
Supercomputing
in Plain English

Instruction Level Parallelism
Henry Neeman, University of Oklahoma

Director, OU Supercomputing Center for Education & Research (OSCER)
Assistant Vice President, Information Technology – Research Strategy Advisor

Associate Professor, Gallogly College of Engineering
Adjunct Associate Professor, School of Computer Science

Tuesday February 13 2018

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 2

This is an experiment!
It’s the nature of these kinds of videoconferences that

FAILURES ARE GUARANTEED TO HAPPEN!
NO PROMISES!

So, please bear with us. Hopefully everything will work out
well enough.

If you lose your connection, you can retry the same kind of
connection, or try connecting another way.

Remember, if all else fails, you always have the phone bridge
to fall back on.

PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 3

PLEASE MUTE YOURSELF
No matter how you connect, PLEASE MUTE YOURSELF,

so that we cannot hear you.
At OU, we will turn off the sound on all conferencing

technologies.
That way, we won’t have problems with echo cancellation.
Of course, that means we cannot hear questions.
So for questions, you’ll need to send e-mail:

supercomputinginplainenglish@gmail.com

PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

mailto:supercomputinginplainenglish@gmail.com

Download the Slides Beforehand
Before the start of the session, please download the slides from
the Supercomputing in Plain English website:

http://www.oscer.ou.edu/education/

That way, if anything goes wrong, you can still follow along
with just audio.

PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 4

http://www.oscer.ou.edu/education/

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 5

Zoom
Go to:

http://zoom.us/j/979158478

Many thanks Eddie Huebsch, OU CIO, for providing this.

PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

http://zoom.us/j/979158478

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 6

YouTube
You can watch from a Windows, MacOS or Linux laptop or an

Android or iOS handheld using YouTube.
Go to YouTube via your preferred web browser or app, and then

search for:
Supercomputing InPlainEnglish

(InPlainEnglish is all one word.)
Many thanks to Skyler Donahue of OneNet for providing this.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 7

Twitch
You can watch from a Windows, MacOS or Linux laptop or an

Android or iOS handheld using Twitch.
Go to:

http://www.twitch.tv/sipe2018

Many thanks to Skyler Donahue of OneNet for providing this.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

http://www.twitch.tv/sipe2018

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 8

Wowza #1
You can watch from a Windows, MacOS or Linux laptop using

Wowza from the following URL:

http://jwplayer.onenet.net/streams/sipe.html

If that URL fails, then go to:

http://jwplayer.onenet.net/streams/sipebackup.html

Many thanks to Skyler Donahue of OneNet for providing this.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

http://jwplayer.onenet.net/streams/sipe.html
http://jwplayer.onenet.net/streams/sipebackup.html

Wowza #2
Wowza has been tested on multiple browsers on each of:
 Windows 10: IE, Firefox, Chrome, Opera, Safari
 MacOS: Safari, Firefox
 Linux: Firefox, Opera
We’ve also successfully tested it via apps on devices with:
 Android
 iOS
Many thanks to Skyler Donahue of OneNet for providing this.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 9

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 10

Toll Free Phone Bridge
IF ALL ELSE FAILS, you can use our US TOLL phone bridge:

405-325-6688
684 684 #

NOTE: This is for US call-ins ONLY.
PLEASE MUTE YOURSELF and use the phone to listen.
Don’t worry, we’ll call out slide numbers as we go.
Please use the phone bridge ONLY IF you cannot connect any

other way: the phone bridge can handle only 100 simultaneous
connections, and we have over 1000 participants.

Many thanks to OU CIO Eddie Huebsch for providing the
phone bridge..

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 11

Please Mute Yourself
No matter how you connect, PLEASE MUTE YOURSELF,

so that we cannot hear you.
(For YouTube, Twitch and Wowza, you don’t need to do that,

because the information only goes from us to you, not from
you to us.)

At OU, we will turn off the sound on all conferencing
technologies.

That way, we won’t have problems with echo cancellation.
Of course, that means we cannot hear questions.
So for questions, you’ll need to send e-mail.
PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 12

Questions via E-mail Only
Ask questions by sending e-mail to:

supercomputinginplainenglish@gmail.com

All questions will be read out loud and then answered out loud.

