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This is an experiment! 
It’s the nature of these kinds of videoconferences that 

FAILURES ARE GUARANTEED TO HAPPEN!       
NO PROMISES! 

So, please bear with us. Hopefully everything will work out 
well enough. 

If you lose your connection, you can retry the same kind of 
connection, or try connecting another way. 

Remember, if all else fails, you always have the toll free phone 
bridge to fall back on. 
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H.323 (Polycom etc) #1 
If you want to use H.323 videoconferencing – for example, 

Polycom – then: 
 If you AREN’T registered with the OneNet gatekeeper (which 

is probably the case), then: 
 Dial 164.58.250.47 
 Bring up the virtual keypad.  

On some H.323 devices, you can bring up the virtual keypad by typing:  
#  
(You may want to try without first, then with; some devices won't work 
with the #, but give cryptic error messages about it.) 

 When asked for the conference ID, or if there's no response, enter:  
0409 

 On most but not all H.323 devices, you indicate the end of the ID with:  
# 
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H.323 (Polycom etc) #2 
If you want to use H.323 videoconferencing – for example, 

Polycom – then: 
 If you ARE already registered with the OneNet gatekeeper 

(most institutions aren’t), dial: 
 2500409 

Many thanks to Skyler Donahue and Steven Haldeman of OneNet 
for providing this. 
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Wowza #1 
You can watch from a Windows, MacOS or Linux laptop using 

Wowza from either of the following URLs: 
 
http://www.onenet.net/technical-resources/video/sipe-stream/ 

OR 
https://vcenter.njvid.net/videos/livestreams/page1/ 

 
Wowza behaves a lot like YouTube, except live. 
 
Many thanks to Skyler Donahue and Steven Haldeman of OneNet 

and Bob Gerdes of Rutgers U for providing this. 
 

http://www.onenet.net/technical-resources/video/sipe-stream/
https://vcenter.njvid.net/videos/livestreams/page1/


Wowza #2 
Wowza has been tested on multiple browsers on each of: 
 Windows (7 and 8): IE, Firefox, Chrome, Opera, Safari 
 MacOS X: Safari, Firefox 
 Linux: Firefox, Opera 
We’ve also successfully tested it on devices with: 
 Android 
 iOS 
However, we make no representations on the likelihood of it 
working on your device, because we don’t know which 
versions of Android or iOS it might or might not work with. 
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Wowza #3 
If one of the Wowza URLs fails, try switching over to the other 
one. 
 
If we lose our network connection between OU and OneNet, 
then there may be a slight delay while we set up a direct 
connection to Rutgers. 
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Toll Free Phone Bridge 
IF ALL ELSE FAILS, you can use our toll free phone bridge: 

800-832-0736 
* 623 2847 # 

Please mute yourself and use the phone to listen. 
Don’t worry, we’ll call out slide numbers as we go. 
Please use the phone bridge ONLY if you cannot connect any 

other way: the phone bridge can handle only 100 
simultaneous connections, and we have over 350 participants. 

Many thanks to OU CIO Loretta Early for providing the toll free 
phone bridge. 
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Please Mute Yourself 
No matter how you connect, please mute yourself, so that we 

cannot hear you. 
(For Wowza, you don’t need to do that, because the 

information only goes from us to you, not from you to us.) 
At OU, we will turn off the sound on all conferencing 

technologies. 
That way, we won’t have problems with echo cancellation. 
Of course, that means we cannot hear questions. 
So for questions, you’ll need to send e-mail. 
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Questions via E-mail Only 
Ask questions by sending e-mail to: 
 

sipe2013@gmail.com 
 
All questions will be read out loud and then answered out loud. 

