
Supercomputing
in Plain English

Instruction Level Parallelism
Henry Neeman, Director

OU Supercomputing Center for Education & Research (OSCER)
University of Oklahoma
Tuesday February 5 2013

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 2

This is an experiment!
It’s the nature of these kinds of videoconferences that

FAILURES ARE GUARANTEED TO HAPPEN!
NO PROMISES!

So, please bear with us. Hopefully everything will work out
well enough.

If you lose your connection, you can retry the same kind of
connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone
bridge to fall back on.

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 3

H.323 (Polycom etc) #1
If you want to use H.323 videoconferencing – for example,

Polycom – then:
 If you AREN’T registered with the OneNet gatekeeper (which

is probably the case), then:
 Dial 164.58.250.47
 Bring up the virtual keypad.

On some H.323 devices, you can bring up the virtual keypad by typing:

(You may want to try without first, then with; some devices won't work
with the #, but give cryptic error messages about it.)

 When asked for the conference ID, or if there's no response, enter:
0409

 On most but not all H.323 devices, you indicate the end of the ID with:

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 4

H.323 (Polycom etc) #2
If you want to use H.323 videoconferencing – for example,

Polycom – then:
 If you ARE already registered with the OneNet gatekeeper

(most institutions aren’t), dial:
 2500409

Many thanks to Skyler Donahue and Steven Haldeman of OneNet
for providing this.

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 5

Wowza #1
You can watch from a Windows, MacOS or Linux laptop using

Wowza from either of the following URLs:

http://www.onenet.net/technical-resources/video/sipe-stream/

OR
https://vcenter.njvid.net/videos/livestreams/page1/

Wowza behaves a lot like YouTube, except live.

Many thanks to Skyler Donahue and Steven Haldeman of OneNet

and Bob Gerdes of Rutgers U for providing this.

http://www.onenet.net/technical-resources/video/sipe-stream/
https://vcenter.njvid.net/videos/livestreams/page1/

Wowza #2
Wowza has been tested on multiple browsers on each of:
 Windows (7 and 8): IE, Firefox, Chrome, Opera, Safari
 MacOS X: Safari, Firefox
 Linux: Firefox, Opera
We’ve also successfully tested it on devices with:
 Android
 iOS
However, we make no representations on the likelihood of it
working on your device, because we don’t know which
versions of Android or iOS it might or might not work with.

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 6

Wowza #3
If one of the Wowza URLs fails, try switching over to the other
one.

If we lose our network connection between OU and OneNet,
then there may be a slight delay while we set up a direct
connection to Rutgers.

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 7

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 8

Toll Free Phone Bridge
IF ALL ELSE FAILS, you can use our toll free phone bridge:

800-832-0736
* 623 2847 #

Please mute yourself and use the phone to listen.
Don’t worry, we’ll call out slide numbers as we go.
Please use the phone bridge ONLY if you cannot connect any

other way: the phone bridge can handle only 100
simultaneous connections, and we have over 350 participants.

Many thanks to OU CIO Loretta Early for providing the toll free
phone bridge.

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 9

Please Mute Yourself
No matter how you connect, please mute yourself, so that we

cannot hear you.
(For Wowza, you don’t need to do that, because the

information only goes from us to you, not from you to us.)
At OU, we will turn off the sound on all conferencing

technologies.
That way, we won’t have problems with echo cancellation.
Of course, that means we cannot hear questions.
So for questions, you’ll need to send e-mail.

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 10

Questions via E-mail Only
Ask questions by sending e-mail to:

sipe2013@gmail.com

All questions will be read out loud and then answered out loud.

mailto:sipe2013@gmail.com

TENTATIVE Schedule
Tue Jan 29: Inst Level Par: What the Heck is Supercomputing?
Tue Jan 29: The Tyranny of the Storage Hierarchy
Tue Feb 5: Instruction Level Parallelism
Tue Feb 12: Stupid Compiler Tricks
Tue Feb 19: Shared Memory Multithreading
Tue Feb 26: Distributed Multiprocessing
Tue March 5: Applications and Types of Parallelism
Tue March 12: Multicore Madness
Tue March 19: NO SESSION (OU's Spring Break)
Tue March 26: High Throughput Computing
Tue Apr 2: GPGPU: Number Crunching in Your Graphics Card
Tue Apr 9: Grab Bag: Scientific Libraries, I/O Libraries,
Visualization

