
Supercomputing in Supercomputing in
Plain EnglishPlain English

Part VII:Part VII:
Multicore MadnessMulticore Madness

Henry Neeman, Director
OU Supercomputing Center for Education & Research

University of Oklahoma
Wednesday October 17 2007

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 2

This is an experiment!
It’s the nature of these kinds of videoconferences that

failures are guaranteed to happen!
NO PROMISES!
So, please bear with us. Hopefully everything will work out

well enough.

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 3

Access Grid/VRVS
If you’re connecting via the Access Grid or VRVS, the venue

is:
NCSA Venue Monte Carlo

It’s available Wed Oct 17 2007 1:00-4:30pm Central Time, but
the workshop starts at 3:00pm Central Time.

Many thanks to John Chapman of U Arkansas for setting this
up for us.

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 4

iLinc
We only have about 40-45 simultaneous iLinc connections

available.
Therefore, each institution has at most one iLinc person

designated.
If you’re the iLinc person for your institution, you’ve already

gotten e-mail about it, so please follow the instructions.
If you aren’t your institution’s iLinc person, then you can’t

become it, because we’re completely out of iLinc
connections.

Many thanks to Katherine Kantardjieff of California State U
Fullerton for setting this up for us.

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 5

QuickTime Broadcast
If you don’t have iLinc, you can connect via QuickTime:

rtsp://129.15.254.141/neeman_02.sdp

We strongly recommend using QuickTime player, since we’ve
seen it work.

When you run it, traverse the menus
File -> Open URL

Then paste in the rstp URL the Movie URL space, and click
OK.

Many thanks to Kevin Blake of OU for setting this up.

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 6

Phone Bridge
If all else fails, you can call into our phone bridge:

1-866-285-7778, access code 6483137#
Please mute yourself and use the phone to listen.
Don’t worry, I’ll call out slide numbers as we go.
To ask questions, please use Google Talk or Gmail.
Many thanks to Amy Apon of U Arkansas for setting this up

for us, and to U Arkansas for absorbing the costs.

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 7

Google Talk
To ask questions, please use our Google Talk group chat

session (text only).
You need to have (or create) a gmail.com account to use

Google Talk.
Once you’ve logged in to your gmail.com account, go to:

http://www.google.com/talk/
and then contact the user named:

oscer.sipe
Alternatively, you can send your questions by e-mail to

oscer.sipe@gmail.com.

http://www.google.com/talk/

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 8

This is an experiment!
REMINDER:
It’s the nature of these kinds of videoconferences that

failures are guaranteed to happen!
NO PROMISES!
So, please bear with us. Hopefully everything will work out

well enough.

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 9

Outline
The March of Progress
Multicore/Many-core Basics
Software Strategies for Multicore/Many-core
A Concrete Example: Weather Forecasting

The March of Progress

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 11

10 racks @ 1000 lbs per rack
270 Pentium4 Xeon CPUs,

2.0 GHz, 512 KB L2 cache
270 GB RAM, 400 MHz FSB
8 TB disk
Myrinet2000 Interconnect
100 Mbps Ethernet Interconnect
OS: Red Hat Linux
Peak speed: 1.08 TFLOP/s
(1.08 trillion calculations per second)

One of the first Pentium4 clusters!

OU’s TeraFLOP Cluster, 2002

boomer.oscer.ou.eduboomer.oscer.ou.edu

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 12

TeraFLOP, Prototype 2006, Sale 2011

http://news.com.com/2300-1006_3-6119652.html

9 years from room to chip!

http://news.com.com/2300-1006_3-6119652.html

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 13

Moore’s Law
In 1965, Gordon Moore was an engineer at Fairchild

Semiconductor.
He noticed that the number of transistors that could be

squeezed onto a chip was doubling about every 18 months.
It turns out that computer speed is roughly proportional to the

number of transistors per unit area.
Moore wrote a paper about this concept, which became known

as “Moore’s Law.”

