrading to the latest version at:
http://www.apple.com/quicktime/

When you run QuickTime Player, traverse the menus
File -> Open URL

Then paste in the rstp URL into the textbox, and click OK.
Many thanks to Kevin Blake of OU for setting up QuickTime

Broadcaster for us.

http://www.apple.com/quicktime/

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 7

Phone Bridge
If all else fails, you can call into our toll free phone bridge:

1-866-285-7778, access code 6483137#
Please mute yourself and use the phone to listen.
Don’t worry, we’ll call out slide numbers as we go.
Please use the phone bridge ONLY if you cannot connect any

other way: the phone bridge is charged per connection per
minute, so our preference is to minimize the number of
connections.

Many thanks to Amy Apon and U Arkansas for providing the
toll free phone bridge.

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 8

Please Mute Yourself
No matter how you connect, please mute yourself, so that we

cannot hear you.
At OU, we will turn off the sound on all conferencing

technologies.
That way, we won’t have problems with echo cancellation.
Of course, that means we cannot hear questions.
So for questions, you’ll need to send some kind of text.

Also, if you’re on iLinc: SIT ON YOUR HANDS!
Please DON’T touch ANYTHING!

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 9

Questions via Text: iLinc or E-mail
Ask questions via text, using one of the following:

iLinc’s text messaging facility;
e-mail to sipe2009@gmail.com.

All questions will be read out loud and then answered out loud.

mailto:sipe2009@gmail.com

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 10

Thanks for helping!
OSCER operations staff (Brandon George, Dave Akin, Brett
Zimmerman, Josh Alexander)
OU Research Campus staff (Patrick Calhoun, Josh Maxey,
Gabe Wingfield)
Kevin Blake, OU IT (videographer)
Katherine Kantardjieff, CSU Fullerton
John Chapman and Amy Apon, U Arkansas
Andy Fleming, KanREN/Kan-ed
This material is based upon work supported by the National
Science Foundation under Grant No. OCI-0636427, “CI-
TEAM Demonstration: Cyberinfrastructure Education for
Bioinformatics and Beyond.”

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 11

This is an experiment!
It’s the nature of these kinds of videoconferences that

FAILURES ARE GUARANTEED TO HAPPEN!
NO PROMISES!

So, please bear with us. Hopefully everything will work out
well enough.

If you lose your connection, you can retry the same kind of
connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone
bridge to fall back on.

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 12

Supercomputing Exercises
Want to do the “Supercomputing in Plain English” exercises?

The first several exercises are already posted at:
http://www.oscer.ou.edu/education.php

If you don’t yet have a supercomputer account, you can get
a temporary account, just for the “Supercomputing in Plain
English” exercises, by sending e-mail to:

hneeman@ou.edu

Please note that this account is for doing the exercises only,
and will be shut down at the end of the series.

http://www.oscer.ou.edu/education.php
mailto:hneeman@ou.edu

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 13

OK Supercomputing Symposium 2009

2006 Keynote:
Dan Atkins

Head of NSF’s
Office of
Cyber-

infrastructure

2004 Keynote:
Sangtae Kim
NSF Shared

Cyberinfrastructure
Division Director

2003 Keynote:
Peter Freeman

NSF
Computer &
Information
Science &
Engineering

Assistant Director

2005 Keynote:
Walt Brooks

NASA Advanced
Supercomputing
Division Director

2007 Keynote:
Jay Boisseau

Director
Texas Advanced

Computing Center
U. Texas Austin

FREE! Wed Oct 7 2009 @ OU
Over 235 registrations already!

Over 150 in the first day, over 200 in the first week, over
225 in the first month.

2008 Keynote:
José Munoz

Deputy Office
Director/ Senior

Scientific Advisor
Office of Cyber-

infrastructure
National Science

Foundation

2009 Keynote:
Ed Seidel
Director

NSF Office of
Cyber-

infrastructure

http://symposium2009.oscer.ou.edu/

Parallel Programming Workshop
FREE! Tue Oct 6 2009 @ OU

Sponsored by SC09 Education Program
FREE! Symposium Wed Oct 7 2009 @ OU

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 14

SC09 Summer Workshops
This coming summer, the SC09 Education Program, part of the

SC09 (Supercomputing 2009) conference, is planning to
hold two weeklong supercomputing-related workshops in
Oklahoma, for FREE (except you pay your own transport):
At OSU Sun May 17 – the May 23:
FREE Computational Chemistry for Chemistry Educators
(2010 TENTATIVE: Computational Biology)
At OU Sun Aug 9 – Sat Aug 15:
FREE Parallel Programming & Cluster Computing

We’ll alert everyone when the details have been ironed out and
the registration webpage opens.