DON’T USE CHAT OR VOICE FOR QUESTIONS!

No one will be monitoring any of the chats, and if we can hear
your question, you’re creating an echo cancellation problem.

PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

mailto:supercomputinginplainenglish@gmail.com

Onsite: Talent Release Form
If you’re attending onsite, you MUST do one of the following:
 complete and sign the Talent Release Form,
OR
 sit behind the cameras (where you can’t be seen) and don’t

talk at all.

If you aren’t onsite, then PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 13

TENTATIVE Schedule
Tue Jan 23: Storage: What the Heck is Supercomputing?
Tue Jan 30: The Tyranny of the Storage Hierarchy Part I
Tue Feb 6: The Tyranny of the Storage Hierarchy Part II
Tue Feb 13: Instruction Level Parallelism
Tue Feb 20: Stupid Compiler Tricks
Tue Feb 27: Shared Memory Multithreading
Tue March 6: Distributed Multiprocessing
Tue March 13: Applications and Types of Parallelism
Tue March 20: NO SESSION (OU's Spring Break)
Tue March 27: Multicore Madness
Tue Apr 3: High Throughput Computing
Tue Apr 10: GPGPU: Number Crunching in Your Graphics Card
Tue Apr 17: Grab Bag: Scientific Libraries, I/O Libraries, Visualization
Tue Apr 24: Topic to be announced
Tue May 1: Topic to be announced

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 14

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 15

Thanks for helping!
 OU IT

 OSCER operations staff (Dave Akin, Patrick Calhoun, Kali
McLennan, Jason Speckman, Brett Zimmerman)

 OSCER Research Computing Facilitators (Jim Ferguson,
Horst Severini)

 Debi Gentis, OSCER Coordinator
 Kyle Dudgeon, OSCER Manager of Operations
 Ashish Pai, Managing Director for Research IT Services
 The OU IT network team
 OU CIO Eddie Huebsch

 OneNet: Skyler Donahue
 Oklahoma State U: Dana Brunson

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 16

This is an experiment!
It’s the nature of these kinds of videoconferences that

FAILURES ARE GUARANTEED TO HAPPEN!
NO PROMISES!

So, please bear with us. Hopefully everything will work out
well enough.

If you lose your connection, you can retry the same kind of
connection, or try connecting another way.

Remember, if all else fails, you always have the phone bridge
to fall back on.

PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

Coming in 2018!
 Coalition for Advancing Digital Research & Education (CADRE) Conference:

Apr 17-18 2018 @ Oklahoma State U, Stillwater OK USA
https://hpcc.okstate.edu/cadre-conference

 Linux Clusters Institute workshops
http://www.linuxclustersinstitute.org/workshops/

 Introductory HPC Cluster System Administration: May 14-18 2018 @ U Nebraska, Lincoln NE USA
 Intermediate HPC Cluster System Administration: Aug 13-17 2018 @ Yale U, New Haven CT USA

 Great Plains Network Annual Meeting: details coming soon
 Advanced Cyberinfrastructure Research & Education Facilitators (ACI-REF) Virtual

Residency Aug 5-10 2018, U Oklahoma, Norman OK USA
 PEARC 2018, July 22-27, Pittsburgh PA USA

https://www.pearc18.pearc.org/

 IEEE Cluster 2018, Sep 10-13, Belfast UK
https://cluster2018.github.io

 OKLAHOMA SUPERCOMPUTING SYMPOSIUM 2018, Sep 25-26 2018 @ OU
 SC18 supercomputing conference, Nov 11-16 2018, Dallas TX USA

http://sc18.supercomputing.org/

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 17

https://hpcc.okstate.edu/cadre-conference
http://www.linuxclustersinstitute.org/workshops/
https://www.pearc18.pearc.org/
https://cluster2018.github.io/
http://sc18.supercomputing.org/

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 18

Outline
 What is Instruction-Level Parallelism?
 Scalar Operation
 Loops
 Pipelining
 Loop Performance
 Superpipelining
 Vectors
 A Real Example

19

Parallelism

Less fish …

More fish!

Parallelism means
doing multiple things at
the same time: You can
get more work done in
the same time.