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 14

Moore’s Law in Practice

Year

lo
g(

Sp
ee

d)

CPU

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 15

Moore’s Law in Practice

Year

lo
g(

Sp
ee

d)

CPU

Netw
ork

 B
an

dw
idt

h

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 16

Moore’s Law in Practice

Year

lo
g(

Sp
ee

d)

CPU

Netw
ork

 B
an

dw
idt

h

RAM

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 17

Moore’s Law in Practice

Year

lo
g(

Sp
ee

d)

CPU

Netw
ork

 B
an

dw
idt

h

RAM

1/Network Latency

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 18

Moore’s Law in Practice

Year

lo
g(

Sp
ee

d)

CPU

Netw
ork

 B
an

dw
idt

h

RAM

1/Network Latency

Software

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 19

Fastest Supercomputer vs. Moore
Fastest Supercomputer in the World

1

10

100

1000

10000

100000

1000000

1992 1994 1996 1998 2000 2002 2004 2006 2008

Year

Sp
ee

d
in

 G
FL

O
P/

s

Fastest
Moore

www.top500.org

http://www.top500.org/

The Tyranny of
the Storage Hierarchy

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 21

Henry’s Laptop

Pentium 4 Core Duo T2400 1.83
GHz w/2 MB L2 Cache
2 GB (2048 MB) 667
MHz DDR2 SDRAM
100 GB 7200 RPM SATA Hard Drive
DVD+RW/CD-RW Drive (8x)
1 Gbps Ethernet Adapter
56 Kbps Phone Modem

Dell Latitude D620[4]

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 22

The Storage Hierarchy

Registers
Cache memory
Main memory (RAM)
Hard disk
Removable media (e.g., DVD)
Internet

Fast, expensive, few

Slow, cheap, a lot

[5]

[6]

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 23

RAM is Slow
CPU 351 GB/sec[7]

10.66 GB/sec[9] (3%)

Bottleneck

The speed of data transfer
between Main Memory and the
CPU is much slower than the
speed of calculating, so the CPU
spends most of its time waiting
for data to come in or go out.

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 24

Why Have Cache?
CPUCache is nearly the same speed

as the CPU, so the CPU doesn’t
have to wait nearly as long for
stuff that’s already in cache:
it can do more
operations per second!

351 GB/sec[7]

10.66 GB/sec[9] (3%)

253 GB/sec[8] (72%)

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 25

Henry’s Laptop, Again

Pentium 4 Core Duo T2400 1.83
GHz w/2 MB L2 Cache
2 GB (2048 MB) 667
MHz DDR2 SDRAM
100 GB 7200 RPM SATA Hard Drive
DVD+RW/CD-RW Drive (8x)
1 Gbps Ethernet Adapter
56 Kbps Phone Modem

Dell Latitude D620[4]

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 26

Storage Speed, Size, Cost

Henry’s
Laptop

Registers
(Pentium 4
Core Duo
1.83 GHz)

Cache
Memory

(L2)

Main
Memory

(667 MHz
DDR2

SDRAM)

Hard
Drive

(SATA
7200
RPM)

Ethernet
(1000 Mbps)

DVD+RW
(8x)

Phone
Modem

(56 Kbps)

125

unlimited

charged
per month
(typically)

0.007

unlimited

charged per
month

(typically)

Speed
(MB/sec)

[peak]

359,792[7]

(14,640
MFLOP/s*)

258,785 [8] 10,920 [9] 100 [10] 10.8
[11]

Size
(MB)

304 bytes**
[12]

2 2048 100,000 unlimited

Cost
($/MB) –

$21 [13] $0.12 [13] $0.002 [13] $0.0003 [13]

* MFLOP/s: millions of floating point operations per second
** 8 32-bit integer registers, 8 80-bit floating point registers, 8 64-bit MMX integer registers,

8 128-bit floating point XMM registers

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 27

Storage Use Strategies
Register reuse: Do a lot of work on the same data before
working on new data.
Cache reuse: The program is much more efficient if all of
the data and instructions fit in cache; if not, try to use
what’s in cache a lot before using anything that isn’t in
cache.
Data locality: Try to access data that are near each other
in memory before data that are far.
I/O efficiency: Do a bunch of I/O all at once rather than a
little bit at a time; don’t mix calculations and I/O.