Please note that you must apply for a seat, and acceptance
CANNOT be guaranteed.

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 15

SC09 Summer Workshops
1. May 17-23: Oklahoma State U: Computational Chemistry
2. May 25-30: Calvin Coll (MI): Intro to Computational Thinking
3. June 7-13: U Cal Merced: Computational Biology
4. June 7-13: Kean U (NJ): Parallel Progrmg & Cluster Comp
5. June 14-20: Widener U (PA): Computational Physics
6. July 5-11: Atlanta U Ctr: Intro to Computational Thinking
7. July 5-11: Louisiana State U: Parallel Progrmg & Cluster Comp
8. July 12-18: U Florida: Computational Thinking Grades 6-12
9. July 12-18: Ohio Supercomp Ctr: Computational Engineering
10. Aug 2- 8: U Arkansas: Intro to Computational Thinking
11. Aug 9-15: U Oklahoma: Parallel Progrmg & Cluster Comp

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 16

Outline
The March of Progress
Multicore/Many-core Basics
Software Strategies for Multicore/Many-core
A Concrete Example: Weather Forecasting

The March of Progress

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 18

10 racks @ 1000 lbs per rack
270 Pentium4 Xeon CPUs,

2.0 GHz, 512 KB L2 cache
270 GB RAM, 400 MHz FSB
8 TB disk
Myrinet2000 Interconnect
100 Mbps Ethernet Interconnect
OS: Red Hat Linux
Peak speed: 1.08 TFLOPs
(1.08 trillion calculations per second)

One of the first Pentium4 clusters!

OU’s TeraFLOP Cluster, 2002

boomer.oscer.ou.eduboomer.oscer.ou.edu

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 19

TeraFLOP, Prototype 2006, Sale 2011

http://news.com.com/2300-1006_3-6119652.html

9 years from room to chip!

http://news.com.com/2300-1006_3-6119652.html

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 20

Moore’s Law
In 1965, Gordon Moore was an engineer at Fairchild

Semiconductor.
He noticed that the number of transistors that could be

squeezed onto a chip was doubling about every 18 months.
It turns out that computer speed is roughly proportional to the

number of transistors per unit area.
Moore wrote a paper about this concept, which became known

as “Moore’s Law.”

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 21

Moore’s Law in Practice

Year

lo
g(

Sp
ee

d)

CPU

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 22

Moore’s Law in Practice

Year

lo
g(

Sp
ee

d)

CPU

Netw
ork

 B
an

dw
idt

h

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 23

Moore’s Law in Practice

Year

lo
g(

Sp
ee

d)

CPU

Netw
ork

 B
an

dw
idt

h

RAM

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 24

Moore’s Law in Practice

Year

lo
g(

Sp
ee

d)

CPU

Netw
ork

 B
an

dw
idt

h

RAM

1/Network Latency

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 25

Moore’s Law in Practice

Year

lo
g(

Sp
ee

d)

CPU

Netw
ork

 B
an

dw
idt

h

RAM

1/Network Latency

Software

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 26

Fastest Supercomputer vs. Moore
Fastest Supercomputer in the World

1

10

100

1000

10000

100000

1000000

10000000

1992 1997 2002 2007

Year

Sp
ee

d
in

 G
FL

O
Ps

Fastest
Moore

GFLOPs:
billions of

calculations per
second

The Tyranny of
the Storage Hierarchy

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 28

The Storage Hierarchy

Registers
Cache memory
Main memory (RAM)
Hard disk
Removable media (CD, DVD etc)
Internet

Fast, expensive, few

Slow, cheap, a lot
[5]

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 29

RAM is Slow
CPU 351 GB/sec[6]

3.4 GB/sec[7] (1%)

Bottleneck

The speed of data transfer
between Main Memory and the
CPU is much slower than the
speed of calculating, so the CPU
spends most of its time waiting
for data to come in or go out.