mailto:sipe2013@gmail.com


TENTATIVE Schedule 
Tue Jan 29: Inst Level Par: What the Heck is Supercomputing? 
Tue Jan 29: The Tyranny of the Storage Hierarchy 
Tue Feb 5: Instruction Level Parallelism 
Tue Feb 12: Stupid Compiler Tricks 
Tue Feb 19: Shared Memory Multithreading 
Tue Feb 26: Distributed Multiprocessing 
Tue March 5: Applications and Types of Parallelism 
Tue March 12: Multicore Madness 
Tue March 19: NO SESSION (OU's Spring Break) 
Tue March 26: High Throughput Computing 
Tue Apr 2: GPGPU: Number Crunching in Your Graphics Card 
Tue Apr 9: Grab Bag: Scientific Libraries, I/O Libraries, 
Visualization 
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Supercomputing Exercises #1 
Want to do the “Supercomputing in Plain English” exercises? 
 The 3rd exercise will be posted soon at: 

http://www.oscer.ou.edu/education/ 
 If you don’t yet have a supercomputer account, you can get 

a temporary account, just for the “Supercomputing in Plain 
English” exercises, by sending e-mail to: 

hneeman@ou.edu 
Please note that this account is for doing the exercises only, 

and will be shut down at the end of the series. It’s also 
available only to those at institutions in the USA. 

 This week’s Introductory exercise will teach you how to 
compile and run jobs on OU’s big Linux cluster 
supercomputer, which is named Boomer. 

http://www.oscer.ou.edu/education/
mailto:hneeman@ou.edu


Supercomputing Exercises #2 
You’ll be doing the exercises on your own (or you can work 
with others at your local institution if you like). 
These aren’t graded, but we’re available for questions: 

hneeman@ou.edu 
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Thanks for helping! 
 OU IT 

 OSCER operations staff (Brandon George, Dave Akin, Brett Zimmerman, 
Josh Alexander, Patrick Calhoun) 

 Horst Severini, OSCER Associate Director for Remote & Heterogeneous 
Computing 

 Debi Gentis, OU Research IT coordinator 
 Kevin Blake, OU IT (videographer) 
 Chris Kobza, OU IT (learning technologies) 
 Mark McAvoy 

 Kyle Keys, OU National Weather Center 
 James Deaton, Skyler Donahue and Steven Haldeman, OneNet 
 Bob Gerdes, Rutgers U 
 Lisa Ison, U Kentucky 
 Paul Dave, U Chicago 
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This is an experiment! 
It’s the nature of these kinds of videoconferences that 

FAILURES ARE GUARANTEED TO HAPPEN!       
NO PROMISES! 

So, please bear with us. Hopefully everything will work out 
well enough. 

If you lose your connection, you can retry the same kind of 
connection, or try connecting another way. 

Remember, if all else fails, you always have the toll free phone 
bridge to fall back on. 



Coming in 2013! 
From Computational Biophysics to Systems Biology, May 19-21, 

Norman OK 
Great Plains Network Annual Meeting, May 29-31, Kansas City 
XSEDE2013, July 22-25, San Diego CA 
IEEE Cluster 2013, Sep 23-27, Indianapolis IN 
OKLAHOMA SUPERCOMPUTING SYMPOSIUM 2013, 

Oct 1-2, Norman OK 
SC13, Nov 17-22, Denver CO 
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OK Supercomputing Symposium 2013 

2006 Keynote: 
Dan Atkins 

Head of NSF’s 
Office of 

Cyberinfrastructure 

2004 Keynote: 
Sangtae Kim 
NSF Shared  

Cyberinfrastructure 
Division Director 

2003 Keynote: 
Peter Freeman 

NSF 
Computer & Information 
Science & Engineering 

Assistant Director 

2005 Keynote: 
Walt Brooks 

NASA Advanced 
Supercomputing 
Division Director 

2007 Keynote: 
Jay Boisseau 

Director 
Texas Advanced 

Computing Center 
U. Texas Austin 

2008 Keynote:     
José Munoz     

Deputy Office 
Director/ Senior 

Scientific Advisor 
NSF Office of 

Cyberinfrastructure 

2009 Keynote: 
Douglass Post  
Chief Scientist         

US Dept of Defense       
HPC Modernization 

Program 

FREE! Wed Oct 2 2013 @ OU 
Over 235 registra2ons already! 