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 20

What Is ILP?
Instruction-Level Parallelism (ILP) is a set of techniques for

executing multiple instructions at the same time within
the same CPU core.

(Note that ILP has nothing to do with multicore.)
The problem: A CPU core has lots of circuitry, and at any

given time, most of it is idle, which is wasteful.
The solution: Have different parts of the CPU core work on

different operations at the same time:
If the CPU core has the ability to work on 10 operations at a

time, then the program can, in principle, run as much as 10
times as fast (although in practice, not quite so much).

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 21

DON’T
PANIC!

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 22

Why You Shouldn’t Panic
In general, the compiler and the CPU will do most of the heavy

lifting for instruction-level parallelism.

BUT:
You need to be aware of ILP, because
how your code is structured affects
how much ILP the compiler and the
CPU can give you.

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 23

Kinds of ILP
 Superscalar: Perform multiple operations at the same time

(for example, simultaneously perform an add, a multiply and
a load).

 Pipeline: Start performing an operation on one piece of data
while finishing the same operation on another piece of data –
perform different stages of the same operation on different
sets of operands at the same time (like an assembly line).

 Superpipeline: A combination of superscalar and pipelining
– perform multiple pipelined operations at the same time.

 Vector: Load multiple pieces of data into special registers and
perform the same operation on all of them at the same time.

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 24

What’s an Instruction?
 Memory: For example, load a value from a specific address

in main memory into a specific register, or store a value
from a specific register into a specific address in main
memory.

 Arithmetic: For example, add two specific registers together
and put their sum in a specific register – or subtract,
multiply, divide, square root, etc.

 Logical: For example, determine whether two registers both
contain nonzero values (“AND”).

 Branch: Jump from one sequence of instructions to another
(for example, function call).

 … and so on ….

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 25

What’s a Cycle?
You’ve heard people talk about having a 2 GHz processor or a

3 GHz processor or whatever. (For example, consider a
laptop with a 2.0 GHz i3.)

Inside every CPU is a little clock that ticks with a fixed
frequency.

We call each tick of the CPU clock a clock cycle or a cycle
(or even a clock).

So a 2 GHz processor has 2 billion clock cycles per second.
Typically, a primitive operation (for example, add, multiply,

divide) takes a fixed number of cycles to execute (assuming
no pipelining).

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 26

What’s the Relevance of Cycles?
Typically, a primitive operation (for example, add, multiply,

divide) takes a fixed number of cycles to execute (assuming
no pipelining).

 IBM POWER4 [1]

 Multiply or add: 6 cycles (64 bit floating point)
 Load: 4 cycles from L1 cache

14 cycles from L2 cache
 Intel Sandy Bridge (4 x 64 bit floating point vector) [5]

 Add: 3 cycles
 Subtract: 3 cycles
 Multiply: 5 cycles
 Divide: 21-45 cycles
 Square root: 21-45 cycles
 Tangent:147 – 300 cycles

Scalar Operation

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 28

DON’T
PANIC!

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 29

Scalar Operation

1. Load a into register R0
2. Load b into R1
3. Multiply R2 = R0 * R1
4. Load c into R3
5. Load d into R4
6. Multiply R5 = R3 * R4
7. Add R6 = R2 + R5
8. Store R6 into z

z = a * b + c * d;
How would this statement be executed?

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 30

Does Order Matter?

1. Load a into R0
2. Load b into R1
3. Multiply

R2 = R0 * R1
4. Load c into R3
5. Load d into R4
6. Multiply

R5 = R3 * R4
7. Add R6 = R2 + R5
8. Store R6 into z

z = a * b + c * d;

In the cases where order doesn’t matter, we say that
the operations are independent of one another.

1. Load d into R0
2. Load c into R1
3. Multiply

R2 = R0 * R1
4. Load b into R3
5. Load a into R4
6. Multiply

R5 = R3 * R4
7. Add R6 = R2 + R5
8. Store R6 into z

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 31

Superscalar Operation

1. Load a into R0 AND
load b into R1

2. Multiply R2 = R0 * R1 AND
load c into R3 AND
load d into R4

3. Multiply R5 = R3 * R4
4. Add R6 = R2 + R5
5. Store R6 into z

z = a * b + c * d;

If order doesn’t matter,
then things can happen simultaneously.
So, we go from 8 operations down to 5.
(Note: There are lots of simplifying assumptions here.)