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 30

Why Have Cache?
CPUCache is much closer to the speed

of the CPU, so the CPU doesn’t
have to wait nearly as long for
stuff that’s already in cache:
it can do more
operations per second! 3.4 GB/sec[7] (1%)

14.2 GB/sec (4x RAM)[7]

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 31

Henry’s Laptop

Pentium 4 Core Duo T2400
1.83 GHz w/2 MB L2 Cache
(“Yonah”)
2 GB (2048 MB)
667 MHz DDR2 SDRAM
100 GB 7200 RPM SATA Hard Drive
DVD+RW/CD-RW Drive (8x)
1 Gbps Ethernet Adapter
56 Kbps Phone Modem

Dell Latitude D620[4]

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 32

Storage Speed, Size, Cost

Henry’s
Laptop

Registers
(Pentium 4
Core Duo
1.83 GHz)

Cache
Memory

(L2)

Main
Memory

(667 MHz
DDR2

SDRAM)

Hard
Drive

(SATA
7200
RPM)

Ethernet
(1000
Mbps)

DVD+RW
(8x)

Phone
Modem

(56 Kbps)

125

unlimited

charged
per month
(typically)

0.007

unlimited

charged
per month
(typically)

Speed
(MB/sec)

[peak]

359,792[6]

(14,640
MFLOP/s*)

14,500 [7] 3400 [7] 100
[9]

10.8
[10]

Size
(MB)

304 bytes**
[11]

2 2048 100,000 unlimited

Cost
($/MB) –

$5 [12] $0.03
[12]

$0.0001
[12]

$0.00003
[12]

* MFLOP/s: millions of floating point operations per second
** 8 32-bit integer registers, 8 80-bit floating point registers, 8 64-bit MMX integer registers,

8 128-bit floating point XMM registers

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 33

Storage Use Strategies
Register reuse: Do a lot of work on the same data before
working on new data.
Cache reuse: The program is much more efficient if all of
the data and instructions fit in cache; if not, try to use
what’s in cache a lot before using anything that isn’t in
cache.
Data locality: Try to access data that are near each other
in memory before data that are far.
I/O efficiency: Do a bunch of I/O all at once rather than a
little bit at a time; don’t mix calculations and I/O.

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 34

A Concrete Example
OSCER’s big cluster, Sooner, has Harpertown CPUs:
quad core, 2.0 GHz, 1333 MHz Front Side Bus.
The theoretical peak CPU speed is 32 GFLOPs (double
precision) per CPU, and in practice we’ve gotten as high as
93% of that. For a dual chip node, the peak is 64 GFLOPs.
Each double precision calculation is 2 8-byte operands and one
8-byte result, so 24 bytes get moved between RAM and CPU.
So, in theory each node could transfer up to 1536 GB/sec.
The theoretical peak RAM bandwidth is 21 GB/sec (but in
practice we get about 3.4 GB/sec).
So, even at theoretical peak, any code that does less than 73
calculations per byte transferred between RAM and cache has
speed limited by RAM bandwidth.

Good Cache Reuse
Example

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 36

A Sample Application
Matrix-Matrix Multiply
Let A, B and C be matrices of sizes
nr × nc, nr × nk and nk × nc, respectively:

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

ncnrnrnrnr

nc

nc

nc

aaaa

aaaa
aaaa
aaaa

,3,2,1,

,33,32,31,3

,23,22,21,2

,13,12,11,1

L

MOMMM

L

L

L

A

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

nknrnrnrnr

nk

nk

nk

bbbb

bbbb
bbbb
bbbb

,3,2,1,

,33,32,31,3

,23,22,21,2

,13,12,11,1

L

MOMMM

L

L

L

B

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

ncnknknknk

nc

nc

nc

cccc

cccc
cccc
cccc

,3,2,1,

,33,32,31,3

,23,22,21,2

,13,12,11,1

L

MOMMM

L

L

L

C

∑
=

⋅++⋅+⋅+⋅=⋅=
nk

k
cnknkrcrcrcrckkrcr cbcbcbcbcba

1
,,,33,,22,,11,,,, K

The definition of A = B • C is

for r ∈ {1, nr}, c ∈ {1, nc}.