Over 150 in the first day, over 200 in the first week, 
over 225 in the first month. 

http://symposium2013.oscer.ou.edu/ 

Reception/Poster Session 
Tue Oct 1 2013 @ OU 

Symposium Wed Oct 2 2013 @ OU 

2010 Keynote: 
Horst Simon  

Deputy Director         
Lawrence Berkeley 
National Laboratory 

2013 Keynote     
to be announced! 
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2011 Keynote: 
Barry Schneider  

Program Manager         
National Science 

Foundation 

2012 Keynote: 
Thom Dunning  

Director        
National Center for 

Supercomputing 
Applications 

http://symposium2013.oscer.ou.edu/
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Outline 
 What is Instruction-Level Parallelism? 
 Scalar Operation 
 Loops 
 Pipelining 
 Loop Performance 
 Superpipelining 
 Vectors 
 A Real Example 
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Parallelism 

Less fish … 

More fish! 

Parallelism means 
doing multiple things at 
the same time: You can 
get more work done in 
the same time. 

Supercomputing in Plain English: Inst Level Par 
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What Is ILP? 
Instruction-Level Parallelism (ILP) is a set of techniques for 

executing multiple instructions at the same time within 
the same CPU core. 

(Note that ILP has nothing to do with multicore.) 
The problem: A CPU core has lots of circuitry, and at any 

given time, most of it is idle, which is wasteful. 
The solution: Have different parts of the CPU core work on 

different operations at the same time: 
If the CPU core has the ability to work on 10 operations at a 

time, then the program can, in principle, run as much as 10 
times as fast (although in practice, not quite so much). 
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DON’T 
PANIC! 
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Why You Shouldn’t Panic 
In general, the compiler and the CPU will do most of the heavy 

lifting for instruction-level parallelism. 

BUT: 
You need to be aware of ILP, because 
  how your code is structured affects 
  how much ILP the compiler and the 
  CPU can give you. 
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Kinds of ILP 
 Superscalar: Perform multiple operations at the same time 

(for example, simultaneously perform an add, a multiply and 
a load). 

 Pipeline: Start performing an operation on one piece of data 
while finishing the same operation on another piece of data – 
perform different stages of the same operation on different 
sets of operands at the same time (like an assembly line). 

 Superpipeline: A combination of superscalar and pipelining 
– perform multiple pipelined operations at the same time. 

 Vector: Load multiple pieces of data into special registers and 
perform the same operation on all of them at the same time. 
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What’s an Instruction? 
 Memory: For example, load a value from a specific address 

in main memory into a specific register, or store a value 
from a specific register into a specific address in main 
memory. 

 Arithmetic: For example, add two specific registers together 
and put their sum in a specific register – or subtract, 
multiply, divide, square root, etc. 

 Logical: For example, determine whether two registers both 
contain nonzero values (“AND”). 

 Branch: Jump from one sequence of instructions to another 
(for example, function call). 

 … and so on …. 
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What’s a Cycle? 
You’ve heard people talk about having a 2 GHz processor or a  

3 GHz processor or whatever.  (For example, consider a 
laptop with a 2.0 GHz i3.) 

Inside every CPU is a little clock that ticks with a fixed 
frequency. 

We call each tick of the CPU clock a clock cycle or a cycle. 
So a 2 GHz processor has 2 billion clock cycles per second. 
Typically, a primitive operation (for example, add, multiply, 

divide) takes a fixed number of cycles to execute (assuming 
no pipelining). 
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What’s the Relevance of Cycles? 
Typically, a primitive operation (for example, add, multiply, 

divide) takes a fixed number of cycles to execute (assuming 
no pipelining). 

 IBM POWER4 [1] 

 Multiply or add:  6 cycles (64 bit floating point) 
 Load:                   4 cycles from L1 cache 
                               14 cycles from L2 cache 

 Intel Sandy Bridge (4 x 64 bit floating point vector) [5] 

 Add:                     3 cycles 
 Subtract:               3 cycles 
 Multiply:              5 cycles 
 Divide:          21-45 cycles 
 Square root:  21-45 cycles 
 Tangent:147 – 300 cycles 



Scalar Operation 
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DON’T 
PANIC! 
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Scalar Operation 

1. Load a into register R0 
2. Load b into R1 
3. Multiply R2 = R0 * R1 
4. Load c into R3 
5. Load d into R4 
6. Multiply R5 = R3 * R4 
7. Add R6 = R2 + R5 
8. Store R6 into z 

 

z = a * b + c * d; 
How would this statement be executed? 
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Does Order Matter? 