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 11

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 12

Supercomputing Exercises #1
Want to do the “Supercomputing in Plain English” exercises?
 The 3rd exercise will be posted soon at:

http://www.oscer.ou.edu/education/
 If you don’t yet have a supercomputer account, you can get

a temporary account, just for the “Supercomputing in Plain
English” exercises, by sending e-mail to:

hneeman@ou.edu
Please note that this account is for doing the exercises only,

and will be shut down at the end of the series. It’s also
available only to those at institutions in the USA.

 This week’s Introductory exercise will teach you how to
compile and run jobs on OU’s big Linux cluster
supercomputer, which is named Boomer.

http://www.oscer.ou.edu/education/
mailto:hneeman@ou.edu

Supercomputing Exercises #2
You’ll be doing the exercises on your own (or you can work
with others at your local institution if you like).
These aren’t graded, but we’re available for questions:

hneeman@ou.edu

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 13

mailto:hneeman@ou.edu

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 14

Thanks for helping!
 OU IT

 OSCER operations staff (Brandon George, Dave Akin, Brett Zimmerman,
Josh Alexander, Patrick Calhoun)

 Horst Severini, OSCER Associate Director for Remote & Heterogeneous
Computing

 Debi Gentis, OU Research IT coordinator
 Kevin Blake, OU IT (videographer)
 Chris Kobza, OU IT (learning technologies)
 Mark McAvoy

 Kyle Keys, OU National Weather Center
 James Deaton, Skyler Donahue and Steven Haldeman, OneNet
 Bob Gerdes, Rutgers U
 Lisa Ison, U Kentucky
 Paul Dave, U Chicago

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 15

This is an experiment!
It’s the nature of these kinds of videoconferences that

FAILURES ARE GUARANTEED TO HAPPEN!
NO PROMISES!

So, please bear with us. Hopefully everything will work out
well enough.

If you lose your connection, you can retry the same kind of
connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone
bridge to fall back on.

Coming in 2013!
From Computational Biophysics to Systems Biology, May 19-21,

Norman OK
Great Plains Network Annual Meeting, May 29-31, Kansas City
XSEDE2013, July 22-25, San Diego CA
IEEE Cluster 2013, Sep 23-27, Indianapolis IN
OKLAHOMA SUPERCOMPUTING SYMPOSIUM 2013,

Oct 1-2, Norman OK
SC13, Nov 17-22, Denver CO

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 16

17

OK Supercomputing Symposium 2013

2006 Keynote:
Dan Atkins

Head of NSF’s
Office of

Cyberinfrastructure

2004 Keynote:
Sangtae Kim
NSF Shared

Cyberinfrastructure
Division Director

2003 Keynote:
Peter Freeman

NSF
Computer & Information
Science & Engineering

Assistant Director

2005 Keynote:
Walt Brooks

NASA Advanced
Supercomputing
Division Director

2007 Keynote:
Jay Boisseau

Director
Texas Advanced

Computing Center
U. Texas Austin

2008 Keynote:
José Munoz

Deputy Office
Director/ Senior

Scientific Advisor
NSF Office of

Cyberinfrastructure

2009 Keynote:
Douglass Post
Chief Scientist

US Dept of Defense
HPC Modernization

Program

FREE! Wed Oct 2 2013 @ OU
Over 235 registra2ons already!

Over 150 in the first day, over 200 in the first week,
over 225 in the first month.

http://symposium2013.oscer.ou.edu/

Reception/Poster Session
Tue Oct 1 2013 @ OU

Symposium Wed Oct 2 2013 @ OU

2010 Keynote:
Horst Simon

Deputy Director
Lawrence Berkeley
National Laboratory

2013 Keynote
to be announced!

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013

2011 Keynote:
Barry Schneider

Program Manager
National Science

Foundation

2012 Keynote:
Thom Dunning

Director
National Center for

Supercomputing
Applications

http://symposium2013.oscer.ou.edu/

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 18

Outline
 What is Instruction-Level Parallelism?
 Scalar Operation
 Loops
 Pipelining
 Loop Performance
 Superpipelining
 Vectors
 A Real Example

19

Parallelism

Less fish …

More fish!