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 37

Matrix Multiply: Naïve Version
SUBROUTINE matrix_matrix_mult_naive (dst, src1, src2, &
& nr, nc, nq)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN) :: src1
REAL,DIMENSION(nq,nc),INTENT(IN) :: src2

INTEGER :: r, c, q

DO c = 1, nc
DO r = 1, nr
dst(r,c) = 0.0
DO q = 1, nq
dst(r,c) = dst(r,c) + src1(r,q) * src2(q,c)

END DO
END DO

END DO
END SUBROUTINE matrix_matrix_mult_naive

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 38

Performance of Matrix Multiply
Matrix-Matrix Multiply

0

100

200

300

400

500

600

700

800

0 10000000 20000000 30000000 40000000 50000000 60000000

Total Problem Size in bytes (nr*nc+nr*nq+nq*nc)

C
PU

 se
c

Init

Better

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 39

Tiling

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 40

Tiling
Tile: A small rectangular subdomain of a problem domain.
Sometimes called a block or a chunk.
Tiling: Breaking the domain into tiles.
Tiling strategy: Operate on each tile to completion, then
move to the next tile.
Tile size can be set at runtime, according to what’s best for
the machine that you’re running on.

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 41

Tiling Code
SUBROUTINE matrix_matrix_mult_by_tiling (dst, src1, src2, nr, nc, nq, &
& rtilesize, ctilesize, qtilesize)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN) :: src1
REAL,DIMENSION(nq,nc),INTENT(IN) :: src2
INTEGER,INTENT(IN) :: rtilesize, ctilesize, qtilesize

INTEGER :: rstart, rend, cstart, cend, qstart, qend

DO cstart = 1, nc, ctilesize
cend = cstart + ctilesize - 1
IF (cend > nc) cend = nc
DO rstart = 1, nr, rtilesize

rend = rstart + rtilesize - 1
IF (rend > nr) rend = nr
DO qstart = 1, nq, qtilesize

qend = qstart + qtilesize - 1
IF (qend > nq) qend = nq
CALL matrix_matrix_mult_tile(dst, src1, src2, nr, nc, nq, &

& rstart, rend, cstart, cend, qstart, qend)
END DO

END DO
END DO

END SUBROUTINE matrix_matrix_mult_by_tiling

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 42

Multiplying Within a Tile
SUBROUTINE matrix_matrix_mult_tile (dst, src1, src2, nr, nc, nq, &
& rstart, rend, cstart, cend, qstart, qend)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN) :: src1
REAL,DIMENSION(nq,nc),INTENT(IN) :: src2
INTEGER,INTENT(IN) :: rstart, rend, cstart, cend, qstart, qend

INTEGER :: r, c, q

DO c = cstart, cend
DO r = rstart, rend
IF (qstart == 1) dst(r,c) = 0.0
DO q = qstart, qend
dst(r,c) = dst(r,c) + src1(r,q) * src2(q,c)

END DO
END DO

END DO
END SUBROUTINE matrix_matrix_mult_tile

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 43

Reminder: Naïve Version, Again
SUBROUTINE matrix_matrix_mult_naive (dst, src1, src2, &
& nr, nc, nq)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN) :: src1
REAL,DIMENSION(nq,nc),INTENT(IN) :: src2

INTEGER :: r, c, q

DO c = 1, nc
DO r = 1, nr
dst(r,c) = 0.0
DO q = 1, nq
dst(r,c) = dst(r,c) + src1(r,q) * src2(q,c)

END DO
END DO

END DO
END SUBROUTINE matrix_matrix_mult_naive

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 44

Performance with Tiling

Matrix-Matrix Mutiply Via Tiling (log-log)

0.1

1

10

100

1000

101001000100001000001000000100000001E+08

Tile Size (bytes)

C
PU

 se
c

512x256

512x512

1024x512

1024x1024

2048x1024

Matrix-Matrix Mutiply Via Tiling

0

50

100

150

200

250

10100100010000100000100000010000000100000000

Tile Size (bytes)

Better

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 45

The Advantages of Tiling
It allows your code to exploit data locality better, to get
much more cache reuse: your code runs faster!
It’s a relatively modest amount of extra coding (typically a
few wrapper functions and some changes to loop bounds).
If you don’t need tiling – because of the hardware, the
compiler or the problem size – then you can turn it off by
simply setting the tile size equal to the problem size.