1. Load a into R0 
2. Load b into R1 
3. Multiply                            

R2 = R0 * R1 
4. Load c into R3 
5. Load d into R4 
6. Multiply                

R5 = R3 * R4 
7. Add R6 = R2 + R5 
8. Store R6 into z 

z = a * b + c * d; 

In the cases where order doesn’t matter, we say that 
the operations are independent of one another. 

1. Load d into R0 
2. Load c into R1 
3. Multiply                            

R2 = R0 * R1 
4. Load b into R3 
5. Load a into R4 
6. Multiply                

R5 = R3 * R4 
7. Add R6 = R2 + R5 
8. Store R6 into z 
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Superscalar Operation 

1. Load a into R0 AND 
 load b into R1 
2. Multiply R2 = R0 * R1 AND 
 load c into R3 AND   
 load d into R4 
3. Multiply R5 = R3 * R4 
4. Add R6 = R2 + R5 
5. Store R6 into z 

z = a * b + c * d; 

If order doesn’t matter, 
then things can happen simultaneously. 
So, we go from 8 operations down to 5. 
(Note: there are lots of simplifying assumptions here.) 



Loops 
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Loops Are Good 
Most compilers are very good at optimizing loops, and not 

very good at optimizing other constructs. 
Why? 

DO index = 1, length 
    dst(index) = src1(index) + src2(index) 
END DO 
 
for (index = 0; index < length; index++) { 
    dst[index] = src1[index] + src2[index]; 
} 
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Why Loops Are Good 
 Loops are very common in many programs. 
 Also, it’s easier to optimize loops than more arbitrary 

sequences of instructions: when a program does the same 
thing over and over, it’s easier to predict what’s likely to 
happen next. 

So, hardware vendors have designed their products to be able 
to execute loops quickly. 
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DON’T 
PANIC! 
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Superscalar Loops (C) 
for (i = 0; i < length; i++) { 
  z[i] = a[i] * b[i] + c[i] * d[i]; 
} 
         Each of the iterations is completely independent of all 

of the other iterations; for example, 
  z[0] = a[0] * b[0] + c[0] * d[0] 
has nothing to do with 
  z[1] = a[1] * b[1] + c[1] * d[1] 
Operations that are independent of each other can be 
performed in parallel. 
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Superscalar Loops (F90) 
DO i = 1, length 
  z(i) = a(i) * b(i) + c(i) * d(i) 
END DO 
         Each of the iterations is completely independent of all 

of the other iterations; for example, 
  z(1) = a(1) * b(1) + c(1) * d(1) 
has nothing to do with 
  z(2) = a(2) * b(2) + c(2) * d(2) 
Operations that are independent of each other can be 
performed in parallel. 
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Superscalar Loops 
for (i = 0; i < length; i++) { 
  z[i] = a[i] * b[i] + c[i] * d[i]; 
} 
         1. Load a[i] into R0  AND  load b[i] into R1 

2. Multiply R2 = R0 * R1 AND load c[i] into 
R3  AND  load d[i] into R4 

3. Multiply R5 = R3 * R4 AND             
load a[i+1] into R0 AND load b[i+1] into R1 

4. Add R6 = R2 + R5 AND  load c[i+1] into R3  
AND  load d[i+1] into R4 

5. Store R6 into z[i] AND  multiply R2 = R0 * R1 
6. etc etc etc 
Once this loop is “in flight,” each iteration adds only 

2 operations to the total, not 8. 
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Example: IBM POWER4 
8-way Superscalar: can execute up to 8 operations at the same 

time[1] 

 2 integer arithmetic or logical operations, and 
 2 floating point arithmetic operations, and 
 2 memory access (load or store) operations, and 
 1 branch operation, and 
 1 conditional operation 



Pipelining 
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Pipelining 
Pipelining is like an assembly line or a bucket brigade. 
 An operation consists of multiple stages. 
 After a particular set of operands 
  z(i) = a(i) * b(i) + c(i) * d(i) 
 completes a particular stage, they move into the next stage. 
 Then, another set of operands 
  z(i+1) = a(i+1) * b(i+1) + c(i+1) * d(i+1) 
 can move into the stage that was just abandoned by the previous 

set. 
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DON’T 
PANIC! 
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Pipelining Example 