Parallelism means
doing multiple things at
the same time: You can
get more work done in
the same time.

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 20

What Is ILP?
Instruction-Level Parallelism (ILP) is a set of techniques for

executing multiple instructions at the same time within
the same CPU core.

(Note that ILP has nothing to do with multicore.)
The problem: A CPU core has lots of circuitry, and at any

given time, most of it is idle, which is wasteful.
The solution: Have different parts of the CPU core work on

different operations at the same time:
If the CPU core has the ability to work on 10 operations at a

time, then the program can, in principle, run as much as 10
times as fast (although in practice, not quite so much).

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 21

DON’T
PANIC!

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 22

Why You Shouldn’t Panic
In general, the compiler and the CPU will do most of the heavy

lifting for instruction-level parallelism.

BUT:
You need to be aware of ILP, because
 how your code is structured affects
 how much ILP the compiler and the
 CPU can give you.

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 23

Kinds of ILP
 Superscalar: Perform multiple operations at the same time

(for example, simultaneously perform an add, a multiply and
a load).

 Pipeline: Start performing an operation on one piece of data
while finishing the same operation on another piece of data –
perform different stages of the same operation on different
sets of operands at the same time (like an assembly line).

 Superpipeline: A combination of superscalar and pipelining
– perform multiple pipelined operations at the same time.

 Vector: Load multiple pieces of data into special registers and
perform the same operation on all of them at the same time.

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 24

What’s an Instruction?
 Memory: For example, load a value from a specific address

in main memory into a specific register, or store a value
from a specific register into a specific address in main
memory.

 Arithmetic: For example, add two specific registers together
and put their sum in a specific register – or subtract,
multiply, divide, square root, etc.

 Logical: For example, determine whether two registers both
contain nonzero values (“AND”).

 Branch: Jump from one sequence of instructions to another
(for example, function call).

 … and so on ….

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 25

What’s a Cycle?
You’ve heard people talk about having a 2 GHz processor or a

3 GHz processor or whatever. (For example, consider a
laptop with a 2.0 GHz i3.)

Inside every CPU is a little clock that ticks with a fixed
frequency.

We call each tick of the CPU clock a clock cycle or a cycle.
So a 2 GHz processor has 2 billion clock cycles per second.
Typically, a primitive operation (for example, add, multiply,

divide) takes a fixed number of cycles to execute (assuming
no pipelining).

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 26

What’s the Relevance of Cycles?
Typically, a primitive operation (for example, add, multiply,

divide) takes a fixed number of cycles to execute (assuming
no pipelining).

 IBM POWER4 [1]

 Multiply or add: 6 cycles (64 bit floating point)
 Load: 4 cycles from L1 cache
 14 cycles from L2 cache

 Intel Sandy Bridge (4 x 64 bit floating point vector) [5]

 Add: 3 cycles
 Subtract: 3 cycles
 Multiply: 5 cycles
 Divide: 21-45 cycles
 Square root: 21-45 cycles
 Tangent:147 – 300 cycles

Scalar Operation

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 28

DON’T
PANIC!

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 29

Scalar Operation

1. Load a into register R0
2. Load b into R1
3. Multiply R2 = R0 * R1
4. Load c into R3
5. Load d into R4
6. Multiply R5 = R3 * R4
7. Add R6 = R2 + R5
8. Store R6 into z

z = a * b + c * d;
How would this statement be executed?

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 30

Does Order Matter?

1. Load a into R0
2. Load b into R1
3. Multiply

R2 = R0 * R1
4. Load c into R3
5. Load d into R4
6. Multiply

R5 = R3 * R4
7. Add R6 = R2 + R5
8. Store R6 into z

z = a * b + c * d;

In the cases where order doesn’t matter, we say that
the operations are independent of one another.