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 28

A Concrete Example
OSCER’s big cluster, topdawg, has Irwindale CPUs: single
core, 3.2 GHz, 800 MHz Front Side Bus.
The theoretical peak CPU speed is 6.4 GFLOPs (double
precision) per CPU, and in practice we’ve gotten as high as
94% of that.
So, in theory each CPU could consume 143 GB/sec.
The theoretical peak RAM bandwidth is 6.4 GB/sec, but in
practice we get about half that.
So, any code that does less than 45 calculations per byte
transferred between RAM and cache has speed limited by
RAM bandwidth.

Good Cache Reuse
Example

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 30

A Sample Application
Matrix-Matrix Multiply
Let A, B and C be matrices of sizes
nr × nc, nr × nk and nk × nc, respectively:

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

ncnrnrnrnr

nc

nc

nc

aaaa

aaaa
aaaa
aaaa

,3,2,1,

,33,32,31,3

,23,22,21,2

,13,12,11,1

L

MOMMM

L

L

L

A

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

nknrnrnrnr

nk

nk

nk

bbbb

bbbb
bbbb
bbbb

,3,2,1,

,33,32,31,3

,23,22,21,2

,13,12,11,1

L

MOMMM

L

L

L

B

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

ncnknknknk

nc

nc

nc

cccc

cccc
cccc
cccc

,3,2,1,

,33,32,31,3

,23,22,21,2

,13,12,11,1

L

MOMMM

L

L

L

C

∑
=

⋅++⋅+⋅+⋅=⋅=
nk

k
cnknkrcrcrcrckkrcr cbcbcbcbcba

1
,,,33,,22,,11,,,, K

The definition of A = B • C is

for r ∈ {1, nr}, c ∈ {1, nc}.

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 31

Matrix Multiply: Naïve Version
SUBROUTINE matrix_matrix_mult_naive (dst, src1, src2, &
& nr, nc, nq)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN) :: src1
REAL,DIMENSION(nq,nc),INTENT(IN) :: src2

INTEGER :: r, c, q

DO c = 1, nc
DO r = 1, nr
dst(r,c) = 0.0
DO q = 1, nq
dst(r,c) = dst(r,c) + src1(r,q) * src2(q,c)

END DO
END DO

END DO
END SUBROUTINE matrix_matrix_mult_naive

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 32

Performance of Matrix Multiply
Matrix-Matrix Multiply

0

100

200

300

400

500

600

700

800

0 10000000 20000000 30000000 40000000 50000000 60000000

Total Problem Size in bytes (nr*nc+nr*nq+nq*nc)

C
PU

 se
c

Init

Better

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 33

Tiling

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 34

Tiling
Tile: A small rectangular subdomain of a problem domain.
Sometimes called a block or a chunk.
Tiling: Breaking the domain into tiles.
Tiling strategy: Operate on each tile to completion, then
move to the next tile.
Tile size can be set at runtime, according to what’s best for
the machine that you’re running on.

