Supercomputing

In Plain English
Ql Instruction Level Parallelism

Henry Neeman, Director

Director, OU Supercomputing Center for Education & Research (OSCER)
Assistant Vice President, Information Technology — Research Strategy Advisor
Associate Professor, College of Engineering
Adjunct Associate Professor, School of Computer Science
University of Oklahoma
Tuesday February 3 2015

INFORMATION TECHNOLOGY

e UNIVERSITY o OKLAHOMA

OCIl

OneOkiahoma Cyberinfrastruciure Initiativ

This Is an experiment!

It’s the nature of these kinds of videoconferences that
FAILURES ARE GUARANTEED TO HAPPEN!
NO PROMISES!

So, please bear with us. Hopefully everything will work out
well enough.

If you lose your connection, you can retry the same kind of
connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone
bridge to fall back on.

Supercomputing in Plain English: Instruct Lev Par OClI|
NFORMATION TECHNOLOGY Tue Feb 3 2015 2

PLEASE MUTE YOURSELF

No matter how you connect, PLEASE MUTE YOURSELF,
so that we cannot hear you.

At OU, we will turn off the sound on all conferencing
technologies.

That way, we won’t have problems with echo cancellation.
Of course, that means we cannot hear questions.

So for guestions, you’ll need to send e-mail.

PLEASE MUTE YOURSELF.

PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Instruct Lev Par OClI|
NFORMATION TECHNOLOGY Tue Feb 3 2015

PLEASE REGISTER

If you haven’t already registered, please do so.
You can find the registration link on the SIPE webpage:

http://www.oscer.ou.edu/education/

Our ability to continue providing Supercomputing in Plain English
depends on being able to show strong participation.

We use our headcounts, institution counts and state counts

(since 2001, over 2000 served, from every US state except Rl and
VT, plus 17 other countries, on every continent except Australia
and Antarctica) to improve grant proposals.

Supercomputing in Plain English: Instruct Lev Par OClI|
N)‘ _‘ 'l(f)_:\i TECHNOLOGY Tue Feb 3 2015

http://www.oscer.ou.edu/education/

Download the Slides Beforehand

Before the start of the session, please download the slides from

the Supercomputing in Plain English website:
http://www.oscer.ou.edu/education/

That way, If anything goes wrong, you can still follow along

with just audio.

PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Instruct Lev Par OClI|
NFORMATION TECHNOLOGY Tue Feb 3 2015

http://www.oscer.ou.edu/education/

H.323 (Polycom etc) #1

If you want to use H.323 videoconferencing — for example,
Polycom — then:

= If you AREN’T registered with the OneNet gatekeeper (which

IS probably the case), then:
=« Dial 164.58.250.51
= Bring up the virtual keypad.
On some H.323 devices, you can bring up the virtual keypad by typing:

#
(You may want to try without first, then with; some devices won't work

with the #, but give cryptic error messages about it.)

= When asked for the conference ID, or if there's no response, enter:
0409

= On most but not all H.323 devices, you indicate the end of the ID with:

Supercomputing in Plain English: Instruct Lev Par OClI|
N “ 'l(f)_:\‘:‘I'EZ(IH\()I,.()(,}\' Tue Feb 3 2015 6

H.323 (Polycom etc) #2

If you want to use H.323 videoconferencing — for example,
Polycom — then:

= If you ARE already registered with the OneNet gatekeeper
(most institutions aren’t), dial:

2500409

Many thanks to James Deaton, Skyler Donahue, Jeremy Wright
and Steven Haldeman of OneNet for providing this.

PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Instruct Lev Par OClI|
NFORMATION TECHNOLOGY Tue Feb 3 2015 7

Wowza #1

You can watch from a Windows, MacOS or Linux laptop using
Wowza from the following URL.:

http://jwplayer.onenet.net/stream6/sipe.html

Wowza behaves a lot like YouTube, except live.

Many thanks to James Deaton, Skyler Donahue, Jeremy Wright
and Steven Haldeman of OneNet for providing this.

PLEASE MUTE YOURSELF.

Supercomputmg in Plain English: Instruct Lev Par moc”
: nHuml HERALUG Tue FEb 3 2015 OneOkiahoma Cyberinfrastucture Inifiative

http://jwplayer.onenet.net/stream6/sipe.html

Wowza #2

Wowza has been tested on multiple browsers on each of:
= Windows (7 and 8): IE, Firefox, Chrome, Opera, Safari
= MacOS X: Safari, Firefox

= Linux: Firefox, Opera

PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Instruct Lev Par OClI|
MATION TECHNOLOGY Tue Feb 3 2015

Toll Free Phone Bridge

IF ALL ELSE FAILS, you can use our toll free phone bridge:
800-832-0736
* 623 2874 #

Please mute yourself and use the phone to listen.

Don’t worry, we’ll call out slide numbers as we go.

Please use the phone bridge ONLY if you cannot connect any
other way: the phone bridge can handle only 100
simultaneous connections, and we have over 500 participants.

Many thanks to OU CIO Loretta Early for providing the toll free
phone bridge.

PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Instruct Lev Par OClI|
4 ; Q| INFORMATION TECHNOLOGY Tue Feb 3 2015 10

Please Mute Yourself

No matter how you connect, PLEASE MUTE YOURSELF,
so that we cannot hear you.

(For Wowza, you don’t need to do that, because the
Information only goes from us to you, not from you to us.)

At OU, we will turn off the sound on all conferencing
technologies.