1. Load d into R0
2. Load c into R1
3. Multiply

R2 = R0 * R1
4. Load b into R3
5. Load a into R4
6. Multiply

R5 = R3 * R4
7. Add R6 = R2 + R5
8. Store R6 into z

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 31

Superscalar Operation

1. Load a into R0 AND
 load b into R1
2. Multiply R2 = R0 * R1 AND
 load c into R3 AND
 load d into R4
3. Multiply R5 = R3 * R4
4. Add R6 = R2 + R5
5. Store R6 into z

z = a * b + c * d;

If order doesn’t matter,
then things can happen simultaneously.
So, we go from 8 operations down to 5.
(Note: there are lots of simplifying assumptions here.)

Loops

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 33

Loops Are Good
Most compilers are very good at optimizing loops, and not

very good at optimizing other constructs.
Why?

DO index = 1, length
 dst(index) = src1(index) + src2(index)
END DO

for (index = 0; index < length; index++) {
 dst[index] = src1[index] + src2[index];
}

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 34

Why Loops Are Good
 Loops are very common in many programs.
 Also, it’s easier to optimize loops than more arbitrary

sequences of instructions: when a program does the same
thing over and over, it’s easier to predict what’s likely to
happen next.

So, hardware vendors have designed their products to be able
to execute loops quickly.

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 35

DON’T
PANIC!

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 36

Superscalar Loops (C)
for (i = 0; i < length; i++) {
 z[i] = a[i] * b[i] + c[i] * d[i];
}
 Each of the iterations is completely independent of all

of the other iterations; for example,
 z[0] = a[0] * b[0] + c[0] * d[0]
has nothing to do with
 z[1] = a[1] * b[1] + c[1] * d[1]
Operations that are independent of each other can be
performed in parallel.

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 37

Superscalar Loops (F90)
DO i = 1, length
 z(i) = a(i) * b(i) + c(i) * d(i)
END DO
 Each of the iterations is completely independent of all

of the other iterations; for example,
 z(1) = a(1) * b(1) + c(1) * d(1)
has nothing to do with
 z(2) = a(2) * b(2) + c(2) * d(2)
Operations that are independent of each other can be
performed in parallel.

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 38

Superscalar Loops
for (i = 0; i < length; i++) {
 z[i] = a[i] * b[i] + c[i] * d[i];
}
 1. Load a[i] into R0 AND load b[i] into R1

2. Multiply R2 = R0 * R1 AND load c[i] into
R3 AND load d[i] into R4

3. Multiply R5 = R3 * R4 AND
load a[i+1] into R0 AND load b[i+1] into R1

4. Add R6 = R2 + R5 AND load c[i+1] into R3
AND load d[i+1] into R4

5. Store R6 into z[i] AND multiply R2 = R0 * R1
6. etc etc etc
Once this loop is “in flight,” each iteration adds only

2 operations to the total, not 8.

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 39

Example: IBM POWER4
8-way Superscalar: can execute up to 8 operations at the same

time[1]

 2 integer arithmetic or logical operations, and
 2 floating point arithmetic operations, and
 2 memory access (load or store) operations, and
 1 branch operation, and
 1 conditional operation

Pipelining

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 41

Pipelining
Pipelining is like an assembly line or a bucket brigade.
 An operation consists of multiple stages.
 After a particular set of operands
 z(i) = a(i) * b(i) + c(i) * d(i)
 completes a particular stage, they move into the next stage.
 Then, another set of operands
 z(i+1) = a(i+1) * b(i+1) + c(i+1) * d(i+1)
 can move into the stage that was just abandoned by the previous

set.

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 42

DON’T
PANIC!