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 35

Tiling Code
SUBROUTINE matrix_matrix_mult_by_tiling (dst, src1, src2, nr, nc, nq, &
& rtilesize, ctilesize, qtilesize)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN) :: src1
REAL,DIMENSION(nq,nc),INTENT(IN) :: src2
INTEGER,INTENT(IN) :: rtilesize, ctilesize, qtilesize

INTEGER :: rstart, rend, cstart, cend, qstart, qend

DO cstart = 1, nc, ctilesize
cend = cstart + ctilesize - 1
IF (cend > nc) cend = nc
DO rstart = 1, nr, rtilesize

rend = rstart + rtilesize - 1
IF (rend > nr) rend = nr
DO qstart = 1, nq, qtilesize

qend = qstart + qtilesize - 1
IF (qend > nq) qend = nq
CALL matrix_matrix_mult_tile(dst, src1, src2, nr, nc, nq, &

& rstart, rend, cstart, cend, qstart, qend)
END DO

END DO
END DO

END SUBROUTINE matrix_matrix_mult_by_tiling

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 36

Multiplying Within a Tile
SUBROUTINE matrix_matrix_mult_tile (dst, src1, src2, nr, nc, nq, &
& rstart, rend, cstart, cend, qstart, qend)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN) :: src1
REAL,DIMENSION(nq,nc),INTENT(IN) :: src2
INTEGER,INTENT(IN) :: rstart, rend, cstart, cend, qstart, qend

INTEGER :: r, c, q

DO c = cstart, cend
DO r = rstart, rend
IF (qstart == 1) dst(r,c) = 0.0
DO q = qstart, qend
dst(r,c) = dst(r,c) + src1(r,q) * src2(q,c)

END DO
END DO

END DO
END SUBROUTINE matrix_matrix_mult_tile

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 37

Reminder: Naïve Version, Again
SUBROUTINE matrix_matrix_mult_naive (dst, src1, src2, &
& nr, nc, nq)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN) :: src1
REAL,DIMENSION(nq,nc),INTENT(IN) :: src2

INTEGER :: r, c, q

DO c = 1, nc
DO r = 1, nr
dst(r,c) = 0.0
DO q = 1, nq
dst(r,c) = dst(r,c) + src1(r,q) * src2(q,c)

END DO
END DO

END DO
END SUBROUTINE matrix_matrix_mult_naive

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 38

Performance with Tiling

Matrix-Matrix Mutiply Via Tiling (log-log)

0.1

1

10

100

1000

101001000100001000001000000100000001E+08

Tile Size (bytes)

C
PU

 se
c

512x256

512x512

1024x512

1024x1024

2048x1024

Matrix-Matrix Mutiply Via Tiling

0

50

100

150

200

250

10100100010000100000100000010000000100000000

Tile Size (bytes)

Better

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 39

The Advantages of Tiling
It allows your code to exploit data locality better, to get
much more cache reuse: your code runs faster!
It’s a relatively modest amount of extra coding (typically a
few wrapper functions and some changes to loop bounds).
If you don’t need tiling – because of the hardware, the
compiler or the problem size – then you can turn it off by
simply setting the tile size equal to the problem size.

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 40

Why Does Tiling Work Here?
Cache optimization works best when the number of

calculations per byte is large.
For example, with matrix-matrix multiply on an n × n matrix,

there are O(n3) calculations (on the order of n3), but only
O(n2) bytes of data.

So, for large n, there are a huge number of calculations per
byte transferred between RAM and cache.

Multicore/Many-core
Basics

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 42

What is Multicore?
In the olden days (i.e., the first half of 2005), each CPU chip
had one “brain” in it.
More recently, each CPU chip has 2 cores (brains), and,
starting in late 2006, 4 cores.
Jargon: Each CPU chip plugs into a socket, so these days,
to avoid confusion, people refer to sockets and cores, rather
than CPUs or processors.
Each core is just like a full blown CPU, except that it shares
its socket with one or more other cores – and therefore
shares its bandwidth to RAM.

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 43

Dual Core
Core Core

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 44

Quad Core
Core Core
Core Core

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 45

Oct Core
Core Core Core Core
Core Core Core Core

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 46

The Challenge of Multicore: RAM
Each socket has access to a certain amount of RAM, at a
fixed RAM bandwidth per SOCKET.
As the number of cores per socket increases, the contention
for RAM bandwidth increases too.
At 2 cores in a socket, this problem isn’t too bad. But at 16
or 32 or 80 cores, it’s a huge problem.
So, applications that are cache optimized will get big
speedups.
But, applications whose performance is limited by RAM
bandwidth are going to speed up only as fast as RAM
bandwidth speeds up.
RAM bandwidth speeds up much slower than CPU speeds
up.