That way, we won’t have problems with echo cancellation.
Of course, that means we cannot hear questions.
So for guestions, you’ll need to send e-mail.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Instruct Lev Par OClI|
NFORMATION TECHNOLOGY Tue Feb 3 2015 11

Questions via E-mail Only

Ask guestions by sending e-mail to:

sipe2015@gmainl .com

All questions will be read out loud and then answered out loud.

PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Instruct Lev Par OClI|
NFORMATION TECHNOLOGY Tue Feb 3 2015 12

mailto:sipe2015@gmail.com

Onsite: Talent Release Form

If you’re attending onsite, you MUST do one of the following:
= complete and sign the Talent Release Form,

OR
= Sit behind the cameras (where you can’t be seen) and don’t
talk at all.

If you aren’t onsite, then PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Instruct Lev Par OClI|
NFORMATION TECHNOLOGY Tue Feb 3 2015 13

TENTATIVE Schedule

Tue Jan 20: Overview: What the Heck is Supercomputing?
Tue Feb 3: The Tyranny of the Storage Hierarchy
Tue Feb 3: Instruction Level Parallelism
Tue Feb 10: Stupid Compiler Tricks
Tue Feb 17: Shared Memory Multithreading
Tue Feb 24: Distributed Multiprocessing
Tue March 3: Applications and Types of Parallelism
Tue March 10: Multicore Madness
Tue March 17: NO SESSION (OU's Spring Break)
Tue March 24: NO SESSION (Henry has a huge grant proposal due)
Tue March 31: High Throughput Computing
Tue Apr 7: GPGPU: Number Crunching in Your Graphics Card
Tue Apr 14: Grab Bag: Scientific Libraries, 1/O Libraries,
_ Vlsuallzatlon

Supercomputing in Plain English: Instruct Lev Par moc”
:U’WJ\};)P\:I‘T\".‘-‘(‘)%LAH(}&M ECHNOLOGY Tue Feb 3 2015 OneOklahoma Cyberinfrastructure Inifiafive 14

Thanks for helping!

OU IT

OSCER operations staff (Brandon George, Dave Akin, Brett
Zimmerman, Josh Alexander, Patrick Calhoun)

Horst Severini, OSCER Associate Director for Remote &
Heterogeneous Computing

Debi Gentis, OSCER Coordinator
Jim Summers
The OU IT network team

James Deaton, Skyler Donahue, Jeremy Wright and Steven
Haldeman, OneNet

Kay Avila, U lowa
Stephen Harrell, Purdue U

Supercomputing in Plain English: Instruct Lev Par OClI|
N)“ 'l(f)_:\‘:‘I'EZ(IH\()I,.()(,}\' Tue Feb 3 2015 15

This Is an experiment!

It’s the nature of these kinds of videoconferences that
FAILURES ARE GUARANTEED TO HAPPEN!
NO PROMISES!

So, please bear with us. Hopefully everything will work out
well enough.

If you lose your connection, you can retry the same kind of
connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone
bridge to fall back on.

PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Instruct Lev Par OClI|
NFORMATION TECHNOLOGY Tue Feb 3 2015 16

Coming in 2015!

Linux Clusters Institute workshop May 18-22 2015 @ OU
http://www. I tnuxclustersinstitute.org/workshops/
Great Plains Network Annual Meeting, May 27-29, Kansas City
Advanced Cyberinfrastructure Research & Education Facilitators (ACI-REF) Virtual
Residency May 31 - June 6 2015
XSEDE2015, July 26-30, St. Louis MO
https://conferences.xsede.org/xsedel5
IEEE Cluster 2015, Sep 23-27, Chicago IL
http://www.mcs.anl .gov/ieeecluster2015/
OKLAHOMA SUPERCOMPUTING SYMPOSIUM 2015, Sep 22-23 2015 @ OU
SC13, Nov 15-20 2015, Austin TX
http://scl5.supercomputing.org/

PLEASE MUTE YOURSELF.

Supercomputlng in Plain English: Instruct Lev Par moc”
: \\Huml s Tue FEb 3 2015 OneOklahoma Cyberinfrastructure Inifiative 17

http://www.linuxclustersinstitute.org/workshops/
https://conferences.xsede.org/xsede15
http://www.mcs.anl.gov/ieeecluster2015/
http://sc15.supercomputing.org/

Outline

s What is Instruction-Level Parallelism?
= Scalar Operation

= Loops

= Pipelining

= Loop Performance
= Superpipelining
= \Vectors

= A Real Example

OneOklahoma Cyberinfrastructure Initiative 18

Parallelism means
doing multiple things at
the same time: You can
get more work done in
the same time.

Less fish ...

Parallelism

More fish

L]
OneOklohema Cyberinfrastructure Inifiative 19

What Is ILP?

Instruction-Level Parallelism (ILP) is a set of techniques for
executing multiple instructions at the same time within

the same CPU core.
(Note that ILP has nothing to do with multicore.)

The problem: A CPU core has lots of circuitry, and at any
given time, most of it is idle, which is wasteful.

The solution: Have different parts of the CPU core work on
different operations at the same time:

If the CPU core has the ability to work on 10 operations at a
time, then the program can, in principle, run as much as 10
times as fast (although in practice, not quite so much).

Supercomputing in Plain English: Instruct Lev Par OClI|
N)‘ _‘ 'l(f)_:\i TECHNOLOGY Tue Feb 3 2015 20

DON"T
PANIC!

Supercomputing in Plain English: Instruct Lev Par OClI|
TECHNOLOGY Tue Feb 3 2015 21

OneOklohema Cyberinfrastructure Inifiative

Why You Shouldn’t Panic

In general, the compiler and the CPU will do most of the heavy
lifting for instruction-level parallelism.