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 46

Why Does Tiling Work Here?
Cache optimization works best when the number of

calculations per byte is large.
For example, with matrix-matrix multiply on an n × n matrix,

there are O(n3) calculations (on the order of n3), but only
O(n2) bytes of data.

So, for large n, there are a huge number of calculations per
byte transferred between RAM and cache.

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 47

Will Tiling Always Work?
Tiling WON’T always work. Why?
Well, tiling works well when:

the order in which calculations occur doesn’t matter much,
AND
there are lots and lots of calculations to do for each memory
movement.

If either condition is absent, then tiling won’t help.

Multicore/Many-core
Basics

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 49

What is Multicore?
In the olden days (that is, the first half of 2005), each CPU
chip had one “brain” in it.
Starting the second half of 2005, each CPU chip has 2 cores
(brains); starting in late 2006, 4 cores; starting in late 2008,
6 cores; expected in late 2009, 8 cores.
Jargon: Each CPU chip plugs into a socket, so these days,
to avoid confusion, people refer to sockets and cores, rather
than CPUs or processors.
Each core is just like a full blown CPU, except that it shares
its socket with one or more other cores – and therefore
shares its bandwidth to RAM.

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 50

Dual Core
Core Core

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 51

Quad Core
Core Core
Core Core

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 52

Oct Core
Core Core Core Core
Core Core Core Core

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 53

The Challenge of Multicore: RAM
Each socket has access to a certain amount of RAM, at a
fixed RAM bandwidth per SOCKET – or even per node.
As the number of cores per socket increases, the contention
for RAM bandwidth increases too.
At 2 or even 4 cores in a socket, this problem isn’t too bad.
But at 16 or 32 or 80 cores, it’s a huge problem.
So, applications that are cache optimized will get big
speedups.
But, applications whose performance is limited by RAM
bandwidth are going to speed up only as fast as RAM
bandwidth speeds up.
RAM bandwidth speeds up much slower than CPU speeds
up.

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 54

The Challenge of Multicore: Network
Each node has access to a certain number of network ports,
at a fixed number of network ports per NODE.
As the number of cores per node increases, the contention
for network ports increases too.
At 2 or 4 cores in a socket, this problem isn’t too bad. But at
16 or 32 or 80 cores, it’s a huge problem.
So, applications that do minimal communication will get
big speedups.
But, applications whose performance is limited by the
number of MPI messages are going to speed up very very
little – and may even crash the node.

A Concrete Example:
Weather Forecasting

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 56

Weather Forecasting

http://www.caps.ou.edu/wx/p/r/conus/fcst/

http://www.caps.ou.edu/wx/p/r/conus/fcst/

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 57

Weather Forecasting
Weather forecasting is a transport problem.
The goal is to predict future weather conditions by
simulating the movement of fluids in Earth’s atmosphere.
The physics is the Navier-Stokes Equations.
The numerical method is Finite Difference.

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 58

Cartesian Mesh

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 59

Finite Difference
unew(i,j,k) = F(uold, i, j, k, Δt) =

F(uold(i,j,k),
uold(i-1,j,k), uold(i+1,j,k),
uold(i,j-1,k), uold(i,j+1,k),
uold(i,j,k-1), uold(i,j,k+1), Δt)

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 60

Ghost Boundary Zones

Software Strategies
for Weather Forecasting
on Multicore/Many-core

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 62

Tiling NOT Good for Weather Codes
Weather codes typically have on the order of 150 3D arrays
used in each timestep (some transferred multiple times in the
same timestep, but let’s ignore that for simplicity).
These arrays typically are single precision (4 bytes per
floating point value).
So, a typical weather code uses about 600 bytes per mesh
zone per timestep.
Weather codes typically do 5,000 to 10,000 calculations per
mesh zone per timestep.
So, the ratio of calculations to data is less than 20 to 1 –
much less than the 73 to 1 needed (on mid-2008 hardware).