Loops

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 33

Loops Are Good
Most compilers are very good at optimizing loops, and not

very good at optimizing other constructs.
Why?

DO index = 1, length
dst(index) = src1(index) + src2(index)

END DO

for (index = 0; index < length; index++) {
dst[index] = src1[index] + src2[index];

}

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 34

Why Loops Are Good
 Loops are very common in many programs.
 Also, it’s easier to optimize loops than to optimize

more arbitrary sequences of instructions: when a program
does the same thing over and over, it’s easier to predict
what’s likely to happen next.

So, hardware vendors have designed their products to be able
to execute loops quickly.

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 35

DON’T
PANIC!

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 36

Superscalar Loops (C)
for (i = 0; i < length; i++) {

z[i] = a[i] * b[i] + c[i] * d[i];
}

Each of the iterations is completely independent of all
of the other iterations; for example,

z[0] = a[0] * b[0] + c[0] * d[0]
has nothing to do with

z[1] = a[1] * b[1] + c[1] * d[1]
Operations that are independent of each other can be
performed in parallel.

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 37

Superscalar Loops (F90)
DO i = 1, length

z(i) = a(i) * b(i) + c(i) * d(i)
END DO

Each of the iterations is completely independent of all
of the other iterations; for example,

z(1) = a(1) * b(1) + c(1) * d(1)
has nothing to do with

z(2) = a(2) * b(2) + c(2) * d(2)
Operations that are independent of each other can be
performed in parallel.

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 38

Superscalar Loops
for (i = 0; i < length; i++) {

z[i] = a[i] * b[i] + c[i] * d[i];
}

1. Load a[i] into R0 AND load b[i] into R1
2. Multiply R2 = R0 * R1 AND load c[i] into

R3 AND load d[i] into R4
3. Multiply R5 = R3 * R4 AND

load a[i+1] into R0 AND load b[i+1] into R1
4. Add R6 = R2 + R5 AND load c[i+1] into R3

AND load d[i+1] into R4
5. Store R6 into z[i] AND multiply R2 = R0 * R1
6. etc etc etc
Once this loop is “in flight,” each iteration adds only

2 operations to the total, not 8.

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 39

Example: IBM POWER4
8-way Superscalar: can execute up to 8 operations at the same

time[1]

 2 integer arithmetic or logical operations, and
 2 floating point arithmetic operations, and
 2 memory access (load or store) operations, and
 1 branch operation, and
 1 conditional operation

Pipelining

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 41

Pipelining
Pipelining is like an assembly line or a bucket brigade.
 An operation consists of multiple stages.
 After a particular set of operands

z(i) = a(i) * b(i) + c(i) * d(i)
completes a particular stage, they move into the next stage.

 Then, another set of operands
z(i+1) = a(i+1) * b(i+1) + c(i+1) * d(i+1)
can move into the stage that was just abandoned by the previous
set.

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 42

DON’T
PANIC!

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 43

Pipelining Example

Instruction
Fetch

Instruction
Decode

Operand
Fetch

Instruction
Execution

Result
Writeback

Instruction
Fetch

Instruction
Decode

Operand
Fetch

Instruction
Execution

Result
Writeback

Instruction
Fetch

Instruction
Decode

Operand
Fetch

Instruction
Execution

Result
Writeback

Instruction
Fetch

Instruction
Decode

Operand
Fetch

Instruction
Execution

Result
Writeback

i = 1

i = 2

i = 3

i = 4

Computation time
If each stage takes, say, one CPU cycle, then once the
loop gets going, each iteration of the loop increases the
total time by only one cycle. So a loop of length 1000
takes only 1004 cycles. [3]

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

DON’T PANIC!

DON’T PANIC!