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 43

Pipelining Example

Instruction
Fetch

Instruction
Decode

Operand
Fetch

Instruction
Execution

Result
Writeback

Instruction
Fetch

Instruction
Decode

Operand
Fetch

Instruction
Execution

Result
Writeback

Instruction
Fetch

Instruction
Decode

Operand
Fetch

Instruction
Execution

Result
Writeback

Instruction
Fetch

Instruction
Decode

Operand
Fetch

Instruction
Execution

Result
Writeback

i = 1

i = 2

i = 3

i = 4

Computation time
If each stage takes, say, one CPU cycle, then once the
loop gets going, each iteration of the loop increases the
total time by only one cycle. So a loop of length 1000
takes only 1004 cycles. [3]

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

DON’T PANIC!

DON’T PANIC!

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 44

Pipelines: Example
 IBM POWER4: pipeline length ≅ 15 stages [1]

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 45

Some Simple Loops (F90)
DO index = 1, length
 dst(index) = src1(index) + src2(index)
END DO

DO index = 1, length
 dst(index) = src1(index) - src2(index)
END DO

DO index = 1, length
 dst(index) = src1(index) * src2(index)
END DO

DO index = 1, length
 dst(index) = src1(index) / src2(index)
END DO

DO index = 1, length
 sum = sum + src(index)
END DO

Reduction: convert
array to scalar

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 46

Some Simple Loops (C)
for (index = 0; index < length; index++) {
 dst[index] = src1[index] + src2[index];
}

for (index = 0; index < length; index++) {
 dst[index] = src1[index] - src2[index];
}

for (index = 0; index < length; index++) {
 dst[index] = src1[index] * src2[index];
}

for (index = 0; index < length; index++) {
 dst[index] = src1[index] / src2[index];
}

for (index = 0; index < length; index++) {
 sum = sum + src[index];
}

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 47

Slightly Less Simple Loops (F90)
DO index = 1, length
 dst(index) = src1(index) ** src2(index) !! src1 ^ src2
END DO

DO index = 1, length
 dst(index) = MOD(src1(index), src2(index))
END DO

DO index = 1, length
 dst(index) = SQRT(src(index))
END DO

DO index = 1, length
 dst(index) = COS(src(index))
END DO

DO index = 1, length
 dst(index) = EXP(src(index))
END DO

DO index = 1, length
 dst(index) = LOG(src(index))
END DO

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 48

Slightly Less Simple Loops (C)
for (index = 0; index < length; index++) {
 dst[index] = pow(src1[index], src2[index]);
}

for (index = 0; index < length; index++) {
 dst[index] = src1[index] % src2[index];
}

for (index = 0; index < length; index++) {
 dst[index] = sqrt(src[index]);
}

for (index = 0; index < length; index++) {
 dst[index] = cos(src[index]);
}

for (index = 0; index < length; index++) {
 dst[index] = exp(src[index]);
}

for (index = 0; index < length; index++) {
 dst[index] = log(src[index]);
}

Loop Performance

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 50

Performance Characteristics
 Different operations take different amounts of time.
 Different processor types have different performance

characteristics, but there are some characteristics that many
platforms have in common.

 Different compilers, even on the same hardware, perform
differently.

 On some processors, floating point and integer speeds are
similar, while on others they differ.

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 51

Arithmetic Operation Speeds
Arithmetic Performance on Pentium4 EM64T

(Irwindale 3.2 GHz)

0

500

1000

1500

2000

2500

3000
ra

dd

ia
dd

rs
um is
um rs
ub is
ub

rm
ul

im
ul

rm
am

im
am

rm
ad

im
ad

rd
iv

id
iv

rp
ow

im
od

rs
qr

t

rc
os

re
xp rlo

g

rd
ot

re
uc

rlo
t0

8

rlo
t1

0

rlo
t1

2

rlo
t1

6

rlo
t2

0

lo
t2

4r i2
r

r2
i

M
FL

O
Ps

ifort -O0 pgf90 -O0 nagf95 -O0 gfortran -O0 ifort -O2 pgf90 -O3 gfortran -O2 nagf95 -O4

Better

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 52

Fast and Slow Operations
 Fast: sum, add, subtract, multiply
 Medium: divide, mod (that is, remainder), sqrt
 Slow: transcendental functions (sin, exp)
 Incredibly slow: power xy for real x and y
On most platforms, divide, mod and transcendental functions

are not pipelined, so a code will run faster if most of it is
just adds, subtracts and multiplies.