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 47

The Challenge of Multicore: Network
Each node has access to a certain number of network ports,
at a fixed number of network ports per NODE.
As the number of cores per node increases, the contention
for network ports increases too.
At 2 cores in a socket, this problem isn’t too bad. But at 16
or 32 or 80 cores, it’s a huge problem.
So, applications that do minimal communication will get
big speedups.
But, applications whose performance is limited by the
number of MPI messages are going to speed up very very
little – and may even crash the node.

A Concrete Example:
Weather Forecasting

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 49

Weather Forecasting

http://www.caps.ou.edu/wx/p/r/conus/fcst/

http://www.caps.ou.edu/wx/p/r/conus/fcst/

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 50

Weather Forecasting
Weather forecasting is one of many transport problems.
The goal is to predict future weather conditions by
simulating the movement of fluids in Earth’s atmosphere.
The physics is the Navier-Stokes Equations.
The numerical method is Finite Difference.

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 51

Cartesian Mesh

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 52

Finite Difference
unew(i,j,k) = F(uold, i, j, k, Δt) =

F(uold(i,j,k),
uold(i-1,j,k), uold(i+1,j,k),
uold(i,j-1,k), uold(i,j+1,k),
uold(i,j,k-1), uold(i,j,k+1), Δt)

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 53

Ghost Boundary Zones

Software Strategies
for Weather Forecasting
on Multicore/Many-core

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 55

Tiling NOT Good for Weather Codes
Weather codes typically have on the order of 150 3D arrays
used in each timestep (some transferred multiple times in the
same timestep, but let’s ignore that for simplicity).
These arrays typically are single precision (4 bytes per
floating point value).
Thus, a typical weather code uses about 600 bytes per mesh
zone per timestep.
Weather codes typically do 5,000 to 10,000 calculations per
mesh zone per timestep.
So, the ratio of calculations to data is less than 20 to 1 –
much less than the 45 to 1 needed (on mid-2005 hardware).

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 56

Weather Forecasting and Cache
On current weather codes, data decomposition is by process.
That is, each process gets one subdomain.
As CPUs speed up and RAM sizes grow, the size of each
processor’s subdomain grows too.
However, given RAM bandwidth limitations, this means
that performance can only grow with RAM speed – which
increases slower than CPU speed.
If the codes were optimized for cache, would they speed up
more?
First: How to optimize for cache?

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 57

How to Get Good Cache Reuse?
1. Multiple independent subdomains per processor.
2. Each subdomain fits entirely in L2 cache.
3. Each subdomain’s page table entries fit entirely in the

TLB.
4. Expanded ghost zone stencil allows multiple timesteps

before communicating with neighboring subdomains.
5. Parallelize along the Z-axis as well as X and Y.
6. Use higher order numerical schemes.
7. Reduce the memory footprint as much as possible.
Coincidentally, this also reduces communication cost.

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 58

Cache Optimization Strategy: Tiling?
Would tiling work as a cache optimization strategy for weather

forecasting codes?

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 59

Multiple Subdomains Per Core

Core 0

Core 1

Core 2

Core 3

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 60

Why Multiple Subdomains?
If each subdomain fits in cache, then the CPU can bring all
the data of a subdomain into cache, chew on it for a while,
then move on to the next subdomain: lots of cache reuse!
Oh, wait, what about the TLB? Better make the subdomains
smaller! (So more of them.)
But, doesn’t tiling have the same effect?

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 61

Why Independent Subdomains?
Originally, the point of this strategy was to hide the cost of
communication.
When you finish chewing up a subdomain, send its data to
its neighbors non-blocking (MPI_Isend).
While the subdomain’s data is flying through the
interconnect, work on other subdomains, which hides the
communication cost.
When it’s time to work on this subdomain again, collect its
data (MPI_Waitall).
If you’ve done enough work, then the communication cost
is zero.