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 44

Pipelines: Example
 Intel Haswell: pipeline length = 14-19 stages

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 45

Some Simple Loops (F90)
DO index = 1, length
dst(index) = src1(index) + src2(index)

END DO

DO index = 1, length
dst(index) = src1(index) - src2(index)

END DO

DO index = 1, length
dst(index) = src1(index) * src2(index)

END DO

DO index = 1, length
dst(index) = src1(index) / src2(index)

END DO

DO index = 1, length
sum = sum + src(index)

END DO

Reduction: convert
array to scalar

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 46

Some Simple Loops (C)
for (index = 0; index < length; index++) {
dst[index] = src1[index] + src2[index];

}

for (index = 0; index < length; index++) {
dst[index] = src1[index] - src2[index];

}

for (index = 0; index < length; index++) {
dst[index] = src1[index] * src2[index];

}

for (index = 0; index < length; index++) {
dst[index] = src1[index] / src2[index];

}

for (index = 0; index < length; index++) {
sum = sum + src[index];

}

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 47

Slightly Less Simple Loops (F90)
DO index = 1, length
dst(index) = src1(index) ** src2(index) !! src1 ^ src2

END DO

DO index = 1, length
dst(index) = MOD(src1(index), src2(index))

END DO

DO index = 1, length
dst(index) = SQRT(src(index))

END DO

DO index = 1, length
dst(index) = COS(src(index))

END DO

DO index = 1, length
dst(index) = EXP(src(index))

END DO
DO index = 1, length
dst(index) = LOG(src(index))

END DO

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 48

Slightly Less Simple Loops (C)
for (index = 0; index < length; index++) {
dst[index] = pow(src1[index], src2[index]);

}

for (index = 0; index < length; index++) {
dst[index] = src1[index] % src2[index];

}

for (index = 0; index < length; index++) {
dst[index] = sqrt(src[index]);

}

for (index = 0; index < length; index++) {
dst[index] = cos(src[index]);

}

for (index = 0; index < length; index++) {
dst[index] = exp(src[index]);

}

for (index = 0; index < length; index++) {
dst[index] = log(src[index]);

}

Loop Performance

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 50

Performance Characteristics
 Different operations take different amounts of time.
 Different processor types have different performance

characteristics, but there are some characteristics that many
platforms have in common.

 Different compilers, even on the same hardware, perform
differently.

 On some processors, floating point and integer speeds are
similar, while on others they differ.

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 51

Arithmetic Operation Speeds
Arithmetic Performance on Pentium4 EM64T

(Irwindale 3.2 GHz)

0

500

1000

1500

2000

2500

3000
ra

dd

ia
dd

rs
um is
um rs
ub is
ub

rm
ul

im
ul

rm
am

im
am

rm
ad

im
ad

rd
iv

id
iv

rp
ow

im
od

rs
qr

t

rc
os

re
xp rlo

g

rd
ot

re
uc

rlo
t0

8

rlo
t1

0

rlo
t1

2

rlo
t1

6

rlo
t2

0

lo
t2

4r i2
r

r2
i

M
FL

O
Ps

ifort -O0 pgf90 -O0 nagf95 -O0 gfortran -O0 ifort -O2 pgf90 -O3 gfortran -O2 nagf95 -O4

Better

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 52

Fast and Slow Operations
 Fast: sum, add, subtract, multiply
 Medium: divide, modulus (remainder), sqrt
 Slow: transcendental functions (sin, exp)
 Incredibly slow: power xy for real x and y
On most platforms, divide, mod and transcendental functions

are not pipelined, so a code will run faster if most of it is
just adds, subtracts and multiplies.

For example, solving an N x N system of linear equations by
LU decomposition uses on the order of N3 additions and
multiplications, but only on the order of N divisions.

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 53

What Can Prevent Pipelining?
Certain events make it very hard (maybe even impossible) for

compilers to pipeline a loop, such as:
 array elements accessed in random order
 loop body too complicated
 if statements inside the loop (on some platforms)
 premature loop exits
 function/subroutine calls
 I/O

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 54

How Do They Kill Pipelining?
 Random access order: Ordered array access is common, so

pipelining hardware and compilers tend to be designed under
the assumption that most loops will be ordered. Also, the
pipeline will constantly stall because data will come from
main memory, not cache.

 Complicated loop body: The compiler gets too
overwhelmed and can’t figure out how to schedule the
instructions.

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 55

How Do They Kill Pipelining?
 if statements in the loop: On some platforms (but not all),

the pipelines need to perform exactly the same operations
over and over; if statements make that impossible.