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 63

Weather Forecasting and Cache
On current weather codes, data decomposition is per
process. That is, each process gets one subdomain.
As CPUs speed up and RAM sizes grow, the size of each
processor’s subdomain grows too.
However, given RAM bandwidth limitations, this means
that performance can only grow with RAM speed – which
increases slower than CPU speed.
If the codes were optimized for cache, would they speed up
more?
First: How to optimize for cache?

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 64

How to Get Good Cache Reuse?
Multiple independent subdomains per processor.
Each subdomain fits entirely in L2 cache.
Each subdomain’s page table entries fit entirely in the
TLB.
Expanded ghost zone stencil allows multiple timesteps
before communicating with neighboring subdomains.
Parallelize along the Z-axis as well as X and Y.
Use higher order numerical schemes.
Reduce the memory footprint as much as possible.

Coincidentally, this also reduces communication cost.

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 65

Cache Optimization Strategy: Tiling?
Would tiling work as a cache optimization strategy for weather

forecasting codes?

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 66

Multiple Subdomains Per Core

Core 0

Core 1

Core 2

Core 3

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 67

Why Multiple Subdomains?
If each subdomain fits in cache, then the CPU can bring all
the data of a subdomain into cache, chew on it for a while,
then move on to the next subdomain: lots of cache reuse!
Oh, wait, what about the TLB? Better make the subdomains
smaller! (So more of them.)
But, doesn’t tiling have the same effect?

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 68

Why Independent Subdomains?
Originally, the point of this strategy was to hide the cost of
communication.
When you finish chewing up a subdomain, send its data to
its neighbors non-blocking (MPI_Isend).
While the subdomain’s data is flying through the
interconnect, work on other subdomains, which hides the
communication cost.
When it’s time to work on this subdomain again, collect its
data (MPI_Waitall).
If you’ve done enough work, then the communication cost
is zero.

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 69

Expand the Array Stencil
If you expand the array stencil of each subdomain beyond
the numerical stencil, then you don’t have to communicate
as often.
When you communicate, instead of sending a slice along
each face, send a slab, with extra stencil levels.
In the first timestep after communicating, do extra
calculations out to just inside the numerical stencil.
In subsequent timesteps, calculate fewer and fewer stencil
levels, until it’s time to communicate again – less total
communication, and more calculations to hide the
communication cost underneath!

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 70

An Extra Win!
If you do all this, there’s an amazing side effect: you get
better cache reuse, because you stick with the same
subdomain for a longer period of time.
So, instead of doing, say, 5000 calculations per zone per
timestep, you can do 15000 or 20000.
So, you can better amortize the cost of transferring the data
between RAM and cache.

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 71

New Algorithm
DO timestep = 1, number_of_timesteps, extra_stencil_levels

DO subdomain = 1, number_of_local_subdomains
CALL receive_messages_nonblocking(subdomain,

timestep)
DO extra_stencil_level=0, extra_stencil_levels - 1

CALL calculate_entire_timestep(subdomain,
timestep + extra_stencil_level)

END DO
CALL send_messages_nonblocking(subdomain,

timestep + extra_stencil_levels)
END DO

END DO

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 72

Higher Order Numerical Schemes
Higher order numerical schemes are great, because they
require more calculations per mesh zone per timestep, which
you need to amortize the cost of transferring data between
RAM and cache. Might as well!
Plus, they allow you to use a larger time interval per
timestep (dt), so you can do fewer total timesteps for the
same accuracy – or you can get higher accuracy for the
same number of timesteps.

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 73

Parallelize in Z
Most weather forecast codes parallelize in X and Y, but not
in Z, because gravity makes the calculations along Z more
complicated than X and Y.
But, that means that each subdomain has a high number of
zones in Z, compared to X and Y.
For example, a 1 km CONUS run will probably have 100
zones in Z (25 km at 0.25 km resolution).

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 74

Multicore/Many-core Problem
Most multicore chip families have relatively small cache per
core (for example, 2 MB) – and this problem seems likely to
remain.
Small TLBs make the problem worse: 512 KB per core
rather than 3 MB.
So, to get good cache reuse, you need subdomains of no
more than 512 KB.
If you have 150 3D variables at single precision, and 100
zones in Z, then your horizontal size will be 3 x 3 zones –
just enough for your stencil!