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 62

Expand the Array Stencil
If you expand the array stencil of each subdomain beyond
the numerical stencil, then you don’t have to communicate
as often.
When you communicate, instead of sending a slice along
each face, send a slab, with extra stencil levels.
In the first timestep after communicating, do extra
calculations out to just inside the numerical stencil.
In subsequent timesteps, calculate fewer and fewer stencil
levels, until it’s time to communicate again – less total
communication, and more calculations to hide the
communication cost underneath!

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 63

An Extra Win!
If you do all this, there’s an amazing side effect: you get
better cache reuse, because you stick with the same
subdomain for a longer period of time.
So, instead of doing, say, 5000 calculations per zone per
timestep, you can do 15000 or 20000.
So, you can better amortize the cost of transferring the data
between RAM and cache.

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 64

New Algorithm
DO timestep = 1, number_of_timesteps, extra_stencil_levels

DO subdomain = 1, number_of_local_subdomains
CALL receive_messages_nonblocking(subdomain,

timestep)
DO extra_stencil_level=0, extra_stencil_levels - 1

CALL calculate_entire_timestep(subdomain,
timestep + extra_stencil_level)

END DO
CALL send_messages_nonblocking(subdomain,

timestep + extra_stencil_levels)
END DO

END DO

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 65

Higher Order Numerical Schemes
Higher order numerical schemes are great, because they
require more calculations per zone per timestep, which you
need to amortize the cost of transferring data between RAM
and cache. Might as well!
Plus, they allow you to use a larger time interval per
timestep (dt), so you can do fewer total timesteps for the
same accuracy – or you can get higher accuracy for the
same number of timesteps.

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 66

Parallelize in Z
Most weather forecast codes parallelize in X and Y, but not
in Z, because gravity makes the calculations along Z more
complicated than X and Y.
But, that means that each subdomain has a high number of
zones in Z, compared to X and Y.
For example, a 1 km CONUS run will probably have 100
zones in Z (25 km at 0.25 km resolution).

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 67

Multicore/Many-core Problem
Most multicore chip families have relatively small cache per
core (e.g., 2 MB) – and this problem seems likely to remain.
Small TLBs make the problem worse: 512 KB per core
rather than 2 MB.
So, to get good cache reuse, you need subdomains of no
more than 512 KB.
If you have 150 3D variables at single precision, and 100
zones in Z, then your horizontal size will be 3 x 3 zones –
just enough for your stencil!

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 68

What Do We Need?
We need much bigger caches!

16 MB cache 16 x 16 horizontal including stencil
32 MB cache 23 x 23 horizontal including stencil

TLB must be big enough to cover the entire cache.
It’d be nice to have RAM speed increase as fast as core
counts increase, but let’s not kid ourselves.

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 69

Next Time

Part VII:
High Throughput Computing

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 70

To Learn More Supercomputing
http://www.oscer.ou.edu/education.php

http://www.oscer.ou.edu/education.php

Thanks for your
attention!

Questions?

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 72

Virtual Memory
Every CPU family today uses virtual memory, in which disk
pretends to be a bigger RAM.
Virtual memory capability can’t be turned off.
RAM is split up into pages, typically 4 KB each.
Each page is either in RAM or out on disk.
To keep track of the pages, a page table notes whether each
table is in RAM, where it is in RAM (that is, physical address
and virtual address are different), and some other
information.
So, a 4 GB physical RAM would need over a million page
table entries.

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 73

Why Virtual Memory is Slow
When you want to access a byte of memory, you have to
find out whether it’s in physical memory (RAM) or virtual
disk (disk) – and the page table is in RAM!
A page table of a million entries can’t fit in a 2 MB cache.
So, each memory access (load or store) is actually 2
memory accesses: the first for the page table entry, and the
second for the data itself.
This is slow!
And notice, this is assuming that you don’t need more
memory than your physical RAM.