For example, solving an N x N system of linear equations by
LU decomposition uses on the order of N3 additions and
multiplications, but only on the order of N divisions.

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 53

What Can Prevent Pipelining?
Certain events make it very hard (maybe even impossible) for

compilers to pipeline a loop, such as:
 array elements accessed in random order
 loop body too complicated
 if statements inside the loop (on some platforms)
 premature loop exits
 function/subroutine calls
 I/O

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 54

How Do They Kill Pipelining?
 Random access order: Ordered array access is common, so

pipelining hardware and compilers tend to be designed under
the assumption that most loops will be ordered. Also, the
pipeline will constantly stall because data will come from
main memory, not cache.

 Complicated loop body: The compiler gets too
overwhelmed and can’t figure out how to schedule the
instructions.

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 55

How Do They Kill Pipelining?
 if statements in the loop: On some platforms (but not all),

the pipelines need to perform exactly the same operations
over and over; if statements make that impossible.

However, many CPUs can now perform speculative execution:
both branches of the if statement are executed while the
condition is being evaluated, but only one of the results is
retained (the one associated with the condition’s value).

Also, many CPUs can now perform branch prediction to head
down the most likely compute path.

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 56

How Do They Kill Pipelining?
 Function/subroutine calls interrupt the flow of the

program even more than if statements. They can take
execution to a completely different part of the program, and
pipelines aren’t set up to handle that.

 Loop exits are similar. Most compilers can’t pipeline loops
with premature or unpredictable exits.

 I/O: Typically, I/O is handled in subroutines (above).
Also, I/O instructions can take control of the program away
from the CPU (they can give control to I/O devices).

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 57

What If No Pipelining?

SLOW!

(on most platforms)

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 58

Randomly Permuted Loops
Arithmetic Performance: Ordered vs Random

(Irwindale 3.2 GHz)

0

500

1000

1500

2000

2500

3000
ra

dd

ia
dd

rs
um is
um rs
ub is
ub

rm
ul

im
ul

rm
am

im
am

rm
ad

im
ad

rd
iv

id
iv

rp
ow

im
od

rs
qr

t

rc
os

re
xp rlo

g

rd
ot

re
uc

rlo
t0

8

rlo
t1

0

rlo
t1

2

rlo
t1

6

rlo
t2

0

lo
t2

4r i2
r

r2
i

M
FL

O
Ps

ifort -O2 permuted

Better

Superpipelining

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 60

Superpipelining
Superpipelining is a combination of superscalar and

pipelining.
So, a superpipeline is a collection of multiple pipelines that

can operate simultaneously.
In other words, several different operations can execute

simultaneously, and each of these operations can be broken
into stages, each of which is filled all the time.

So you can get multiple operations per CPU cycle.
For example, a IBM Power4 can have over 200 different

operations “in flight” at the same time.[1]

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 61

More Operations At a Time
 If you put more operations into the code for a loop, you can

get better performance:
 more operations can execute at a time (use more

pipelines), and
 you get better register/cache reuse.

 On most platforms, there’s a limit to how many operations
you can put in a loop to increase performance, but that limit
varies among platforms, and can be quite large.

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 62

Some Complicated Loops
DO index = 1, length
 dst(index) = src1(index) + 5.0 * src2(index)
END DO

dot = 0
DO index = 1, length
 dot = dot + src1(index) * src2(index)
END DO

DO index = 1, length
 dst(index) = src1(index) * src2(index) + &
 & src3(index) * src4(index)
END DO

DO index = 1, length
 diff12 = src1(index) - src2(index)
 diff34 = src3(index) - src4(index)
 dst(index) = SQRT(diff12 * diff12 + diff34 * diff34)
END DO

madd (or FMA):
mult then add

(2 ops)

Euclidean distance
(6 ops)

dot product
(2 ops)

from our
example
(3 ops)