However, many CPUs can now perform speculative execution:
both branches of the if statement are executed while the
condition is being evaluated, but only one of the results is
retained (the one associated with the condition’s value).

Also, many CPUs can now perform branch prediction to head
down the most likely compute path.

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 56

How Do They Kill Pipelining?
 Function/subroutine calls interrupt the flow of the

program even more than if statements. They can take
execution to a completely different part of the program, and
pipelines aren’t set up to handle that.

 Loop exits are similar. Most compilers can’t pipeline loops
with premature or unpredictable exits.

 I/O: Typically, I/O is handled in subroutines (above).
Also, I/O instructions can take control of the program away
from the CPU (they can give control to I/O devices).

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 57

What If No Pipelining?

SLOW!

(on most platforms)

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 58

Randomly Permuted Loops
Arithmetic Performance: Ordered vs Random

(Irwindale 3.2 GHz)

0

500

1000

1500

2000

2500

3000
ra

dd

ia
dd

rs
um is
um rs
ub is
ub

rm
ul

im
ul

rm
am

im
am

rm
ad

im
ad

rd
iv

id
iv

rp
ow

im
od

rs
qr

t

rc
os

re
xp rlo

g

rd
ot

re
uc

rlo
t0

8

rlo
t1

0

rlo
t1

2

rlo
t1

6

rlo
t2

0

lo
t2

4r i2
r

r2
i

M
FL

O
Ps

ifort -O2 permuted

Better

Superpipelining

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 60

Superpipelining
Superpipelining is a combination of superscalar and

pipelining.
So, a superpipeline is a collection of multiple pipelines that

can operate simultaneously.
In other words, several different operations can execute

simultaneously, and each of these operations can be broken
into stages, each of which is filled all the time.

So you can get multiple operations per CPU cycle.
For example, a IBM Power4 can have over 200 different

operations “in flight” at the same time.[1]

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 61

More Operations At a Time
 If you put more operations into the code for a loop, you can

get better performance:
 more operations can execute at a time (use more

pipelines), and
 you get better register/cache reuse.

 On most platforms, there’s a limit to how many operations
you can put in a loop to increase performance, but that limit
varies among platforms, and can be quite large.

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 62

Some Complicated Loops
DO index = 1, length

dst(index) = src1(index) + 5.0 * src2(index)
END DO

dot = 0
DO index = 1, length
dot = dot + src1(index) * src2(index)

END DO

DO index = 1, length
dst(index) = src1(index) * src2(index) + &
& src3(index) * src4(index)
END DO

DO index = 1, length
diff12 = src1(index) - src2(index)
diff34 = src3(index) - src4(index)
dst(index) = SQRT(diff12 * diff12 + diff34 * diff34)

END DO

madd (or FMA):
mult then add

(2 ops)

Euclidean distance
(6 ops)

dot product
(2 ops)

from our
example
(3 ops)

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 63

A Very Complicated Loop
lot = 0.0
DO index = 1, length

lot = lot + &
& src1(index) * src2(index) + &
& src3(index) * src4(index) + &
& (src1(index) + src2(index)) * &
& (src3(index) + src4(index)) * &
& (src1(index) - src2(index)) * &
& (src3(index) - src4(index)) * &
& (src1(index) - src3(index) + &
& src2(index) - src4(index)) * &
& (src1(index) + src3(index) - &
& src2(index) + src4(index)) + &
& (src1(index) * src3(index)) + &
& (src2(index) * src4(index))

END DO
24 arithmetic ops per iteration

4 memory/cache loads per iteration

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 64

Multiple Ops Per Iteration
Arithmetic Performance: Multiple Operations

(Irwindale 3.2 GHz)

0

500

1000

1500

2000

2500

3000

radd iadd rmam imam rmad imad rdot reuc rlot08 rlot10 rlot12 rlot16 rlot20 rlot24

M
FL

O
Ps ifort -O2

pgf90 -O3
nagf95 -O4
gfortran -O2

Better

Vectors

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 66

What Is a Vector?
A vector is a giant register that behaves like a collection of

regular registers, except these registers all simultaneously
perform the same operation on multiple sets of operands,
producing multiple results of the same kind.