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 74

The Notorious T.L.B.
To speed up memory accesses, CPUs today have a special
cache just for page table entries, known as the Translation
Lookaside Buffer (TLB).
The size of TLBs varies from 64 entries to 1024 entries,
depending on chip families.
At 4 KB pages, this means that the size of cache covered by
the TLB varies from 256 KB to 4 MB.

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 75

The T.L.B. on a Current Chip
On Intel Core Duo (“Yonah”):

Cache size is 2 MB per core.
Page size is 4 KB.
A core’s data TLB size is 128 page table entries.
Therefore, D-TLB only covers 512 KB of cache.

Supercomputing in Plain English: Multicore Madness
Wednesday October 17 2007 76

The T.L.B. on a Current Chip
On Intel Core Duo (“Yonah”):

Cache size is 2 MB per core.
Page size is 4 KB.
A core’s data TLB size is 128 page table entries.
Therefore, D-TLB only covers 512 KB of cache.
Mesh: At 100 vertical levels of 150 single precision
variables, 512 KB is a 3 x 3 vertical domain – nothing but
ghost zones!
The cost of a TLB miss is 49 cycles, equivalent to as many
as 196 calculations! (4 FLOPs per cycle)

http://www.digit-life.com/articles2/cpu/rmma-via-c7.html

http://www.digit-life.com/articles2/cpu/rmma-via-c7.html

	Supercomputing in Plain English�Part VII:�Multicore Madness
	This is an experiment!
	Access Grid/VRVS
	iLinc
	QuickTime Broadcast
	Phone Bridge
	Google Talk
	This is an experiment!
	Outline
	The March of Progress
	OU’s TeraFLOP Cluster, 2002
	TeraFLOP, Prototype 2006, Sale 2011
	Moore’s Law
	Moore’s Law in Practice
	Moore’s Law in Practice
	Moore’s Law in Practice
	Moore’s Law in Practice
	Moore’s Law in Practice
	Fastest Supercomputer vs. Moore
	The Tyranny of�the Storage Hierarchy
	Henry’s Laptop
	The Storage Hierarchy
	RAM is Slow
	Why Have Cache?
	Henry’s Laptop, Again
	Storage Speed, Size, Cost
	Storage Use Strategies
	A Concrete Example
	Good Cache Reuse Example
	A Sample Application
	Matrix Multiply: Naïve Version
	Performance of Matrix Multiply
	Tiling
	Tiling
	Tiling Code
	Multiplying Within a Tile
	Reminder: Naïve Version, Again
	Performance with Tiling
	The Advantages of Tiling
	Why Does Tiling Work Here?
	Multicore/Many-core Basics
	What is Multicore?
	Dual Core
	Quad Core
	Oct Core
	The Challenge of Multicore: RAM
	The Challenge of Multicore: Network
	A Concrete Example:�Weather Forecasting
	Weather Forecasting
	Weather Forecasting
	Cartesian Mesh
	Finite Difference
	Ghost Boundary Zones
	Software Strategies�for Weather Forecasting�on Multicore/Many-core
	Tiling NOT Good for Weather Codes
	Weather Forecasting and Cache
	How to Get Good Cache Reuse?
	Cache Optimization Strategy: Tiling?
	Multiple Subdomains Per Core
	Why Multiple Subdomains?
	Why Independent Subdomains?
	Expand the Array Stencil
	An Extra Win!
	New Algorithm
	Higher Order Numerical Schemes
	Parallelize in Z
	Multicore/Many-core Problem
	What Do We Need?
	Next Time
	To Learn More Supercomputing
	Thanks for your attention!��Questions?
	Virtual Memory
	Why Virtual Memory is Slow
	The Notorious T.L.B.
	The T.L.B. on a Current Chip
	The T.L.B. on a Current Chip