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 63

A Very Complicated Loop
lot = 0.0
DO index = 1, length
 lot = lot + &
 & src1(index) * src2(index) + &
 & src3(index) * src4(index) + &
 & (src1(index) + src2(index)) * &
 & (src3(index) + src4(index)) * &
 & (src1(index) - src2(index)) * &
 & (src3(index) - src4(index)) * &
 & (src1(index) - src3(index) + &
 & src2(index) - src4(index)) * &
 & (src1(index) + src3(index) - &
 & src2(index) + src4(index)) + &
 & (src1(index) * src3(index)) + &
 & (src2(index) * src4(index))
END DO

24 arithmetic ops per iteration
4 memory/cache loads per iteration

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 64

Multiple Ops Per Iteration
Arithmetic Performance: Multiple Operations

(Irwindale 3.2 GHz)

0

500

1000

1500

2000

2500

3000

radd iadd rmam imam rmad imad rdot reuc rlot08 rlot10 rlot12 rlot16 rlot20 rlot24

M
FL

O
Ps ifort -O2

pgf90 -O3
nagf95 -O4
gfortran -O2

Better

Vectors

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 66

What Is a Vector?
A vector is a giant register that behaves like a collection of

regular registers, except these registers all simultaneously
perform the same operation on multiple sets of operands,
producing multiple results.

In a sense, vectors are like operation-specific cache.
A vector register is a register that’s actually made up of many

individual registers.
A vector instruction is an instruction that performs the same

operation simultaneously on all of the individual registers of a
vector register.

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 67

Vector Register

v0 v1 v2

v0 <- v1 + v2

<-
<-
<-
<-
<-

<-
<-
<-

+
+
+
+
+
+
+
+

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 68

Vectors Are Expensive
Vectors were very popular in the 1980s, because they’re very

fast, often faster than pipelines.
In the 1990s, though, they weren’t very popular. Why?
Well, vectors aren’t used by many commercial codes (for

example, MS Word). So most chip makers didn’t bother with
vectors.

So, if you wanted vectors, you had to pay a lot of extra money
for them.

Pentium III Intel reintroduced very small integer vectors (2
operations at a time). Pentium4 added floating point vector
operations, also of size 2. The Core family doubled the vector
size to 4, and Sandy Bridge (2011) added “Fused Mutiply-
Add,” which allows 8 calculations at a time (vector length 4).

A Real Example

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 70

A Real Example[4]

DO k=2,nz-1
 DO j=2,ny-1
 DO i=2,nx-1
 tem1(i,j,k) = u(i,j,k,2)*(u(i+1,j,k,2)-u(i-1,j,k,2))*dxinv2
 tem2(i,j,k) = v(i,j,k,2)*(u(i,j+1,k,2)-u(i,j-1,k,2))*dyinv2
 tem3(i,j,k) = w(i,j,k,2)*(u(i,j,k+1,2)-u(i,j,k-1,2))*dzinv2
 END DO
 END DO
END DO
DO k=2,nz-1
 DO j=2,ny-1
 DO i=2,nx-1
 u(i,j,k,3) = u(i,j,k,1) - &
 & dtbig2*(tem1(i,j,k)+tem2(i,j,k)+tem3(i,j,k))
 END DO
 END DO
END DO

. . .

71

Real Example Performance

Performance By Method

0
10
20
30
40
50
60
70
80

10 loops 5 loops 1 loop 2 loops 2 loops unrolled
Method

M
FL

O
PS

Pentium3 NAG Pentium3 Vast

Better

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 72

DON’T
PANIC!

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 73

Why You Shouldn’t Panic
In general, the compiler and the CPU will do most of the heavy

lifting for instruction-level parallelism.

BUT:
You need to be aware of ILP, because
 how your code is structured affects
 how much ILP the compiler and the
 CPU can give you.