Instruction 
Fetch 

Instruction 
Decode 

Operand 
Fetch 

Instruction 
Execution 

Result 
Writeback 

Instruction 
Fetch 

Instruction 
Decode 

Operand 
Fetch 

Instruction 
Execution 

Result 
Writeback 

Instruction 
Fetch 

Instruction 
Decode 

Operand 
Fetch 

Instruction 
Execution 

Result 
Writeback 

Instruction 
Fetch 

Instruction 
Decode 

Operand 
Fetch 

Instruction 
Execution 

Result 
Writeback 

i = 1 

i = 2 

i = 3 

i = 4 

Computation time 
If each stage takes, say, one CPU cycle, then once the 
loop gets going, each iteration of the loop increases the 
total time by only one cycle.  So a loop of length 1000 
takes only 1004 cycles. [3] 

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 

DON’T PANIC! 

DON’T PANIC! 
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Pipelines: Example 
 IBM POWER4: pipeline length ≅ 15 stages [1] 
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Some Simple Loops (F90) 
DO index = 1, length 
  dst(index) = src1(index) + src2(index) 
END DO 
 
DO index = 1, length 
  dst(index) = src1(index) - src2(index) 
END DO  
 
DO index = 1, length 
  dst(index) = src1(index) * src2(index) 
END DO  
 
DO index = 1, length 
  dst(index) = src1(index) / src2(index) 
END DO  
 
DO index = 1, length 
  sum = sum + src(index) 
END DO  

Reduction: convert 
array to scalar 
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Some Simple Loops (C) 
for (index = 0; index < length; index++) { 
  dst[index] = src1[index] + src2[index]; 
} 
 
for (index = 0; index < length; index++) { 
  dst[index] = src1[index] - src2[index]; 
}  
 
for (index = 0; index < length; index++) { 
  dst[index] = src1[index] * src2[index]; 
}  
 
for (index = 0; index < length; index++) { 
  dst[index] = src1[index] / src2[index]; 
}  
 
for (index = 0; index < length; index++) { 
  sum = sum + src[index]; 
}  
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Slightly Less Simple Loops (F90) 
DO index = 1, length 
  dst(index) = src1(index) ** src2(index) !! src1 ^ src2 
END DO 
 
DO index = 1, length 
  dst(index) = MOD(src1(index), src2(index)) 
END DO 
 
DO index = 1, length 
  dst(index) = SQRT(src(index)) 
END DO 
 
DO index = 1, length 
  dst(index) = COS(src(index)) 
END DO 
 
DO index = 1, length 
  dst(index) = EXP(src(index)) 
END DO 
 
DO index = 1, length 
  dst(index) = LOG(src(index)) 
END DO 



Supercomputing in Plain English: Inst Level Par 
Tue Feb 5 2013 48 

Slightly Less Simple Loops (C) 
for (index = 0; index < length; index++) { 
  dst[index] = pow(src1[index], src2[index]); 
} 
 
for (index = 0; index < length; index++) { 
  dst[index] = src1[index] % src2[index]; 
} 
 
for (index = 0; index < length; index++) { 
  dst[index] = sqrt(src[index]); 
} 
 
for (index = 0; index < length; index++) { 
  dst[index] = cos(src[index]); 
} 
 
for (index = 0; index < length; index++) { 
  dst[index] = exp(src[index]); 
} 
 
for (index = 0; index < length; index++) { 
  dst[index] = log(src[index]); 
} 



Loop Performance 
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Performance Characteristics 
 Different operations take different amounts of time. 
 Different processor types have different performance 

characteristics, but there are some characteristics that many 
platforms have in common. 

 Different compilers, even on the same hardware, perform 
differently. 

 On some processors, floating point and integer speeds are 
similar, while on others they differ. 
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Arithmetic Operation Speeds 
Arithmetic Performance on Pentium4 EM64T 

(Irwindale 3.2 GHz)
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Fast and Slow Operations 
 Fast: sum, add, subtract, multiply 
 Medium: divide, mod (that is, remainder), sqrt 
 Slow: transcendental functions (sin, exp) 
 Incredibly slow: power xy for real x and y 
On most platforms, divide, mod and transcendental functions 

are not pipelined, so a code will run faster if most of it is 
just adds, subtracts and multiplies. 