In a sense, vectors are like operation-specific cache.
A vector register is a register that’s effectively made up of

many individual registers.
A vector instruction is an instruction that performs the same

operation simultaneously on all of the individual registers of
a vector register.

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 67

Vector Register

v0 v1 v2

v0 <- v1 + v2

<-
<-
<-
<-
<-

<-
<-
<-

+
+
+
+
+
+
+
+

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 68

Vectors Are Expensive
Vectors were very popular in the 1980s, because they’re very

fast, often faster than pipelines.
In the 1990s, though, they weren’t very popular. Why?
Well, vectors weren’t used by many commercial codes

(for example, MS Word). So most chip makers didn’t bother
with vectors.

So, if you wanted vectors, you had to pay a lot of extra money
for them.

Pentium III Intel reintroduced very small integer vectors (2
operations at a time). Pentium4 added floating point vector
operations, also of size 2. The Core family doubled the vector
size to 4, and Sandy Bridge (2011) added “Fused Multiply-
Add,” which allows 8 calculations at a time (vector length 4).

A Real Example

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 70

A Real Example[4]

DO k=2,nz-1
DO j=2,ny-1

DO i=2,nx-1
tem1(i,j,k) = u(i,j,k,2)*(u(i+1,j,k,2)-u(i-1,j,k,2))*dxinv2
tem2(i,j,k) = v(i,j,k,2)*(u(i,j+1,k,2)-u(i,j-1,k,2))*dyinv2
tem3(i,j,k) = w(i,j,k,2)*(u(i,j,k+1,2)-u(i,j,k-1,2))*dzinv2

END DO
END DO

END DO
DO k=2,nz-1

DO j=2,ny-1
DO i=2,nx-1

u(i,j,k,3) = u(i,j,k,1) - &
& dtbig2*(tem1(i,j,k)+tem2(i,j,k)+tem3(i,j,k))

END DO
END DO

END DO

. . .

71

Real Example Performance

Performance By Method

0
10
20
30
40
50
60
70
80

10 loops 5 loops 1 loop 2 loops 2 loops unrolled
Method

M
FL

O
PS

Pentium3 NAG Pentium3 Vast

Better

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 72

DON’T
PANIC!

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 73

Why You Shouldn’t Panic
In general, the compiler and the CPU will do most of the heavy

lifting for instruction-level parallelism.

BUT:
You need to be aware of ILP, because
how your code is structured affects
how much ILP the compiler and the
CPU can give you.

TENTATIVE Schedule
Tue Jan 23: Storage: What the Heck is Supercomputing?
Tue Jan 30: The Tyranny of the Storage Hierarchy Part I
Tue Feb 6: The Tyranny of the Storage Hierarchy Part II
Tue Feb 13: Instruction Level Parallelism
Tue Feb 20: Stupid Compiler Tricks
Tue Feb 27: Shared Memory Multithreading
Tue March 6: Distributed Multiprocessing
Tue March 13: Applications and Types of Parallelism
Tue March 20: NO SESSION (OU's Spring Break)
Tue March 27: Multicore Madness
Tue Apr 3: High Throughput Computing
Tue Apr 10: GPGPU: Number Crunching in Your Graphics Card
Tue Apr 17: Grab Bag: Scientific Libraries, I/O Libraries, Visualization
Tue Apr 24: Topic to be announced
Tue May 1: Topic to be announced

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 74

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 75

Thanks for helping!
 OU IT

 OSCER operations staff (Dave Akin, Patrick Calhoun, Kali
McLennan, Jason Speckman, Brett Zimmerman)

 OSCER Research Computing Facilitators (Jim Ferguson,
Horst Severini)

 Debi Gentis, OSCER Coordinator
 Kyle Dudgeon, OSCER Manager of Operations
 Ashish Pai, Managing Director for Research IT Services
 The OU IT network team
 OU CIO Eddie Huebsch

 OneNet: Skyler Donahue
 Oklahoma State U: Dana Brunson

Coming in 2018!
 Coalition for Advancing Digital Research & Education (CADRE) Conference:

Apr 17-18 2018 @ Oklahoma State U, Stillwater OK USA
https://hpcc.okstate.edu/cadre-conference