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 75

What Do We Need?
We need much bigger caches!

16 MB cache 16 x 16 horizontal including stencil
32 MB cache 23 x 23 horizontal including stencil

TLB must be big enough to cover the entire cache.
It’d be nice to have RAM speed increase as fast as core
counts increase, but let’s not kid ourselves.

Keep this in mind when we get to GPGPU!

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 76

OK Supercomputing Symposium 2009

2006 Keynote:
Dan Atkins

Head of NSF’s
Office of
Cyber-

infrastructure

2004 Keynote:
Sangtae Kim
NSF Shared

Cyberinfrastructure
Division Director

2003 Keynote:
Peter Freeman

NSF
Computer &
Information
Science &
Engineering

Assistant Director

2005 Keynote:
Walt Brooks

NASA Advanced
Supercomputing
Division Director

2007 Keynote:
Jay Boisseau

Director
Texas Advanced

Computing Center
U. Texas Austin

FREE! Wed Oct 7 2009 @ OU
Over 235 registrations already!

Over 150 in the first day, over 200 in the first week, over
225 in the first month.

2008 Keynote:
José Munoz

Deputy Office
Director/ Senior

Scientific Advisor
Office of Cyber-

infrastructure
National Science

Foundation

2009 Keynote:
Ed Seidel
Director

NSF Office of
Cyber-

infrastructure

http://symposium2009.oscer.ou.edu/

Parallel Programming Workshop
FREE! Tue Oct 6 2009 @ OU

Sponsored by SC09 Education Program
FREE! Symposium Wed Oct 7 2009 @ OU

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 77

SC09 Summer Workshops
This coming summer, the SC09 Education Program, part of the

SC09 (Supercomputing 2009) conference, is planning to
hold two weeklong supercomputing-related workshops in
Oklahoma, for FREE (except you pay your own transport):
At OSU Sun May 17 – the May 23:
FREE Computational Chemistry for Chemistry Educators
(2010 TENTATIVE: Computational Biology)
At OU Sun Aug 9 – Sat Aug 15:
FREE Parallel Programming & Cluster Computing

We’ll alert everyone when the details have been ironed out and
the registration webpage opens.

Please note that you must apply for a seat, and acceptance
CANNOT be guaranteed.

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 78

SC09 Summer Workshops
1. May 17-23: Oklahoma State U: Computational Chemistry
2. May 25-30: Calvin Coll (MI): Intro to Computational Thinking
3. June 7-13: U Cal Merced: Computational Biology
4. June 7-13: Kean U (NJ): Parallel, Distributed & Grid
5. June 14-20: Widener U (PA): Computational Physics
6. July 5-11: Atlanta U Ctr: Intro to Computational Thinking
7. July 5-11: Louisiana State U: Parallel, Distributed & Grid
8. July 12-18: U Florida: Computational Thinking Pre-college
9. July 12-18: Ohio Supercomp Ctr: Computational Engineering
10. Aug 2- 8: U Arkansas: Intro to Computational Thinking
11. Aug 9-15: U Oklahoma: Parallel, Distributed & Grid

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 79

To Learn More Supercomputing
http://www.oscer.ou.edu/education.php

http://www.oscer.ou.edu/education.php

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 80

Thanks for helping!
OSCER operations staff (Brandon George, Dave Akin, Brett
Zimmerman, Josh Alexander)
OU Research Campus staff (Patrick Calhoun, Josh Maxey,
Gabe Wingfield)
Kevin Blake, OU IT (videographer)
Katherine Kantardjieff, CSU Fullerton
John Chapman and Amy Apon, U Arkansas
Andy Fleming, KanREN/Kan-ed
This material is based upon work supported by the National
Science Foundation under Grant No. OCI-0636427, “CI-
TEAM Demonstration: Cyberinfrastructure Education for
Bioinformatics and Beyond.”

Thanks for your
attention!

Questions?

Supercomputing in Plain English: Multicore Madness
Tuesday April 14 2009 82

References
[1] Image by Greg Bryan, Columbia U.
[2] “Update on the Collaborative Radar Acquisition Field Test (CRAFT): Planning for the Next Steps.”