For example, solving an N x N system of linear equations by 
LU decomposition uses on the order of N3 additions and 
multiplications, but only on the order of N divisions. 
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What Can Prevent Pipelining? 
Certain events make it very hard (maybe even impossible) for 

compilers to pipeline a loop, such as: 
 array elements accessed in random order 
 loop body too complicated 
 if statements inside the loop (on some platforms) 
 premature loop exits 
 function/subroutine calls 
 I/O 
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How Do They Kill Pipelining? 
 Random access order: Ordered array access is common, so 

pipelining hardware and compilers tend to be designed under 
the assumption that most loops will be ordered.  Also, the 
pipeline will constantly stall because data will come from 
main memory, not cache. 

 Complicated loop body:  The compiler gets too 
overwhelmed and can’t figure out how to schedule the 
instructions. 



Supercomputing in Plain English: Inst Level Par 
Tue Feb 5 2013 55 

How Do They Kill Pipelining? 
 if statements in the loop:  On some platforms (but not all), 

the pipelines need to perform exactly the same operations 
over and over; if statements make that impossible. 

However, many CPUs can now perform speculative execution:  
both branches of the if statement are executed while the 
condition is being evaluated, but only one of the results is 
retained (the one associated with the condition’s value). 

Also, many CPUs can now perform branch prediction to head 
down the most likely compute path. 
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How Do They Kill Pipelining? 
 Function/subroutine calls interrupt the flow of the 

program even more than if statements.  They can take 
execution to a completely different part of the program, and 
pipelines aren’t set up to handle that. 

 Loop exits are similar. Most compilers can’t pipeline loops 
with premature or unpredictable exits. 

 I/O:  Typically, I/O is handled in subroutines (above).  
Also, I/O instructions can take control of the program away 
from the CPU (they can give control to I/O devices). 
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What If No Pipelining? 

SLOW! 
 

(on most platforms) 
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Randomly Permuted Loops 
Arithmetic Performance: Ordered vs Random 

(Irwindale 3.2 GHz)
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Superpipelining 
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Superpipelining 
Superpipelining is a combination of superscalar and 

pipelining. 
So, a superpipeline is a collection of multiple pipelines that 

can operate simultaneously. 
In other words, several different operations can execute 

simultaneously, and each of these operations can be broken 
into stages, each of which is filled all the time. 

So you can get multiple operations per CPU cycle. 
For example, a IBM Power4 can have over 200 different 

operations “in flight” at the same time.[1] 
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More Operations At a Time 
 If you put more operations into the code for a loop, you can 

get better performance: 
 more operations can execute at a time (use more 

pipelines), and 
 you get better register/cache reuse. 

 On most platforms, there’s a limit to how many operations 
you can put in a loop to increase performance, but that limit 
varies among platforms, and can be quite large. 
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Some Complicated Loops 
DO index = 1, length 
  dst(index) = src1(index) + 5.0 * src2(index) 
END DO  
 
dot = 0 
DO index = 1, length 
  dot = dot + src1(index) * src2(index) 
END DO  
 
DO index = 1, length 
  dst(index) = src1(index) * src2(index) + & 
 &             src3(index) * src4(index) 
END DO  
 
DO index = 1, length 
  diff12 = src1(index) - src2(index) 
  diff34 = src3(index) - src4(index) 
  dst(index) = SQRT(diff12 * diff12 + diff34 * diff34) 
END DO  
 

madd (or FMA): 
mult then add 

(2 ops) 

Euclidean distance 
(6 ops) 

dot product 
(2 ops) 

from our 
example 
(3 ops) 
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A Very Complicated Loop 
lot = 0.0 
DO index = 1, length 
    lot = lot +                       & 
 &    src1(index) * src2(index) +     & 
 &    src3(index) * src4(index) +     & 
 &    (src1(index) + src2(index)) *   & 
 &    (src3(index) + src4(index)) *   & 
 &    (src1(index) - src2(index)) *   & 
 &    (src3(index) - src4(index)) *   & 
 &    (src1(index) - src3(index) +    & 
 &     src2(index) - src4(index)) *   & 
 &    (src1(index) + src3(index) -    & 
 &     src2(index) + src4(index)) +   & 
 &    (src1(index) * src3(index)) +   & 
 &    (src2(index) * src4(index)) 
END DO  

24 arithmetic ops per iteration 
4 memory/cache loads per iteration 
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Multiple Ops Per Iteration 
Arithmetic Performance: Multiple Operations 

(Irwindale 3.2 GHz)
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Vectors 
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What Is a Vector? 
A vector is a giant register that behaves like a collection of 

regular registers, except these registers all simultaneously 
perform the same operation on multiple sets of operands, 
producing multiple results. 