 Linux Clusters Institute workshops
http://www.linuxclustersinstitute.org/workshops/

 Introductory HPC Cluster System Administration: May 14-18 2018 @ U Nebraska, Lincoln NE USA
 Intermediate HPC Cluster System Administration: Aug 13-17 2018 @ Yale U, New Haven CT USA

 Great Plains Network Annual Meeting: details coming soon
 Advanced Cyberinfrastructure Research & Education Facilitators (ACI-REF) Virtual

Residency Aug 5-10 2018, U Oklahoma, Norman OK USA
 PEARC 2018, July 22-27, Pittsburgh PA USA

https://www.pearc18.pearc.org/

 IEEE Cluster 2018, Sep 10-13, Belfast UK
https://cluster2018.github.io

 OKLAHOMA SUPERCOMPUTING SYMPOSIUM 2018, Sep 25-26 2018 @ OU
 SC18 supercomputing conference, Nov 11-16 2018, Dallas TX USA

http://sc18.supercomputing.org/

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 76

https://hpcc.okstate.edu/cadre-conference
http://www.linuxclustersinstitute.org/workshops/
https://www.pearc18.pearc.org/
https://cluster2018.github.io/
http://sc18.supercomputing.org/

Thanks for your
attention!

Questions?
www.oscer.ou.edu

http://www.oscer.ou.edu/

Supercomputing in Plain English: Instruct Lev Par
Tue Feb 13 2018 78

References
[1] Steve Behling et al, The POWER4 Processor Introduction and Tuning Guide,
IBM, 2001.
[2] Intel® 64 and IA-32 Architectures Optimization Reference Manual, Order
Number: 248966-015, May 2007.
http://www.intel.com/design/processor/manuals/248966.pdf
[3] Kevin Dowd and Charles Severance, High Performance Computing,

2nd ed. O’Reilly, 1998.
[4] Code courtesy of Dan Weber, 2001.
[5] Intel® 64 and IA-32 Architectures Optimization Reference Manual
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf

http://www.intel.com/design/processor/manuals/248966.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf

	Supercomputing�in Plain English�Instruction Level Parallelism
	This is an experiment!
	PLEASE MUTE YOURSELF
	Download the Slides Beforehand
	Zoom
	YouTube
	Twitch
	Wowza #1
	Wowza #2
	Toll Free Phone Bridge
	Please Mute Yourself
	Questions via E-mail Only
	Onsite: Talent Release Form
	TENTATIVE Schedule
	Thanks for helping!
	This is an experiment!
	Coming in 2018!
	Outline
	Parallelism
	What Is ILP?
	Slide Number 21
	Why You Shouldn’t Panic
	Kinds of ILP
	What’s an Instruction?
	What’s a Cycle?
	What’s the Relevance of Cycles?
	Scalar Operation
	Slide Number 28
	Scalar Operation
	Does Order Matter?
	Superscalar Operation
	Loops
	Loops Are Good
	Why Loops Are Good
	Slide Number 35
	Superscalar Loops (C)
	Superscalar Loops (F90)
	Superscalar Loops
	Example: IBM POWER4
	Pipelining
	Pipelining
	Slide Number 42
	Pipelining Example
	Pipelines: Example
	Some Simple Loops (F90)
	Some Simple Loops (C)
	Slightly Less Simple Loops (F90)
	Slightly Less Simple Loops (C)
	Loop Performance
	Performance Characteristics
	Arithmetic Operation Speeds
	Fast and Slow Operations
	What Can Prevent Pipelining?
	How Do They Kill Pipelining?
	How Do They Kill Pipelining?
	How Do They Kill Pipelining?
	What If No Pipelining?
	Randomly Permuted Loops
	Superpipelining
	Superpipelining
	More Operations At a Time
	Some Complicated Loops
	A Very Complicated Loop
	Multiple Ops Per Iteration
	Vectors
	What Is a Vector?
	Vector Register
	Vectors Are Expensive
	A Real Example
	A Real Example[4]
	Real Example Performance
	Slide Number 72
	Why You Shouldn’t Panic
	TENTATIVE Schedule
	Thanks for helping!
	Coming in 2018!
	Thanks for your attention!���Questions?�www.oscer.ou.edu
	References