74

OK Supercomputing Symposium 2013

2006 Keynote:
Dan Atkins

Head of NSF’s
Office of

Cyberinfrastructure

2004 Keynote:
Sangtae Kim
NSF Shared

Cyberinfrastructure
Division Director

2003 Keynote:
Peter Freeman

NSF
Computer & Information
Science & Engineering

Assistant Director

2005 Keynote:
Walt Brooks

NASA Advanced
Supercomputing
Division Director

2007 Keynote:
Jay Boisseau

Director
Texas Advanced

Computing Center
U. Texas Austin

2008 Keynote:
José Munoz

Deputy Office
Director/ Senior

Scientific Advisor
NSF Office of

Cyberinfrastructure

2009 Keynote:
Douglass Post
Chief Scientist

US Dept of Defense
HPC Modernization

Program

FREE! Wed Oct 2 2013 @ OU
Over 235 registra2ons already!

Over 150 in the first day, over 200 in the first week,
over 225 in the first month.

http://symposium2013.oscer.ou.edu/

Reception/Poster Session
Tue Oct 1 2013 @ OU

Symposium Wed Oct 2 2013 @ OU

2010 Keynote:
Horst Simon

Deputy Director
Lawrence Berkeley
National Laboratory

2013 Keynote
to be announced!

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013

2011 Keynote:
Barry Schneider

Program Manager
National Science

Foundation

2012 Keynote:
Thom Dunning

Director
National Center for

Supercomputing
Applications

http://symposium2013.oscer.ou.edu/

Thanks for your
attention!

Questions?
www.oscer.ou.edu

http://www.oscer.ou.edu/

Supercomputing in Plain English: Inst Level Par
Tue Feb 5 2013 76

References
[1] Steve Behling et al, The POWER4 Processor Introduction and Tuning Guide,
IBM, 2001.
[2] Intel® 64 and IA-32 Architectures Optimization Reference Manual, Order
Number: 248966-015, May 2007.
http://www.intel.com/design/processor/manuals/248966.pdf
[3] Kevin Dowd and Charles Severance, High Performance Computing,
 2nd ed. O’Reilly, 1998.
[4] Code courtesy of Dan Weber, 2001.
[5] Intel® 64 and IA-32 Architectures Optimization Reference Manual
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf

http://www.intel.com/design/processor/manuals/248966.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf

	Supercomputing�in Plain English�Instruction Level Parallelism
	This is an experiment!
	H.323 (Polycom etc) #1
	H.323 (Polycom etc) #2
	Wowza #1
	Wowza #2
	Wowza #3
	Toll Free Phone Bridge
	Please Mute Yourself
	Questions via E-mail Only
	TENTATIVE Schedule
	Supercomputing Exercises #1
	Supercomputing Exercises #2
	Thanks for helping!
	This is an experiment!
	Coming in 2013!
	OK Supercomputing Symposium 2013
	Outline
	Parallelism
	What Is ILP?
	Slide Number 21
	Why You Shouldn’t Panic
	Kinds of ILP
	What’s an Instruction?
	What’s a Cycle?
	What’s the Relevance of Cycles?
	Scalar Operation
	Slide Number 28
	Scalar Operation
	Does Order Matter?
	Superscalar Operation
	Loops
	Loops Are Good
	Why Loops Are Good
	Slide Number 35
	Superscalar Loops (C)
	Superscalar Loops (F90)
	Superscalar Loops
	Example: IBM POWER4
	Pipelining
	Pipelining
	Slide Number 42
	Pipelining Example
	Pipelines: Example
	Some Simple Loops (F90)
	Some Simple Loops (C)
	Slightly Less Simple Loops (F90)
	Slightly Less Simple Loops (C)
	Loop Performance
	Performance Characteristics
	Arithmetic Operation Speeds
	Fast and Slow Operations
	What Can Prevent Pipelining?
	How Do They Kill Pipelining?
	How Do They Kill Pipelining?
	How Do They Kill Pipelining?
	What If No Pipelining?
	Randomly Permuted Loops
	Superpipelining
	Superpipelining
	More Operations At a Time
	Some Complicated Loops
	A Very Complicated Loop
	Multiple Ops Per Iteration
	Vectors
	What Is a Vector?
	Vector Register
	Vectors Are Expensive
	A Real Example
	A Real Example[4]
	Real Example Performance
	Slide Number 72
	Why You Shouldn’t Panic
	OK Supercomputing Symposium 2013
	Thanks for your attention!���Questions?�www.oscer.ou.edu
	References