In a sense, vectors are like operation-specific cache. 
A vector register is a register that’s actually made up of many 

individual registers. 
A vector instruction is an instruction that performs the same 

operation simultaneously on all of the individual registers of a 
vector register. 
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Vector Register 

v0 v1 v2 

v0 <- v1 + v2 

<- 
<- 
<- 
<- 
<- 

<- 
<- 
<- 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
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Vectors Are Expensive 
Vectors were very popular in the 1980s, because they’re very 

fast, often faster than pipelines. 
In the 1990s, though, they weren’t very popular. Why? 
Well, vectors aren’t used by many commercial codes (for 

example, MS Word). So most chip makers didn’t bother with 
vectors. 

So, if you wanted vectors, you had to pay a lot of extra money 
for them. 

Pentium III Intel reintroduced very small integer vectors (2 
operations at a time). Pentium4 added floating point vector 
operations, also of size 2. The Core family doubled the vector 
size to 4, and Sandy Bridge (2011) added “Fused Mutiply-
Add,” which allows 8 calculations at a time (vector length 4). 



A Real Example 
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A Real Example[4] 

DO k=2,nz-1 
  DO j=2,ny-1 
    DO i=2,nx-1 
      tem1(i,j,k) = u(i,j,k,2)*(u(i+1,j,k,2)-u(i-1,j,k,2))*dxinv2 
      tem2(i,j,k) = v(i,j,k,2)*(u(i,j+1,k,2)-u(i,j-1,k,2))*dyinv2 
      tem3(i,j,k) = w(i,j,k,2)*(u(i,j,k+1,2)-u(i,j,k-1,2))*dzinv2 
    END DO 
  END DO 
END DO 
DO k=2,nz-1 
  DO j=2,ny-1 
    DO i=2,nx-1 
      u(i,j,k,3) = u(i,j,k,1) -    & 
 &                 dtbig2*(tem1(i,j,k)+tem2(i,j,k)+tem3(i,j,k)) 
    END DO 
  END DO 
END DO 
 
. . . 
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Real Example Performance 

Performance By Method
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DON’T 
PANIC! 
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Why You Shouldn’t Panic 
In general, the compiler and the CPU will do most of the heavy 

lifting for instruction-level parallelism. 

BUT: 
You need to be aware of ILP, because 
  how your code is structured affects 
  how much ILP the compiler and the 
  CPU can give you. 
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2006 Keynote: 
Dan Atkins 

Head of NSF’s 
Office of 

Cyberinfrastructure 
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Sangtae Kim 
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Assistant Director 
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Walt Brooks 

NASA Advanced 
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Division Director 
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Jay Boisseau 

Director 
Texas Advanced 

Computing Center 
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José Munoz     

Deputy Office 
Director/ Senior 

Scientific Advisor 
NSF Office of 

Cyberinfrastructure 

2009 Keynote: 
Douglass Post  
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US Dept of Defense       
HPC Modernization 

Program 

FREE! Wed Oct 2 2013 @ OU 
Over 235 registra2ons already! 

Over 150 in the first day, over 200 in the first week, 
over 225 in the first month. 

http://symposium2013.oscer.ou.edu/ 

Reception/Poster Session 
Tue Oct 1 2013 @ OU 

Symposium Wed Oct 2 2013 @ OU 

2010 Keynote: 
Horst Simon  

Deputy Director         
Lawrence Berkeley 
National Laboratory 

2013 Keynote     
to be announced! 
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2011 Keynote: 
Barry Schneider  

Program Manager         
National Science 

Foundation 

2012 Keynote: 
Thom Dunning  

Director        
National Center for 

Supercomputing 
Applications 

http://symposium2013.oscer.ou.edu/


Thanks for your 
attention! 

 
 

Questions? 
www.oscer.ou.edu 

http://www.oscer.ou.edu/
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