BUT:

You need to be aware of ILP, because
how your code Is structured affects
how much ILP the compiler and the
CPU can give you.

Supercomputing in Plain English: Instruct Lev Par moc”
fi i ificat 22

QLR oG Tue Feb 3 2015

Kinds of ILP

Superscalar: Perform multiple operations at the same time
(for example, simultaneously perform an add, a multiply and
a load).

Pipeline: Start performing an operation on one piece of data
while finishing the same operation on another piece of data —
perform different stages of the same operation on different
sets of operands at the same time (like an assembly line).

Superpipeline: A combination of superscalar and pipelining
— perform multiple pipelined operations at the same time.

Vector: Load multiple pieces of data into special registers and
perform the same operation on all of them at the same time.

Supercomputing in Plain English: Instruct Lev Par moc”
Tue Feb 3 2015 oo ST e 23

What’s an Instruction?

Memory: For example, load a value from a specific address
In main memory into a specific register, or store a value
from a specific register into a specific address in main
memory.

Arithmetic: For example, add two specific registers together
and put their sum in a specific register — or subtract,
multiply, divide, square root, etc.

Logical: For example, determine whether two registers both
contain nonzero values (“AND”).

Branch: Jump from one sequence of instructions to another
(for example, function call).

...andsoon....

Supercomputing in Plain English: Instruct Lev Par OClI|
N ‘\ 'l(ﬁ,’)N‘I'EZ(IH\(}I,.()(,}\' Tue Feb 3 2015 24

What’s a Cycle?

You’ve heard people talk about having a 2 GHz processor or a
3 GHz processor or whatever. (For example, consider a
laptop with a 2.0 GHz 13.)

Inside every CPU is a little clock that ticks with a fixed
frequency.

We call each tick of the CPU clock a clock cycle or a cycle.
So a 2 GHz processor has 2 billion clock cycles per second.

Typically, a primitive operation (for example, add, multiply,
divide) takes a fixed number of cycles to execute (assuming
no pipelining).

w

Supercomputing in Plain English: Instruct Lev Par OClI|
N)‘ _‘ 'l(f)_:\: TECHNOLOGY Tue Feb 3 2015 25

What’s the Relevance of Cycles?

Typically, a primitive operation (for example, add, multiply,
divide) takes a fixed number of cycles to execute (assuming
no pipelining).

= |[BM POWER4 [1] =

= Multiply or add: 6 cycles (64 bit floating point) g
= Load: 4 cycles from L1 cache
14 cycles from L2 cache

= Intel Sandy Bridge (4 x 64 bit floating point vector) [
= Add: 3 cycles
= Subtract: 3 cycles
= Multiply: 5 cycles
= Divide: 21-45 cycles
= Square root: 21-45 cycles
= Tangent:147 — 300 cycles

Supercomputing in Plain English: Instruct Lev Par OClI|
N «'l‘)“_"-“ 'l(ﬁ,’)N‘I'EZ(IH\(}I,.()(,}\' Tue Feb 3 2015

26

Q|| Scalar Operation

DON"T
PANIC!

Supercomputing in Plain English: Instruct Lev Par OClI|
TECHNOLOGY Tue Feb 3 2015 28

OneOklohema Cyberinfrastructure Inifiative

Scalar Operation

Z =a*b+c * d;
How would this statement be executed?
Load a into register RO
Load b into R1
Multiply R2 = RO * R1
Load c into R3
Load d into R4
Multiply R5 = R3 * R4
Add R6 = R2 + R5
Store R6 Into z

N WNE

Supercomputing in Plain English: Instruct Lev Par OClI|
N ()‘) (,'1_\ TECHNOLOGY Tue Feb 3 2015 29

1. Load a into RO
2. Load b Iinto R1

3. Multiply
R2 = RO * R1

4. Load c into R3
5. Load d into R4

6. Multiply
R5 = R3 * R4

7. Add R6 = R2 + R5
8. Store R6 Into z

In the cases where order doesn’t matter, we say that

4.
D.
6.

7.

8.

Does Order Matter?

Z =a>*b+ c * d;
1.

2.
3.

Load d into
Load C iInto

Multiply
R2 = RO *

Load b iInto

Load a iInto

Multiply
R5 = R3 *

Add R6 =

RO
R1

R1
R3
R4

R4

R2 + R5

Store R6 Into z

the operations are independent of one another.

Supercomputing in Plain English: Instruct Lev Par

%\\\‘\’\1 COMPUTTv %
544 =)
;'O&EREE [FORMATION TECHNOLOGY
J%:;Trv.f;”""'°N$d:\‘\°‘\\ % "l";};}wvn};‘r\[;-\ul%.\]..‘\')-]lc}m.l HLERCLUG Tue FEb 3 20 15
L4 ¥ NOLLYS

OneOklohema Cyberinfrastructure Inifiafive

Superscalar Operation

B~ W

D.

Z =a*b+c* d;
Load a into RO AND
load b into R1
Multiply R2 = RO * R1 AND
load ¢ into R3 AND
load d into R4
Multiply R5 = R3 * R4
Add R6 = R2 + R5
Store R6 into z
If order doesn’t matter,
then things can happen simultaneously.

So, we go from 8 operations down to 5.
(Note: There are lots of simplifying assumptions here.)

Supercomputing in Plain English: Instruct Lev Par OClI|
Q| l\l()R\[\ll(J\ TECHNOLOGY Tue Feb 3 2015 31

L_oops
Q||

_oops Are Good

Most compilers are very good at optimizing loops, and not
very good at optimizing other constructs.
Why?