Presented to NWS Headquarters August 30 2001.
[3] See http://hneeman.oscer.ou.edu/hamr.html for details.
[4] http://www.dell.com/
[5] http://www.vw.com/newbeetle/
[6] Richard Gerber, The Software Optimization Cookbook: High-performance Recipes for the Intel
Architecture. Intel Press, 2002, pp. 161-168.
[7] RightMark Memory Analyzer. http://cpu.rightmark.org/
[8] ftp://download.intel.com/design/Pentium4/papers/24943801.pdf
[9] http://www.seagate.com/cda/products/discsales/personal/family/0,1085,621,00.html
[10] http://www.samsung.com/Products/OpticalDiscDrive/SlimDrive/OpticalDiscDrive_SlimDrive_SN_S082D.asp?page=Specifications

[11] ftp://download.intel.com/design/Pentium4/manuals/24896606.pdf
[12] http://www.pricewatch.com/

http://www.caps.ou.edu/present/Jack Hayes FINAL.ppt
http://hneeman.oscer.ou.edu/hamr.html
http://www.dell.com/
http://www.vw.com/newbeetle/
http://cpu.rightmark.org/
ftp://download.intel.com/design/Pentium4/papers/24943801.pdf
http://www.seagate.com/cda/products/discsales/personal/family/0,1085,621,00.html
http://www.samsung.com/Products/OpticalDiscDrive/SlimDrive/OpticalDiscDrive_SlimDrive_SN_S082D.asp?page=Specifications
ftp://download.intel.com/design/Pentium4/manuals/24896606.pdf
http://www.pricewatch.com/

	Supercomputing�in Plain English�Part VIII: Multicore Madness
	This is an experiment!
	Access Grid
	H.323 (Polycom etc)
	iLinc
	QuickTime Broadcaster
	Phone Bridge
	Please Mute Yourself
	Questions via Text: iLinc or E-mail
	Thanks for helping!
	This is an experiment!
	Supercomputing Exercises
	OK Supercomputing Symposium 2009
	SC09 Summer Workshops
	SC09 Summer Workshops
	Outline
	The March of Progress
	OU’s TeraFLOP Cluster, 2002
	TeraFLOP, Prototype 2006, Sale 2011
	Moore’s Law
	Moore’s Law in Practice
	Moore’s Law in Practice
	Moore’s Law in Practice
	Moore’s Law in Practice
	Moore’s Law in Practice
	Fastest Supercomputer vs. Moore
	The Tyranny of�the Storage Hierarchy
	The Storage Hierarchy
	RAM is Slow
	Why Have Cache?
	Henry’s Laptop
	Storage Speed, Size, Cost
	Storage Use Strategies
	A Concrete Example
	Good Cache Reuse Example
	A Sample Application
	Matrix Multiply: Naïve Version
	Performance of Matrix Multiply
	Tiling
	Tiling
	Tiling Code
	Multiplying Within a Tile
	Reminder: Naïve Version, Again
	Performance with Tiling
	The Advantages of Tiling
	Why Does Tiling Work Here?
	Will Tiling Always Work?
	Multicore/Many-core Basics
	What is Multicore?
	Dual Core
	Quad Core
	Oct Core
	The Challenge of Multicore: RAM
	The Challenge of Multicore: Network
	A Concrete Example:�Weather Forecasting
	Weather Forecasting
	Weather Forecasting
	Cartesian Mesh
	Finite Difference
	Ghost Boundary Zones
	Software Strategies�for Weather Forecasting�on Multicore/Many-core
	Tiling NOT Good for Weather Codes
	Weather Forecasting and Cache
	How to Get Good Cache Reuse?
	Cache Optimization Strategy: Tiling?
	Multiple Subdomains Per Core
	Why Multiple Subdomains?
	Why Independent Subdomains?
	Expand the Array Stencil
	An Extra Win!
	New Algorithm
	Higher Order Numerical Schemes
	Parallelize in Z
	Multicore/Many-core Problem
	What Do We Need?
	OK Supercomputing Symposium 2009
	SC09 Summer Workshops
	SC09 Summer Workshops
	To Learn More Supercomputing
	Thanks for helping!
	Thanks for your attention!��Questions?
	References