DO 1ndex = 1, length
dst(index) = srcl(index) + src2(index)
END DO

for (index = 0O; Index < length; iIndex++) {
dstfindex] = srclfindex] + src2[index];

Supercomputing in Plain English: Instruct Lev Par -NOC”
Tue Feb 3 2015 e 33

Why Loops Are Good

= Loops are very common in many programs.

= Also, it’s easier to optimize loops than to optimize
more arbitrary sequences of instructions: when a program
does the same thing over and over, it’s easier to predict

what’s likely to happen next.
So, hardware vendors have designed their products to be able
to execute loops quickly.

Supercomputing in Plain English: Instruct Lev Par OClI|
N “ 'l(f)_:\‘:‘I'EZ(IH\()I,.()(,}\' Tue Feb 3 2015 34

DON"T
PANIC!

Supercomputing in Plain English: Instruct Lev Par OClI|
TECHNOLOGY Tue Feb 3 2015 35

OneOklohema Cyberinfrastructure Inifiative

Superscalar Loops (C)

for (i = 0; i < length; i++) {
z[1]

alr] * blr] + c[n] * d[1];
¥

Each of the iterations is completely independent of all
of the other iterations; for example,

z[O0] = aJO0] * bJO] + c[O] * d]O]
has nothing to do with
z[1] = a[1] * bf1] + c[1] * d]1]

Operations that are independent of each other can be
performed in parallel.

Supercomputing in Plain English: Instruct Lev Par OClI|
INFORMATION TECHNOLOGY Tue Feb 3 2015 36

Superscalar Loops (F90)

DO 1 = 1, length

z(r) = a(r) * b(r) + c(r) * d(n)
END DO
Each of the iterations is completely independent of all

of the other iterations; for example,

z(1) = a(l) * b(1l) + c(1) * d(1)
has nothing to do with

z(2) = a(2) * b(2) + c(2) * d(2)
Operations that are independent of each other can be
performed in parallel.

Supercomputing in Plain English: Instruct Lev Par OClI|
INFORMATION TECHNOLOGY Tue Feb 3 2015 37

Superscalar Loops

for (1 = 0; 1 < length; 1++) {

z[1] = aln] * b[n] + clr] * d[1];

Load af 1] into RO AND load b[1] into R1
Multiply R2 = RO * R1 AND load c[1] into
R3 AND load d[i] Into R4

Multlply R5 = R3 * R4 AND

load a[|+1] into RO AND load b[i+1] into R1
Add R6 = R2 + R5 AND load c[1+1] into R3
AND load d[1+1] into R4

Store R6 into z[1] AND multiply R2 = RO * R1
etc etc etc

Ince this loop Is “In flight,” each iteration adds only

2 operations to the total, not 8.

' Supercomputing in Plain English: Instruct Lev Par OCII
ZI:OSCEEE” Q| INFORMATION TECHNOLOGY Tue Feb 3 2015 38

Example: IBM POWERA4

8-way Superscalar: can execute up to 8 operations at the same
timel1]

= 2 Integer arithmetic or logical operations, and

= 2 floating point arithmetic operations, and

= 2 memory access (load or store) operations, and
= 1 branch operation, and
= 1 conditional operation

Supercomputmg in Plain Engllsh Instruct Lev Par moc”

Tue Feb 3 2015 39

Q|| Pipelining

Pipelining

Pipelining is like an assembly line or a bucket brigade.
= An operation consists of multiple stages.
= After a particular set of operands

z(1) = a(r) * b(r) + c(r) * d(n)
completes a particular stage, they move into the next stage.

= Then, another set of operands
z(i+1) = a(i+l) * b(i+l) + c(i+l) * d(i1+l1)
can move Into the stage that was just abandoned by the previous
set.

Supercomputing in Plain English: Instruct Lev Par OClI|
NFORMATION TECHNOLOGY Tue Feb 3 2015 41

DON"T
PANIC!

Supercomputing in Plain English: Instruct Lev Par OClI|
TECHNOLOGY Tue Feb 3 2015 42

OneOklohema Cyberinfrastructure Inifiative

Pipelining Example

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7

1 = 1 poNn'TPANIC!

DON'TPANIC! § = 4

Computation time
If each stage takes, say, one CPU cycle, then once the
loop gets going, each iteration of the loop increases the
total time by only one c¥cle So a loop of length 1000
takes only 1004 cycles. I3

Supercomputing in Plain English: Instruct Lev Par OClI|
NP I\Il ‘h[HNOLOGY Tue Feb32015

OneOklahema Cyberinfrastructure Initiative

Pipelines: Example

= Intel Haswell: pipeline length = 14-19 stages

|

Supercomputing in Plain English: Instruct Lev Par OClI|

L Jh\'l\:l‘\ Y ; L“%I\ \HU\!‘ : (F[\(H(](.\ Tue FEb 3 20 15 44

OneOklahoma Cyberinirasin

Some Simple Loops (F90)

DO index = 1, length
dst(index) = srcl(index) + src2(index)
END DO

DO index = 1, length
dst(index) = srcl(index) - src2(index)
END DO

DO 1ndex = 1, length
dst(index) = srcl(index) * src2(index)
END DO

DO 1ndex = 1, length
dst(index) = srcl(index) / src2(index)

END DO
DO 1ndex = 1, length I .

e o seedinded Reduction: convert
END DO array to scalar

Supercomputing in Plain English: Instruct Lev Par -mOC”
Tue Feb 3 2015 OneOklahoma Cyberinfrastructure Inifiative 45

Some Simple Loops (C)

for (index = 0; 1ndex < length; iIndex++) {
dst[index] = srcl[index] + src2[index];

}

for (index = 0; 1ndex < length; iIndex++) {
dst[index] srcl[index] - src2[index];

}

for (index = 0; iIndex < length; iIndex++) {
dst[index] srcl[index] * src2[index];

}

for (index = 0; iIndex < length; iIndex++) {
y dst[index] srcl[index] / src2[index];

for (index = 0; index < length; index++) {
sum = sum + src[index];

M UNIVERS

Supercomputing in Plain English: Instruct Lev Par OCI|
o) = _\5 Q| INFORMATION TECHNOLOGY Tue Feb 3 2015

46

Slightly Less Simple Loops (F90)

DO index = 1, length
dst(index) = srcl(index) ** src2(index) !l srcl ™ src2

END DO
DO index = 1, length

dst(index) = MOD(srcl(index), src2(index))
END DO

DO index = 1, length
dst(index) = SQRT(src(index))
END DO

DO index = 1, length
dst(index) = COS(src(index))
END DO

DO index = 1, length
dst(index) = EXP(src(index))
END DO

DO index = 1, length
dst(index) = LOG(src(index))
END DO

Supercomputing in Plain English: Instruct Lev Par OCI|
o) = _\5 Q| INFORMATION TECHNOLOGY Tue Feb 3 2015 47

e UNIVERS

Slightly Less Simple Loops (C)

for (index = 0; index < length; index++) {
y dst[index] = pow(srcl[index], src2[index]);

for (index = 0; iIndex < length; index++} {
y dst[index] = srclfindex] % src2[index];
for (index = 0; index < length; index++) {
y dst[index] = sqrt(src[index]);
for (index = 0; index < length; index++) {
y dst[index] = cos(src|index]);
for (index = 0; index < length; index++) {
y dst[index] = exp(srcl[index]);
for (index = 0; index < length; iIndex++) {
dst[index] = log(src[index]);
Supercomputlng in Plain English: Instruct Lev Par
TION TECHNOLOG Tue Feb 3 2015 -@EOC” 48

Q|| _oop Performance

Performance Characteristics

Different operations take different amounts of time.

Different processor types have different performance
characteristics, but there are some characteristics that many
platforms have in common.

Different compilers, even on the same hardware, perform
differently.

On some processors, floating point and integer speeds are
similar, while on others they differ.

Supercomputmg in Plain English: Instruct Lev Par moc”
: nHuml HERALUG Tue FEb 3 2015 OneOkiahoma Cyberinfrastucture Inifiative 50

Arithmetic Operation Speeds

Arithmetic Performance on Pentium4 EM64T
(Irwindale 3.2 GHz)

3000
Better
2500
2000
[7p]
(al
@)
-1 1500
LL
=
1000
500
0 - S =
T 8 EESSZTZEERTEZE:3 8888883388 §saq
e € gze22EEEELEEER®RZERCSET®EE 555 28 3 -
| = ifort -00 m pgfo0 -O0 M nagf95 -00 M gfortran -O0 M ifort -O2 M pgfo0 -O3 M gfortran -O2 M nagf95 -O4|
Supercomputing in Plain English: Instruct Lev Par OClI|
TECHNOLOGY Tue Feb 3 2015

OneOklohema Cyberinfrastructure Inifiative

51

Fast and Slow Operations

= Fast: sum, add, subtract, multiply

= Medium: divide, mod (that is, remainder), sqrt
= Slow: transcendental functions (sin, exp)

= Incredibly slow: power x¥ for real x and y

On most platforms, divide, mod and transcendental functions
are not pipelined, so a code will run faster if most of it is
just adds, subtracts and multiplies.

For example, solving an N x N system of linear equations by
LU decomposition uses on the order of N3 additions and
multiplications, but only on the order of N divisions.

Supercomputing in Plain English: Instruct Lev Par OClI|
NFORMATION TECHNOLOGY Tue Feb 3 2015 52

What Can Prevent Pipelining?

Certain events make it very hard (maybe even impossible) for
compilers to pipeline a loop, such as:

= array elements accessed in random order
= loop body too complicated
= 1T statements inside the loop (on some platforms)

= premature loop exits

= function/subroutine calls
= 1/O

Supercomputing in Plain English: Instruct Lev Par OClI|
N ‘ _‘ 'l(,’)_:\:‘I'EE(IH\()I,.()(,}\' Tue Feb 3 2015 53

How Do They Kill Pipelining?

= Random access order: Ordered array access iIs common, so
pipelining hardware and compilers tend to be designed under
the assumption that most loops will be ordered. Also, the
pipeline will constantly stall because data will come from
main memory, not cache.

= Complicated loop body: The compiler gets too
overwhelmed and can’t figure out how to schedule the

Instructions.

Supercomputlng in Plain English: Instruct Lev Par moc”
: nHun\l s Tue Feb 3 2015 OneOklahoma Cyberinfrasiructure Inifiafive 54

How Do They Kill Pipelining?

= 1T statements in the loop: On some platforms (but not all),

the pipelines need to perform exactly the same operations
over and over; 1T statements make that impossible.

However, many CPUs can now perform speculative execution:
both branches of the 1T statement are executed while the
condition is being evaluated, but only one of the results Is
retained (the one associated with the condition’s value).

Also, many CPUs can now perform branch prediction to head
down the most likely compute path.

Supercomputing in Plain English: Instruct Lev Par OClI|
N)‘ _‘ 'l(,’)_;\ TECHNOLOGY Tue Feb 3 2015 55

How Do They Kill Pipelining?

= Function/subroutine calls interrupt the flow of the
program even more than 1T statements. They can take

execution to a completely different part of the program, and
pipelines aren’t set up to handle that.

= Loop exits are similar. Most compilers can’t pipeline loops
with premature or unpredictable exits.

= |/O: Typically, 1/0O is handled in subroutines (above).
Also, I/O instructions can take control of the program away
from the CPU (they can give control to 1/O devices).

Supercomputing in Plain English: Instruct Lev Par OClI|
NFORMATION TECHNOLOGY Tue Feb 3 2015 56

What If No Pipelining?
SLOW!

(on most platforms)

Supercomputing in Plain English: Instruct Lev Par moc”
Tue Feb 3 2015 e 57

Randomly Permuted Loops

Arithmetic Performance: Ordered vs Random
(Irwindale 3.2 GHz)

Better 3000
2000
[%2)
o
-1 1500
LL
=
1000
500
0 - e N
B 3EESSEZZEEREZE 2858888382828 ¢Fscw
28 g2E2EEZEELERCREEEETREEEEEES T
‘llfort 02 permuted‘
Supercomputing in Plain English: Instruct Lev Par OClI|
Tue Feb 3 2015 OneOklohema Cyberinfrastructure Inifiafive 58

Superpipelining
I

Superpipelining

Superpipelining is a combination of superscalar and
pipelining.

So, a superpipeline is a collection of multiple pipelines that
can operate simultaneously.

In other words, several different operations can execute
simultaneously, and each of these operations can be broken
Into stages, each of which is filled all the time.

So you can get multiple operations per CPU cycle.

For example, a IBM Power4 can have over 200 different
operations “in flight” at the same time.]

Supercomputing in Plain English: Instruct Lev Par OClI|
N ‘\ 'l(ﬁ,’)N‘I'EZ(IH\(}I,.()(,}\' Tue Feb 3 2015 60

More Operations At a Time

= |f you put more operations into the code for a loop, you can
get better performance:
= More operations can execute at a time (use more
pipelines), and
= yOu get better register/cache reuse.

= On most platforms, there’s a limit to how many operations
you can put in a loop to increase performance, but that limit

varies among platforms, and can be quite large.

Supercomputmg in Plain English: Instruct Lev Par moc”
: LAHOMA HERALUG Tue FEb 3 2015 OneOkiahoma Cyberinfrastucture Inifiative 61

Some Complicated Loops

DO index = 1, length madd (or FMA):
dst(index) = srcl(index) + 5.0 * src2(index) multthen add
dot = O

DO 1ndex = 1, length ot duct
dot = dot + srcl(index) * src2(index) YOtProduc
END DO (2 ops)

DO index = 1, length

dst(index) = srcl(index) * src2(index) + & from our
& src3(index) * src4(index) example
END DO (3 0ps)
DO index = 1, length : :

diffl2 = srcl(index) - src2(index) Euclidean distance

diff34 = src3(index) - src4(index) (6 ops)

dst(index) = SQRT(diffl2 * diffl2 + diff34 * diff34)

Supercomputing in Plain English: Instruct Lev Par OClI|
; = _\5 Q| INFORMATION TECHNOLOGY Tue Feb 3 2015 62

e UNIVERS

A Very Complicated Loop

ot = 0.0
DO 1ndex = 1, length

ot = lot + &
& srcl(index) * src2(index) + &
& src3(index) * src4(index) + &
& (srcl(index) + src2(index)) * &
& (src3(index) + src4(index)) * &
& (srcl(index) - src2(index)) * &
& (src3(index) - src4(index)) * &
& (srcl(index) - src3(index) + &
& src2(index) - src4(index)) * &
& (srcl(index) + src3(index) - &
& src2(index) + src4(index)) + &
& (srcl(index) * src3(index)) + &
& (src2(index) * src4(index))
END DO

24 arithmetic ops per iteration
4 memory/cache loads per iteration

Supercomputing in Plain English: Instruct Lev Par OCI|
& = _\5 Q| INFORMATION TECHNOLOGY Tue Feb 3 2015 63

e UNIVERS

Multiple Ops Per Iteration

Arithmetic Performance: Multiple Operations
(Irwindale 3.2 GHz)

3000
Better
2500
2000
é’_’ M ifort -O2
3 1500 W pgf90 -03
LL M nagf95 -O4
= M gfortran -02
1000
500

radd iadd rmam imam rmad imad rdot reuc rlot0O8 rlotl0 rlot12 rlotl6 rlot20 rlot24

Supercomputing in Plain English: Instruct Lev Par OClI|

INFORMATION TECHNOLOGY Tue Feb 3 2015

. e UNIVERSITY of OKLAHOMA

64

OneOklahema Cyberinfrastructure Inifiafiv

Vectors
Q||

What Is a VVector?

A vector Is a giant register that behaves like a collection of
regular registers, except these registers all simultaneously
perform the same operation on multiple sets of operands,
producing multiple results of the same kind.

In a sense, vectors are like operation-specific cache.

A vector register is a register that’s actually made up of many
Individual registers.

A vector instruction Is an instruction that performs the same
operation simultaneously on all of the individual registers of a
vector register.

Supercomputmg in Plain English: Instruct Lev Par moc”
: nHuml HERALUG Tue FEb 3 2015 OneOkiahoma Cyberinfrastucture Inifiative 66

Vector Register

V2

+ + + + + + + +

vO <- v1 + Vv?2

Supercomputlng in Plain English: Instruct Lev Par moc”
)

Tue Feb 3 2015 67

Vectors Are Expensive

Vectors were very popular in the 1980s, because they’re very
fast, often faster than pipelines.

In the 1990s, though, they weren’t very popular. Why?

Well, vectors weren’t used by many commercial codes & %
(for example, MS Word). So most chip makers didn’t bother
with vectors.

So, If you wanted vectors, you had to pay a lot of extra money
for them.

Pentium Il Intel reintroduced very small integer vectors (2

operations at a time). Pentium4 added floating point vector

operations, also of size 2. The Core family doubled the vector

size to 4, and Sandy Bridge (2011) added “Fused Multiply-

Add,” which allows 8 calculations at a time (vector length 4).

Y Supercomputing in Plain English: Instruct Lev Par OCII
lé:OSCEREZ Q| INFORMATION TECHNOLOGY Tue Feb 3 2015 68

Q|| A Real Example

A Real Examplel!

DO k=2,nz-1
DO j=2,ny-1
DO 1=2,nx-1
teml(i,]j,k)
tem2(1,],k)
tem3(1,],Kk)
END DO
END DO
END DO
DO k=2,nz-1
DO j=2,ny-1
DO 1=2,nx-1
u(r,j.k,3) = u(n,j.k,1) - &
& dtbig2*(teml(i,j,k)+tem2(i,j,k)+tem3(1,]j,Kk))
END DO
END DO
END DO

u(n,j,.k,2)*(u(i+l,j3,k,2)-u(i-1,j,k,2))*dxinv2
v(i,j,.k,2)*(u(r,j+1,k,2)-u(i,j-1,k,2))*dyinv2
w(i,j,k,2)*(u(r,j,k+1,2)-u(i,j,k-1,2))*dzinv2

Supercomputing in Plain English: Instruct Lev Par

[RCOMPUT/ >
% : | :IHECK:H
\ > % Q) INEORMATION TECHNOLOGY Tue Feb 3 2015 70
2y NoLWY

OneOklahoma Cyberi

Real Example Performance

Performance By Method
Better

80

70
60
50
40
30 -
20
10

MFLOPS

10 loops 5 loops 1 loop 2loops 2loops unrolled
Method

M Pentium3 NAG HE Pentium3 Vast

e UNIVERS OneOklahoma Cyberinfrastructure Inifiative

Supercomputing in Plain English: Instruct Lev Par OCI|
Bt = _\5 Q| INFORMATION TECHNOLOGY Tue Feb 3 2015

DON"T
PANIC!

Supercomputing in Plain English: Instruct Lev Par OClI|
TECHNOLOGY Tue Feb 3 2015 72

OneOklohema Cyberinfrastructure Inifiative

Why You Shouldn’t Panic

In general, the compiler and the CPU will do most of the heavy
lifting for instruction-level parallelism.

BUT:

You need to be aware of ILP, because
how your code Is structured affects
how much ILP the compiler and the
CPU can give you.

Supercomputing in Plain English: Instruct Lev Par moc”
fi i ificat 73

QLR oG Tue Feb 3 2015

TENTATIVE Schedule

Tue Jan 20: Overview: What the Heck is Supercomputing?
Tue Feb 3: The Tyranny of the Storage Hierarchy
Tue Feb 3: Instruction Level Parallelism
Tue Feb 10: Stupid Compiler Tricks
Tue Feb 17: Shared Memory Multithreading
Tue Feb 24: Distributed Multiprocessing
Tue March 3: Applications and Types of Parallelism
Tue March 10: Multicore Madness
Tue March 17: NO SESSION (OU's Spring Break)
Tue March 24: NO SESSION (Henry has a huge grant proposal due)
Tue March 31: High Throughput Computing
Tue Apr 7: GPGPU: Number Crunching in Your Graphics Card
Tue Apr 14: Grab Bag: Scientific Libraries, 1/O Libraries,
_ Vlsuallzatlon

Supercomputing in Plain English: Instruct Lev Par moc”
:U’WJ\};)P\:I‘T\".‘-‘(‘)%LAH(}&M ECHNOLOGY Tue Feb 3 2015 OneOklahoma Cyberinfrastructure Inifiafive 74

Thanks for helping!

OU IT

OSCER operations staff (Brandon George, Dave Akin, Brett
Zimmerman, Josh Alexander, Patrick Calhoun)

Horst Severini, OSCER Associate Director for Remote &
Heterogeneous Computing

Debi Gentis, OSCER Coordinator
Jim Summers
The OU IT network team

James Deaton, Skyler Donahue, Jeremy Wright and Steven
Haldeman, OneNet

Kay Avila, U lowa
Stephen Harrell, Purdue U

Supercomputing in Plain English: Instruct Lev Par OClI|
N)“ 'l(f)_:\‘:‘I'EZ(IH\()I,.()(,}\' Tue Feb 3 2015 75

Coming in 2015!

Red Hat Tech Day, Thu Jan 22 2015 @ OU
http://g9oo.gl/forms/jORZCz9Oxh7
Linux Clusters Institute workshop May 18-22 2015 @ OU
http://www. I tnuxclustersinstitute.org/workshops/
Great Plains Network Annual Meeting, May 27-29, Kansas City
Advanced Cyberinfrastructure Research & Education Facilitators (ACI-REF) Virtual
Residency May 31 - June 6 2015
XSEDE2015, July 26-30, St. Louis MO
https://conferences.xsede.org/xsedel5
IEEE Cluster 2015, Sep 23-27, Chicago IL
http://www.mcs.anl .gov/ieeecluster2015/
OKLAHOMA SUPERCOMPUTING SYMPOSIUM 2015, Sep 22-23 2015 @ OU
SC13, Nov 15-20 2015, Austin TX
http://scl5.supercomputing.org/

Supercomputing in Plain English: Instruct Lev Par OClI|
NFORMATION TECHNOLOGY Tue Feb 3 2015 76

http://goo.gl/forms/jORZCz9xh7
http://www.linuxclustersinstitute.org/workshops/
https://conferences.xsede.org/xsede15
http://www.mcs.anl.gov/ieeecluster2015/
http://sc15.supercomputing.org/

OK Supercomputing Symposium 2015

\ '_i J_‘h ’I.I:'.-'- i .::.}. .-;.uiﬂ/li'] £
2003 Keynote: 2004 Keynote: 2005 Keynote: 2006 Keynote: 2007 Keynote: 2008 Keynote: 2009 Keynote:
Peter Freeman Sangtae Kim Walt Brooks Dan Atkins Jay Boisseau Jose Munoz Douglass Post
NSF _ NSF Shared NASA Advanced ead of NSE’s Director geputty /%ﬁ'.ce Chief Scientist
Computer & Information Cyberinfrastructure ~ Supercomputing e "~ Texas Advanced ¢ TSSO (s Dept of Defense

Science & Engineering Division Director Division Director

' Computing Center ' HPC Modernization
Assistant Director Cyberinfrastructur NSF Office of

® U. Texas Austin Cyberinfrastructure Program
FREE!
Wed Sep 23 2015
@ OuU
2012 Keynote:

Reception/Poster Session
Thom Dunning 2013 Keynote: 2014 Keynote: P
John Shalf Irene Qualters Tue Sep 22 2015 @ OU

2010 Keynote: 2011 Keynote:
Horst Simon Barry Schneider

; Director .
Deputy Director Program Manager = . Lo .
Lawrence Berkeley National Science National Center for Dept Head CS - Division Director Wed SSeyrE Ozsélign@ ou
National Laboratory ~ Foundation Supercomputing Lawrence Advanced p
Applications Berkeley Lab Cyberinfarstructure

CTO,NERSC pivision, NSF

Supercomputing in Plain English: Instruct Lev Par OClI|
TECHNOLOGY Tue Feb 3 2015 77

OneOklohema Cyberinfrastructure Inifiative

Thanks for your
attention!

Q||

Questions?

WWW.oscer.ou.edu

http://www.oscer.ou.edu/

References

[1] Steve Behling et al, The POWER4 Processor Introduction and Tuning Guide,
IBM, 2001.
[2] Intel® 64 and 1A-32 Architectures Optimization Reference Manual, Order
Number: 248966-015, May 2007.
http://www. intel .com/design/processor/manuals/248966 . pdf
[3] Kevin Dowd and Charles Severance, High Performance Computing,

2nd ed. O’Reilly, 1998.
[4] Code courtesy of Dan Weber, 2001.

[5] Intel® 64 and 1A-32 Architectures Optimization Reference Manual

http://www. intel .com/content/dam/doc/manual/64-i1ia-32-architectures-optimization-manual .pdf

Supercomputing in Plain English: Instruct Lev Par moc”
Tue Feb 3 2015 OneOklahoma Cyberinfrastructure Inifiative 79

http://www.intel.com/design/processor/manuals/248966.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf

	Supercomputing�in Plain English�Instruction Level Parallelism
	This is an experiment!
	PLEASE MUTE YOURSELF
	PLEASE REGISTER
	Download the Slides Beforehand
	H.323 (Polycom etc) #1
	H.323 (Polycom etc) #2
	Wowza #1
	Wowza #2
	Toll Free Phone Bridge
	Please Mute Yourself
	Questions via E-mail Only
	Onsite: Talent Release Form
	TENTATIVE Schedule
	Thanks for helping!
	This is an experiment!
	Coming in 2015!
	Outline
	Parallelism
	What Is ILP?
	Slide Number 21
	Why You Shouldn’t Panic
	Kinds of ILP
	What’s an Instruction?
	What’s a Cycle?
	What’s the Relevance of Cycles?
	Scalar Operation
	Slide Number 28
	Scalar Operation
	Does Order Matter?
	Superscalar Operation
	Loops
	Loops Are Good
	Why Loops Are Good
	Slide Number 35
	Superscalar Loops (C)
	Superscalar Loops (F90)
	Superscalar Loops
	Example: IBM POWER4
	Pipelining
	Pipelining
	Slide Number 42
	Pipelining Example
	Pipelines: Example
	Some Simple Loops (F90)
	Some Simple Loops (C)
	Slightly Less Simple Loops (F90)
	Slightly Less Simple Loops (C)
	Loop Performance
	Performance Characteristics
	Arithmetic Operation Speeds
	Fast and Slow Operations
	What Can Prevent Pipelining?
	How Do They Kill Pipelining?
	How Do They Kill Pipelining?
	How Do They Kill Pipelining?
	What If No Pipelining?
	Randomly Permuted Loops
	Superpipelining
	Superpipelining
	More Operations At a Time
	Some Complicated Loops
	A Very Complicated Loop
	Multiple Ops Per Iteration
	Vectors
	What Is a Vector?
	Vector Register
	Vectors Are Expensive
	A Real Example
	A Real Example[4]
	Real Example Performance
	Slide Number 72
	Why You Shouldn’t Panic
	TENTATIVE Schedule
	Thanks for helping!
	Coming in 2015!
	OK Supercomputing Symposium 2015
	Thanks for your attention!���Questions?�www.oscer.ou.edu
	References

